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Abstract

Resurgence is an increase in a previously suppressed behavior resulting from a worsening in 

reinforcement conditions for current behavior. Resurgence is often observed following successful 

treatment of problem behavior with differential reinforcement when reinforcement for an 

alternative behavior is subsequently omitted or reduced. The efficacy of differential reinforcement 

has long been conceptualized in terms of quantitative models of choice between concurrent 

operants (i.e., the matching law). Here, we provide an overview of a novel quantitative model of 

resurgence called Resurgence as Choice (RaC), which suggests that resurgence results from these 

same basic choice processes. We review the failures of the only other quantitative model of 

resurgence (i.e., Behavioral Momentum Theory) and discuss its shortcomings with respect to the 

limited range of circumstances about which it makes predictions in applied settings. Finally, we 

describe how RaC overcomes these shortcomings and discuss implications of the model for 

promoting durable behavior change.
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The notion that effective behavior change can be transient is neither novel nor particularly 

surprising. In fact, early pioneers in applied behavior analysis clearly recognized this 

transience. Baer, Wolf, and Risley (1968) noted, “A behavioral change may be said to have 

generality if it proves durable over time, if it appears in a wide variety of possible 

environments, or if it spreads to a wide variety of related behaviors” (p. 96). Baer et al. went 

on to say that generality is not an automatic feature of behavior change and that generality 

“should be examined explicitly” (p. 96).

Recently, researchers have begun to distinguish between behavior that has generality over 

time (i.e., maintenance) and behavior that maintains in the face of environmental challenge 
(Nevin & Wacker, 2013; Wacker et al., 2011). An example of the importance of this 
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distinction can be seen in the results of a study by Wacker et al. (2011). Wacker et al. 

showed that problem behavior for seven of eight participants remained low or decreased 

across successive applications of functional communication training (FCT), which spanned 

an average of 14 months (range, 9 to 17 months per participant). These persistent treatment 

effects exemplify the generality of effective behavior change over time (i.e., maintenance). 

However, when therapists temporarily discontinued FCT during periodic extinction 

challenges throughout this same period, problem behavior for five of the eight participants 

recurred. Such findings highlight the inadequacy of examining maintenance of effective 

behavior change in the traditional sense (i.e., over time but under training conditions) and 

suggest that applied behavior analysts must evaluate the durability of effective behavior 

change when treatment is challenged. That is, treatments must be effective enough that their 

effects persist in the absence of treatment implementation. This is indeed a radical departure 

from traditional wisdom.

Resurgence Following Differential Reinforcement

Given the importance of developing treatments that are durable, recent translational research 

on the durability of common interventions for problem behavior has generated some 

troubling findings. Despite their widespread use (Petscher, Rey, & Bailey, 2009; Tiger, 

Hanley, & Bruzek, 2008) and robust efficacy while in effect (Greer, Fisher, Saini, Owen, & 

Jones, 2016; Hagopian, Fisher, Sullivan, Acquisto, & LeBlanc, 1998; Kurtz, Boelter, 

Jarmolowicz, Chin, & Hagopian, 2011; Petscher et al., 2009; Rooker, Jessel, Kurtz, & 

Hagopian, 2013), differential-reinforcement-based interventions for socially reinforced 

problem behavior are prone to relapse when differential reinforcement is suspended (Fisher 

et al., 2019; Fisher, Greer, Fuhrman, Saini, & Simmons, 2018; Fuhrman, Fisher, & Greer, 

2016; Harding, Wacker, Berg, Lee, & Dolezal, 2009; Lichtblau, Greer, & Fisher, under 

review; Mace et al., 2010; Nevin et al., 2016; Volkert, Lerman, Call, & Trosclair-Lasserre, 

2009; Wacker et al., 2011). These increases in problem behavior with the suspension of 

differential reinforcement are examples of resurgence. Resurgence has typically been 

defined as an increase in previously extinguished target behavior when a more recently 

reinforced alternative behavior is also subsequently extinguished (e.g., Cleland, Guerin, 

Foster, & Temple, 2001; Epstein, 1985).

Recent research by Briggs, Fisher, Greer, and Kimball (2018) examined the prevalence of 

resurgence of problem behavior when thinning reinforcement schedules during functional 

communication training (a common differential-reinforcement-based intervention) and 

found that resurgence occurred in 76% (or 19 of 25) schedule-thinning applications. These 

results are noteworthy because they show that differential reinforcement need not be 

suspended completely for problem behavior to resurge (e.g., Volkert et al., 2009). Indeed, 

the fact that resurgence occurs under conditions that do not involve a complete suspension of 

alternative reinforcement (e.g., during differential reinforcement thinning) has led to calls to 

return to a broader definition of the phenomenon (i.e., Epstein, 1985) in terms of a 

worsening of reinforcement conditions (e.g., Lattal et al., 2017; Lattal & Wacker, 2015; see 

also Shahan & Craig, 2017). Within the context of such a definition, a previously eliminated 

target behavior might be expected to show resurgence anytime the reinforcement conditions 

for a current alternative behavior worsen.
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The most common way to study resurgence experimentally is with a progression of three 

phases (see Lattal & St. Peter Pipkin, 2009, for an overview). In Phase 1, a target (e.g., 

problem) behavior produces reinforcement on some schedule. Phase 2 consists of 

reinforcing an alternative, incompatible, or undefined “other” (i.e., differential reinforcement 

of other behavior) behavior, while reinforcement is suspended for the target behavior. Phase 

3 begins once rates of the target behavior have decreased considerably from baseline and 

typically, but not always, consists of discontinuing all reinforcer deliveries (i.e., extinction). 

The worsening in reinforcement conditions that occurs upon transitioning from Phase 2 to 

Phase 3 often produces the recurrence of target responding (i.e., resurgence).

Given the high likelihood that caregivers often do not implement interventions consistently 

or as designed (e.g., Mitteer, Greer, Fisher, Briggs, & Wacker, 2018), resurgence is a serious 

concern in applied settings. In such settings, the transition from Phase 1 to Phase 2 parallels 

the transition from baseline, in which problem behavior produces the reinforcer responsible 

for its occurrence (as demonstrated via functional analysis; Iwata, Dorsey, Slifer, Bauman, & 

Richman, 1982/1994), to treatment, in which the same reinforcer often becomes available 

for another response. In turn, the transition from Phase 2 to Phase 3 parallels the transition 

from treatment, which has now had sufficient time to both suppress problem behavior and to 

establish the alternative response, to a condition that is likely to challenge those treatment 

effects. Complete suspension of reinforcement in Phase 3 is common when evaluating 

resurgence of problem behavior (e.g., Briggs et al., 2018; Fisher, Greer, Fuhrman, et al., 

2018; Fisher et al., 2019; Fuhrman et al., 2016; Harding et al., 2009; Lichtblau et al., under 

review; Mace et al., 2010; Nevin et al., 2016; Volkert et al., 2009; Wacker et al., 2011); 

however, as noted above, resurgence can occur even when reinforcement is not completely 

suspended in Phase 3 (e.g., Briggs et al., 2018; Volkert et al., 2009). In practice, natural 

downshifts in the reinforcement schedule maintaining an alternative to problem behavior are 

likely to coincide with times in which caregivers are preoccupied or otherwise unable to 

deliver the reinforcer (e.g., when busy changing an infant sibling). Furthermore, when 

resurgence does occur with such changes in reinforcement, there is an increased risk of the 

caregiver mistakenly reinforcing problem behavior, which may cause rapid reacquisition 

(e.g., Bouton, 2014) or response-dependent reinstatement (e.g., Podlesnik & Shahan, 2009) 

of problem behavior. Applied and translational research has generally shown such errors of 

commission to be more detrimental to treatment efficacy than simple errors of omission (i.e., 

not reinforcing the alternative response; Leon, Wilder, Majdalany, Myers, & Saini, 2014; St. 

Peter Pipkin, Vollmer, & Sloman, 2010) Thus, resurgence appears to pose a serious threat to 

the durability of effective behavior change in applied settings.

Fortunately, basic scientists have long been interested in the phenomenon of resurgence 

(e.g., Carey, 1951; 1953; Epstein, 1983; 1985; Leitenberg, Rawson, & Bath, 1970; 

Leitenberg, Rawson, & Mulick, 1975; Rawson, Leitenberg, Mulick, & Lefebvre, 1977). This 

extensive history of research on resurgence with nonhuman animals has generated a wealth 

of data on variables affecting the likelihood and magnitude of resurgence (see Doughty & 

Oken, 2008; Lattal & St. Peter Pipkin, 2009; Shahan & Craig, 2017; St. Peter, 2015, for 

reviews). Furthermore, there have been recent attempts to develop comprehensive 

quantitative models of resurgence (Shahan & Craig, 2017; Shahan & Sweeney, 2011). The 

overall goal of this paper is to explore the implications of the most recent and promising 

Greer and Shahan Page 3

J Appl Behav Anal. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quantitative model of resurgence (i.e., Resurgence as Choice; RaC) for promoting durable 

behavior change in applied settings. To do so, we first provide an overview of the utility of 

quantitative models for applied behavior analysts and then describe the shortcomings of the 

only other quantitative model of resurgence (Behavioral Momentum Theory; BMT).

Quantitative Models and Their Utility

An applied behavior analyst might reasonably ask what they stand to gain from the effort 

required to understand a quantitative model of resurgence. A comprehensive tutorial and 

discussion of what quantitative models have to offer in general for translational and applied 

behavior analysts can be found in Critchfield and Reed (2009). In addition, McDowell 

(1988) provides a particularly relevant discussion of how a quantitative model of choice 

might provide important insights for applied behavior analysts. Quantitative models are 

useful in science and application because they provide a means to succinctly summarize 

large amounts of data and to formalize current understanding of the processes thought to be 

involved in some phenomenon. The overall goal of such a model is to describe and 

summarize the functional relations between environment and behavior. Thus, the equations 

(i.e., functions) describe how exposure to a broad range of environmental conditions impacts 

behavior. In addition to summarizing, the equations can convey relations that are difficult to 

describe in words. Once the insights provided by an equation are understood, it can open up 

new and more fertile ways of thinking about a phenomenon. It is here that spending some 

time to understand a quantitative model can pay dividends for an applied behavior analyst. 

An understanding of the theory can lead you to see the situation in a different light, and thus, 

the actions you take or the interventions you consider might be entirely different—even if 

you never fit an equation to your data. The insights provided by a quantitative theory hold 

the promise of inspiring innovative and durable behavioral interventions. Theories are like 

lenses through which we view the world, and they guide us to what the theory identifies as 

the relevant processes. This is true of implicit and/or narrative theories as well as explicit 

quantitative theories, although we often do not recognize how implicit theories are guiding 

our interpretation of the phenomenon. With a formal theory, the assumptions and relevant 

processes are explicitly and precisely formalized so that they are easily recognized and can 

be evaluated for their accuracy and utility.

Resurgence of a target behavior after extinction is an interesting example of how our 

informal ways of thinking about behavior can lead us astray. Resurgence can be a perplexing 

phenomenon to many behavior analysts when they first encounter it. Looking at the 

phenomenon from a traditional behavior-analytic perspective, it seems strange that a 

behavior that has been extinguished might suddenly reappear. The reason is that if extinction 

eliminates the strength of the target behavior, how is it that in the absence of any further 

reinforcement for the target behavior, it can suddenly display a large increase in response 

strength? Thinking about the target behavior in terms of increases and decreases in response 

strength is an implicit narrative theory of behavior (see Shahan, 2017, for discussion). In 

introducing many behavior analysts to resurgence for the first time, we have noticed that this 

implicit way of thinking about behavior leads them to suggest an account of resurgence that 

seems to escape this apparent difficulty. The account goes like this: perhaps resurgence 

occurs because the availability of reinforcement for an alternative behavior during extinction 
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of a target behavior leads that behavior to compete with and prevent the target behavior from 

occurring, and therefore, from undergoing extinction. Thus, when the reinforcer for the 

alternative behavior is removed, so too is a source of competition for the target behavior, and 

the target behavior increases because its strength was never extinguished in the first place. 

This potential account of resurgence has a long history and is known in the literature as the 

response-prevention hypothesis (e.g., Leitenberg et al., 1970; Rawson et al., 1977). Although 

this sounds reasonable enough, it turns out to be wrong. There are many sources of 

contradictory evidence (see Shahan & Sweeney, 2011, for a review), but the most important 

is that even if the target behavior is thoroughly extinguished prior to the introduction of 

reinforcement for the alternative behavior, resurgence still occurs when the alternative 

reinforcer is subsequently removed (e.g., Cleland, Foster, & Temple, 2000; Epstein, 1983; 

Lieving & Lattal, 2003). If this account of resurgence is wrong, what should a behavior 

analyst see when they encounter a situation in which resurgence is occurring? It might seem 

mysterious that an extinguished response can reappear without any change in the 

reinforcement conditions for that response, but it only seems that way because of an implicit 
theory of extinction as a process of eliminating response strength or reversing prior learning. 

Other ways of thinking about the phenomenon provided by an alternative theory might 

encourage a more effective approach to understanding resurgence and lead to better 

interventions that prevent it.

The ways of thinking about phenomena provided by quantitative models are explicit and 

formalized theories. As opposed to implicit, qualitative, or narrative theories, quantitative 

theories are more constrained by the formal structure of the equations and the processes that 

those equations represent. Thus, quantitative models serve to hold a scientist’s feet to the fire 

with respect to the processes hypothesized to be at work (Mazur, 2006). Most importantly, a 

quantitative model can serve to rule out particular ways of thinking about a phenomenon 

based on existing and incoming data. This ability to rule out explanations requires the 

scientist to sometimes accept that their current understanding is flawed and that they must 

correct the equations of the theory or consider entirely new interpretations of the 

phenomenon (below, we will consider the behavioral momentum-based theory of resurgence 

as an example of this process). Because of a lack of formal structure, qualitative, narrative, 

and implicit theories simply allow too much flexibility in terms of explaining data. Thus, it 

can be difficult or sometimes impossible to generate data that disagree with the theory, and 

thus, it is difficult for the scientist to learn how their thinking about the phenomenon might 

be flawed.

As an example of the shortcomings of a narrative theory, briefly consider the Context 

Theory of resurgence (e.g., Bouton, Winterbauer, & Todd, 2012; Trask, Schepers, & Bouton, 

2015). As described by Bouton and Todd (2014), this theory asserts that resurgence results 

from a change in context from where the target behavior was extinguished. The extinction 

context for the target behavior is said to be provided by the stimulus effects of reinforcement 

of the alternative behavior in Phase 2 of a typical resurgence experiment. The account 

suggests that extinction is not the elimination of old learning, but instead it is the result of 

new inhibitory learning (i.e., an inhibitory association between the target behavior and 

reinforcement). Further, this inhibitory association is highly specific to the stimulus context 

in which it is learned, and thus, when there is a change in context, that learning does not 
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generalize, and thus, target behavior recurs. Specifically, in a resurgence procedure when the 

alternative behavior is extinguished in Phase 3, the absence of the alternative reinforcer now 

serves as a new context, the inhibitory association for the target behavior learned in Phase 2 

does not generalize, and the target behavior increases. Detailed concerns with this theory can 

be found in Craig and Shahan (2016) and Shahan and Craig (2017). In short, the difficulty is 

that the lack of formal specification of the processes involved leads to so much explanatory 

flexibility that it is nearly impossible to imagine data that could contradict the theory. For 

example, the concept of a “context” is so broad that it can and has included explicit stimuli, 

reinforcer deliveries, the absence of reinforcer deliveries, rates of reinforcement, internal 

states, the passage of time, etc. (see Bouton, 2010; Urcelay & Miller, 2014, for additional 

examples). Further, anytime resurgence is observed, one would infer that there was a change 

in context, and anytime resurgence is expected but does not occur, then one could infer that 

the change in context was not sufficiently discriminable. Thus, there is no obvious way to 

provide a contradictory outcome and no way to learn that this way of thinking about 

resurgence might be wrong. So, how does one ever gain novel insights about the underlying 

processes at work if the current account cannot reasonably be challenged?

The point above about Context Theory is not that it is wrong. All theories are wrong, some 

just perform better than others and are more useful in encouraging progress in our 

understanding. A good theory summarizes as much as possible, as parsimoniously as 

possible, as precisely as possible, and does so in a way that is amenable to disconfirming 

evidence. Clearly, as suggested by Context Theory, organisms can discriminate a wide 

variety of events including reinforcer deliveries or their rates of occurrence, and clearly such 

processes could be involved in resurgence. Nevertheless, the point is that the nature of a 

narrative theory and its associated lack of precision, coupled with its excessive flexibility, 

allows one to wield these hypothesized processes in such a way that it can be nearly 

impossible to disconfirm them. Alternatively, as an example of how a quantitative theory can 

be useful for a while, inform clinical practice, but ultimately be shown to be flawed and then 

inspire a search for novel ways of thinking, consider the behavioral momentum-based theory 

of resurgence (Shahan & Sweeney, 2011).

Behavioral Momentum Theory of Resurgence

BMT is a quantitative model of behavior that invokes the metaphor of the momentum of 

moving objects to help explain the behavior of organisms. Just as added mass increases the 

momentum of a moving object, BMT suggests that reinforcers delivered in a given stimulus 

context will strengthen responding in that context, increasing its persistence if later disrupted 

(see Nevin & Grace, 2000; Nevin, Mandell, & Atak, 1983, for reviews). BMT also has been 

extended to provide a quantitative theoretical account of resurgence (Shahan & Sweeney, 

2011). Indeed, when it comes to the resurgence of operant behavior, no model has received 

more attention from translational and applied researchers than BMT (for reviews of BMT in 

application and its extension to resurgence, see Dube, Ahearn, Lionello-DeNolf, & 

McIlvane, 2009; Greer, Fisher, Romani, & Saini, 2016; Nevin & Wacker, 2013; Pritchard, 

Hoerger, & Mace, 2014). Given existing reviews and tutorials describing the quantitative 

details of BMT and its extension to resurgence for applied behavior analysts (e.g., Greer, 

Fisher, Romani, & Saini, 2016; Nevin & Shahan, 2011), we will not reiterate those details 
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here. Rather, we will simply summarize the theoretical account and the difficulties it has 

encountered (detailed accounts of the quantitative difficulties can be found in Craig & 

Shahan, 2016; Nevin et al., 2017; Shahan & Craig, 2017).

Like Context Theory, BMT also suggests that the decreases in responding resulting from 

extinction are not due to an elimination of previous learning (see Nevin & Shahan, 2011, for 

a conceptual and quantitative overview of BMT). Unlike Context Theory, BMT does not 

hypothesize new inhibitory learning, but rather it suggests that responding decreases because 

of the disruptive impact of extinction. The theory suggests that the disruptive effects of 

extinction grow with time and are due specifically to breaking the contingency between 

responses and reinforcers and to the generalization decrement associated with the removal of 

reinforcers from the context (Nevin, McLean, & Grace, 2001). Further, the theory suggests 

that the impact of the pre-extinction history of reinforcement is not reduced or eliminated by 

extinction, but rather it is carried forward in time unchanged as behavioral mass (Nevin & 

Grace, 2000). According to the equations, behavioral mass is a direct function of the 

reinforcement rates previously experienced in the discriminative-stimulus context (compare 

Equations 1 and 2 in Nevin & Shahan, 2011). Thus, contexts previously associated with 

higher rates of reinforcement have greater mass, and therefore, are more resistant to the 

disruptive effects of extinction.

The extension of this theory of extinction to resurgence (Shahan & Sweeney, 2011) suggests 

that resurgence is the result of removing the disruptive impact of alternative reinforcement. 

More specifically, reinforcers delivered for target (e.g., problem) behavior in Phase 1 

enhance the behavioral mass (i.e., response strength) of the target response, which is 

responsible for its persistence when alternative reinforcement begins in Phase 2. Although 

alternative reinforcement also serves as an added source of disruption and helps to suppress 

target responding in Phase 2 (along with the disruptive effects of extinction), reinforcers 

delivered for the alternative (e.g., socially appropriate, communicative) response also 

contribute to the behavioral mass of the target response, increasing the likelihood of the 

target response resurging in the event that alternative reinforcement is later suspended or 

reduced. When the disruptive impact of alternative reinforcement on target responding is 

suspended or reduced in Phase 3, the behavioral mass of the target response is responsible 

for whether, and the degree to which, resurgence occurs. In fact, BMT predicts treatments 

based on alternative reinforcement (e.g., differential reinforcement, alternative 

reinforcement) that better suppress target responding by programming dense schedules of 

alternative reinforcement are more likely to produce resurgence than are similar, yet less-

efficacious, treatments that rely on leaner schedules of alternative reinforcement (Greer, 

Fisher, Romani, & Saini, 2016).

At the time it was introduced, the BMT of resurgence did a good job describing existing data 

in the basic literature (see Shahan & Sweeney, 2011, for a review). Furthermore, the theory 

inspired considerable basic, translational, and applied research examining its predictions. 

For example, a handful of recent translational studies on the resurgence of problem behavior 

have used this framework to test whether resurgence of problem behavior can be mitigated 

by modifying treatment procedures accordingly (Fisher, Greer, Fuhrman, et al., 2018; Fisher 

et al., 2019; Fuhrman et al., 2016; Lichtblau et al., under review; see also Fisher, Greer, 
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Craig, et al., 2018). The study by Fisher, Greer, Fuhrman, et al. exemplifies a translational 

evaluation of BMT. These researchers treated the problem behavior of four participants by 

arranging two conditions—one which approximated standard of care (called dense-short) 

and another which was informed by quantitative predictions of BMT (called lean-long). In 

the dense-short condition, the researchers delivered a dense schedule of reinforcement for 

both problem behavior in baseline and for the alternative response in treatment, and 

treatment with extinction was in place for a short period of time. In the lean-long condition, 

the researchers delivered a lean schedule of reinforcement for both problem behavior in 

baseline and for the alternative response in treatment, and treatment with extinction was in 

place for a longer period of time (i.e., three times the number of sessions as the dense-short 

condition). After experiencing baseline and treatment in both conditions using a multiple 

schedule (i.e., multielement design), an extinction challenge began in which reinforcement 

for the alternative response ceased, and a lean schedule of response-independent 

reinforcement (i.e., variable-time 200 s) began. Levels of resurgence expressed as a 

proportion of baseline response rate were lower for each of the four participants in the lean-

long condition than in the dense-short condition, as predicted by BMT. Thus, Fisher, Greer, 

Fuhrman, et al. showed that BMT, and quantitative models of resurgence more generally, 

have the ability improve standard of care when it comes to treating problem behavior. 

Additional translational research by Fisher et al. (2019), Fuhrman et al. (2016), and 

Lichtblau et al. (under review) supported similar predictions of BMT when treating problem 

behavior.

Despite these and other promising findings resulting from applying BMT to the development 

of more durable treatments for problem behavior, some of the basic research inspired by the 

theory has challenged its core underlying assumptions and predictions of the equations (e.g., 

Craig & Shahan, 2016; Nevin et al., 2017; Sweeney & Shahan, 2013). First, the BMT 

equation suggests that differential reinforcement (and alternative reinforcement more 

broadly) in Phase 2 must always disrupt target responding. The results of two studies (Craig 

& Shahan, 2016; Sweeney & Shahan, 2013) clearly show that alternative reinforcement 

delivered at a relatively low rate in Phase 2 can produce more target responding than a 

condition with no alternative reinforcement available (i.e., extinction alone). These findings 

represent a critical failure of the BMT equation describing resurgence and a core underlying 

assumption of the theory—alternative reinforcement serves as an additional source of 

disruption of target responding in Phase 2, and it is the removal of this added disruption that 

causes resurgence. This assumption as formalized in the equation is clearly false.

Second, the behavioral momentum model of resurgence (Shahan & Sweeney, 2011) assumes 

that reinforcers delivered in Phases 1 and 2 are additive. That is, the strengthening effects of 

reinforcement on the target response in Phases 1 and 2 are calculated as the sum of all 

reinforcers delivered across phases. This assumption is rooted in the basic behavioral 

momentum model of extinction, which assumes that the reinforcement rate experienced in 

baseline is carried forward unchanged as behavioral mass across all of extinction (Nevin & 

Grace, 2000). But, as discussed by Craig and Shahan (2016) and by Shahan and Craig 

(2017), this assumption generates bizarre predictions under many circumstances when 

applied to resurgence. For example, transitioning from Phase 1 to Phase 2 under the same 

reinforcement schedule (but now arranged for the alternative response rather than the target 
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response) would suggest a doubling of the behavioral mass of the target response, even 

though the overall rate of reinforcement has not changed. This problem is further 

compounded across conditions with changing reinforcement rates during treatment. For 

example, during schedule thinning, the model suggests that each of the reduced 

reinforcement rates experienced across thinning steps further increases the strength of target 

behavior, even though the ongoing rate of reinforcement for the target behavior is 

decreasing. In short, the model assumes that every reinforcement rate experienced in the past 

continues to add to response strength forever, and it has no way to accommodate the likely 

decreasing effects of reinforcers experienced in the more remote behavioral history. As a 

result of this shortcoming, the model has no way to make meaningful or accurate predictions 

about how schedule thinning should impact resurgence of target behavior.

Third, BMT predicts that in Phase 3, when reinforcement has ceased for both the target and 

the alternative response, target responding should be highest in the first session of Phase 3 

and, thereafter, should decrease across all subsequent sessions. However, Podlesnik and 

Kelley (2015) noted that resurgence of target responding during Phase 3 often takes on more 

of a bitonic function, initially increasing across the first few sessions in Phase 3 before then 

decreasing across sessions. BMT has no way to account for this common finding.

Fourth, BMT makes no predictions about how a number of variables relevant in applied 

settings might be likely to impact the efficacy of differential-reinforcement-based treatments 

and the likelihood of resurgence. For example, the BMT-based theory of resurgence makes 

no predictions about how differences in response effort or reinforcement quality for target 

and alternative behaviors might be expected to impact resurgence.

Thus, despite the promise that BMT has shown when translational researchers have applied 

its predictions to inform the development of more durable treatments for problem behavior, 

recent basic research suggests that fundamental problems exist with the BMT account of 

resurgence. Nevertheless, the theory has done its job. It formalized a way of thinking about 

resurgence and inspired experiments to evaluate this way of thinking. It turns out that the 

core assumptions of the theory as formalized in its equations were not sustainable in the face 

of new data. In addition, the theory inspired translation and application. Although the 

translations of BMT into applied settings have been reasonably successful, the conditions to 

which it has been applied remain fairly restricted. The failures of the theory with key 

variables in basic research suggest that the conditions under which it can be further 

successfully translated are relatively limited, and more troubling, it is likely to lead to 

predictions in applied settings that are incorrect and possibly countertherapeutic. Finally, the 

range of conditions to which the theory can be applied are even more limited by the fact that 

the theory does not make predictions about additional variables that are likely to be critically 

important in applied settings. It was these seemingly insurmountable difficulties with BMT 

that inspired a new theory of resurgence.

Resurgence as Choice

Simply stated, RaC suggests that resurgence can be understood as a natural outcome of the 

same basic processes that govern choice between concurrent operants. In its most general 
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form, RaC is merely an extension of Herrnstein’s (1961) matching law. The matching law 

suggests that the proportion of behavior allocated to two response options is equal to or 

“matches” the proportion of reinforcers obtained from those options (Herrnstein, 1961). 

Quantitatively, that is,

B1
B1 + B2

=
R1

R1 + R2
(1)

where B1 and B2 are response rates for two options and R1 and R2 are the rates of 

reinforcement obtained from those options. Although Equation 1 describes the allocation of 

behavior as varying with relative reinforcement rates, behavior might also produce 

reinforcers that vary on any number of other dimensions (e.g., magnitude, immediacy, 

quality). An extension of Equation 1 known as the concatenated matching law (Baum & 

Rachlin, 1969) suggests that the allocation of behavior to two options matches the relative 

value of the consequences obtained by those options, where value is defined as the combined 

effects of the relevant reinforcement dimensions, for example,

B1
B1 + B2

=
R1A1I1

R1A1I1 + R2A2I2
=

V1
V1 + V2

(2),

where A1 and A2 are the amounts, I1 and I2 are the immediacies, and V1 and V2 are the 

values of the two options. The concatenated matching law in one form or another has been 

enormously influential in behavior analysis. It has served as the conceptual foundation of 

behavior-analytic theories of a wide variety of phenomena including self-control/delay 

discounting (e.g., Mazur, 1987; Rachlin & Green, 1972) and conditioned reinforcement 

(e.g., Fantino, 1969; Grace, 1994; Mazur, 2001), and it has been extended to a wide variety 

of applied and naturalistic settings (e.g., Fisher & Mazur, 1997; McDowell, 1988; Vollmer & 

Bourret, 2000).

Most importantly for present purposes, differential-reinforcement-based interventions have 

long been conceptualized in terms of choice, concurrent operants, relative value, and the 

matching law (e.g., Carr, 1988; Fisher et al., 1993; Fisher & Mazur, 1997; Horner & Day, 

1991; Mace & Roberts, 1993; McDowell, 1981; Piazza et al., 1997). For example, Piazza et 

al. (1997) showed that severe problem behavior of children was reduced when compliance 

was reinforced with combinations of a break, tangibles, and attention, even though problem 

behavior also continued to be reinforced with a break. In interpreting these results, Piazza et 

al. suggested that “One potential explanation of these findings is that the relative rates of 

compliance and problem behavior were a function of the relative value of the reinforcement 

produced by each response” (p. 280). This interpretation is, of course, just a restatement of 

the concatenated matching law (i.e., Equation 2).

Given that RaC is also a version of the concatenated matching law, it suggests that the 

allocation of responding to a target (e.g., problem behavior) versus an alternative behavior 
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(e.g., compliance) is a function of the relative values of the consequences generated by those 

behaviors. Thus,

BT
BT + BAlt

=
VT

VT + V Alt
(3),

where BT and BAlt refer to rates of the target and alternative behaviors, and VT and VAlt 

refer to the relative values of the consequences of those behaviors. Because the term on the 

left side of the equation represents the proportion of responses occurring that are BT, it can 

also be interpreted as a conditional probability and can be written as,

pT =
VT

VT + V Alt
(4),

where pT represents the probability that the target response occurs given that one of the 

responses occurs.

To understand Equation 4, consider for example the probability of compliance versus 

problem behavior in the Piazza et al. (1997) study. Prior to implementation of explicit 

reinforcement of compliance, the children likely received little reinforcement for compliance 

(i.e., VAlt was low) and more reinforcement for problem behavior (i.e., VT was high), and as 

a result, the probability of problem behavior (i.e., pT) was likely quite high. But, even 

though problem behavior continued to produce the same reinforcement (i.e., VT remained 

the same), an increase in the value of compliance (i.e., VAlt) with the onset of explicit 

reinforcement for compliance would be expected to decrease the probability of problem 

behavior (i.e., pT). Using arbitrary units for value as an example, if VT=20 and VAlt= 5 prior 

to explicit reinforcement of compliance, then pT=20/(20+5)=0.8. That is, problem behavior 

would be expected 80% of the time when responding occurred, and because the probability 

of the alternative behavior is the complement of the target behavior, compliance would be 

expected only 20% of the time. If when explicit reinforcement is introduced for compliance 

VAlt increases to 140, then pT=20/(20+140)=0.125, and problem behavior would be 

expected only 12.5% of the time when responding occurred and compliance 87.5% of the 

time. The larger the increase in VAlt, the larger the reduction in the probability of problem 

behavior. Hence, it makes perfect sense to try to increase the value of the reinforcers for 

alternative behavior as much as possible, and it is indeed very common to arrange 

immediate, high-quality reinforcers for the alternative behavior at a very high rate in order to 

decrease problem behavior as much as possible (e.g., Horner & Day, 1991). Alternatively, it 

also makes perfect sense to try to reduce the value of the reinforcers for the problem 

behavior (i.e., decrease VT), which would also be expected to decrease the probability of the 

problem behavior with no change in VAlt. The best way to reduce the value of the reinforcer 

for the problem behavior is to remove it completely, and, as discussed above, it is very 

common for differential-reinforcement-based interventions to arrange for extinction of the 

target behavior while simultaneously reinforcing alternative behavior (e.g., as is common 

with FCT; e.g., Fisher, Greer, & Bouxsein, in press).
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Thus, at a broad conceptual level, the beneficial effects of placing the target behavior on 

extinction while also explicitly reinforcing an alternative behavior seem clear in terms of 

Equation 4. But, extinction actually introduces a serious quantitative problem for the 

matching law more generally, and for Equation 4 specifically. If the reinforcer for target 

behavior is removed entirely, its rate of occurrence is zero (i.e., R=0). Thus, if value is 

calculated as the combined effects of different reinforcement parameters as suggested by 

Equation 2, VT would always be zero once extinction begins for the target behavior. If VT in 

Equation 4 is zero, then pT is always zero, and the target behavior is predicted to never occur 

again once extinction has begun. Unfortunately, this is not how extinction works. Target 

behavior often persists for quite some time after extinction is started. In addition, even if the 

target behavior is reduced to a zero rate of occurrence, phenomena such as resurgence 

demonstrate that it can easily reappear in the future, even though extinction remains in 

effect. Note that in a typical demonstration of resurgence, both the target behavior and the 

alternative behavior are under extinction during a Phase 3 resurgence test when alternative 

reinforcement is suspended. Without some way to calculate values based on the previous 

histories of reinforcement, Equation 4 returns only zeros. So, although differential-

reinforcement-based interventions seem to make conceptual sense when considered from the 

perspective of the concatenated matching law, the formal structure collapses as soon as 

extinction is introduced. This is the problem that RaC was designed to address.

How does one calculate the value of a response option that was once reinforced but is no 

longer reinforced? It seems uncontroversial to suggest that the effects of a history of 

reinforcement are carried forward in time somehow such that they can continue to impact 

behavior even after extinction is implemented. Indeed, BMT does just this using the 

construct of behavioral mass. Unfortunately, some of the failings of BMT result from the 

fact that it assumes that reinforcement history is carried forward as mass across time 

unchanged (Nevin & Grace, 2000). How then should one quantify the residual effects of a 

changing history of reinforcement across time such that a number can be placed in the value 

terms in Equation 4? In what follows, we will provide a description of how RaC 

accomplishes this. In doing so, we will be glossing over some of the more complex 

quantitative details about how the effects of a history of reinforcement are calculated. To 

understand the implications of RaC for durable behavior change in applied settings, it is not 

necessary to understand every quantitative detail—although understanding those details 

could certainly improve one’s ability to gain insights from RaC. Thus, in the body of the text 

below, we will use mainly graphs and qualitative descriptions to show how RaC quantifies a 

history of reinforcement. More detailed quantitative descriptions can be found in the 

Supporting Information and in the original Shahan and Craig (2017) paper.

To formally quantify the effects of a history of reinforcement on the value of a response 

option, it is first necessary to have a record of the objective history of reinforcement. An 

example of such a record is presented in the top panel of Figure 1. The figure shows the 

reinforcement rates (i.e., Rx in reinforcers/hr) experienced for a single response across 10 

sessions. For the first 5 sessions, the response was reinforced on a variable-interval (VI) 30-s 

schedule (i.e., 120 reinforcers/hr). For the following 5 sessions, the response was placed on 

extinction, and thus, produced zero reinforcers per hr. It is important to note that behavior is 

not represented in this panel—it simply presents a record of the reinforcement rates 
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experienced. If the numbers represented in the top panel were used in Equation 4, the 

equation would suggest that this response has zero value and should never occur again once 

extinction begins at Session 6.

In order to turn a history of reinforcement like that in the top panel of Figure 1 into value, 

RaC uses a slight modification of an approach borrowed from the animal-foraging literature 

called the Temporal Weighting Rule (TWR; see Devenport & Devenport, 1994; Mazur, 

1996, for reviews). Simply put, the TWR suggests that recent experiences (i.e., experiences 

of reinforcement rates in this case) are more heavily weighted (i.e., have a greater impact on 

value) than experiences from the more distant past. But, even though the impact of 

experiences from the more distant past are reduced, they nevertheless continue to influence 

behavior for a long time. The TWR generates weightings that are applied to a record of a 

reinforcement history like that presented in the top panel of Figure 1. In this case, the 

reinforcement rate experienced in each session starting with the most recent session and 

going back to the first in the record is simply multiplied by the weighting provided by the 

TWR for each session. By performing this calculation, we are quantifying a history of 

reinforcement by determining the value of past experiences as a function of what happened 

in the past (i.e., rates of reinforcement experienced) and how heavily each past experience is 

weighted.

The middle panel of Figure 1 shows examples of weighting functions for Sessions 5, 7, and 

10 generated by the TWR. Each curve in that panel is a weighting function for a particular 

session and shows how the weightings (i.e., Wx) decrease as sessions recede into the past 

(i.e., the curves decrease as you move from right to left). A brief description of the 

quantitative details for generating these weighting functions is provided in the Supporting 

Information. Note that every session would have its own weighting function but plotting 

them all would make it difficult to see any particular function. Also note that when 

interpreting the weighting function for any given session, only that function is relevant. That 

is, a single function describes the weightings for the current session and for each session in 

the past, relative to the current point in time (i.e., the current session). There are a few 

additional important things to notice about the weighting functions. First, the weights in 

every function always sum to 1. Thus, each Wx tells you the proportion of total weight that a 

particular session in the past gets. Second, for each weighting function, sessions that 

happened longer ago get less weight (i.e., smaller Wx), and more recent sessions get more 

weight (larger Wx). Take for example the function for Session 10 (only the curve on the far 

right). The most recent session (i.e., the data point for Session 10 on the curve on the right) 

receives approximately 0.46 (i.e., 46%) of the total weight, but Session 5 on this same 

function receives only about 0.04 (i.e., 4%) of the total weight. Finally, the weighting 

functions decrease quickly at first, but more slowly for sessions in the more distant past (i.e., 

further to the left on the function). Specifically, the weighting functions generated by the 

TWR and displayed in the middle panel are hyperbolic (note that the y-axis is logarithmic). 

Thus, reinforcers experienced in more recent sessions have a relatively large impact, but the 

effects of the more distant reinforcement history linger for a very long time.

To calculate the value of a response option, RaC simply multiplies the reinforcement rate 

(i.e., Rx) experienced in each session in the top panel of Figure 1 by the corresponding 
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weighting (i.e., Wx) for that session in the middle panel, and then sums up the weighted 

reinforcement rates across those sessions. The bottom panel shows the value (i.e., V) of the 

response option calculated this way for each of the same 10 sessions as depicted in the other 

two panels. Note that value declines quickly at first when extinction is implemented but 

declines more slowly as extinction sessions progress. To demonstrate how to calculate the 

values in the bottom panel, we will present a couple of examples. In calculating the value for 

Session 5, the reinforcement rate for each session starting at Session 5 and moving back to 

Session 1 would first be multiplied by the weights for those sessions. The weighting 

function for Session 5 (the function on the left in the middle panel of Figure 1) provides the 

following Wx values 0.039, 0.057, 0.094, 0.189, and 0.621 for Sessions 1, 2, 3, 4, and 5 

respectively. The reinforcement rates in those sessions were 120, 120, 120, 120, and 120. 

Thus, the value (i.e., V) of the response for Session 5 is 

(0.039*120)+(0.057*120)+(0.094*120)+(0.189*120)+(0.621*120)=120. Next, to see how 

extinction impacts value, consider Session 7. The weighting function for Session 7 is the 

middle curve in the middle panel of Figure 1 and provides the following Wx values 0.028, 

0.035, 0.048, 0.066, 0.101, 0.187, and 0.535 for Sessions 1, 2, 3, 4, 5, 6, and 7, respectively. 

The reinforcement rates for those same sessions were 120, 120, 120, 120, 120, 0, 0. Thus, 

the value (i.e., V) of the response for Session 7 is 

(0.028*120)+(0.035*120)+(0.048*120)+(0.066*120)+(0.101*120)+(0.187*0)+(0.535*0) 

=33.29. Value is calculated similarly for all the other sessions based on the weighting 

function for each session in order to construct the bottom panel.

By providing a way to calculate value, the TWR allows RaC to use Equation 4 to make 

predictions about situations in which either the target behavior, the alternative behavior, or 

both are on extinction. This allows the concatenated matching law to be formally applicable 

to differential-reinforcement-based interventions involving extinction, and most importantly 

for present purposes, it permits RaC to account for resurgence. The example in Figure 1 

showed how to apply the TWR to a single response option. When there are two responses 

under consideration (i.e., a target and an alternative response), the process is exactly the 

same. Weighting functions generated by the TWR are applied to the record of the 

reinforcement history for each response separately, and value is calculated for each response 

separately.

The top panel of Figure 2 shows a record of the reinforcement histories for a target and an 

alternative response across the typical three phases of a resurgence experiment. In Phase 1, 

the target behavior was reinforced on a VI 30-s schedule. In Phase 2, the target behavior was 

extinguished, and the alternative behavior was reinforced on a VI 10-s schedule. In Phase 3, 

reinforcement for the alternative behavior was also omitted (i.e., it was placed on 

extinction). The middle panel of Figure 2 shows value of the target (i.e., VT) and alternative 

behavior (i.e., VAlt). Value for both options was calculated in the same way as described for 

Figure 1 using the relevant weighting functions for each option (see Supporting 

Information). Note that the value function for the target behavior is exactly the same as in 

Figure 1, but it has been extended out to 15 sessions (i.e., 10 sessions of extinction). Also 

note that although value of the target behavior gets quite low by the time Phase 3 begins 

(i.e., at Session 11), it is not zero. Its precise value is 9.74. When Phase 3 begins and the 
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alternative behavior is also placed on extinction, the value of the alternative behavior drops 

precipitously at first and then more slowly as sessions progress.

The bottom panel of Figure 2 shows the probability of the target behavior obtained by 

plugging the VT and VAlt values across sessions in the middle panel into Equation 4 [i.e., pT 
= VT/(VT+VAlt)]. Note that when only the target behavior is reinforced in Phase 1, the 

probability of the target behavior is 1 (i.e., only the target behavior occurs). When the target 

behavior is placed on extinction and high-rate reinforcement of the alternative behavior is 

introduced in Phase 2, the probability of the target behavior decreases rapidly. Finally, when 

reinforcement is omitted for the alternative behavior in Phase 3, the precipitous decrease in 

value of the alternative behavior generates an increase in the probability of the target 

behavior. This increase in the probability of the target behavior suggests that when 

responding occurs in Phase 3, whether it be target or alternative responding, there is an 

increased likelihood that, relative to Phase 2, responding will take the form of target 

behavior. This increased probability of the target is what we see as resurgence. Note that this 

increase in the probability of the target occurs even though the absolute value of the target 

has not changed and remains low. What has changed is that the relative value of the target 

has increased because of the decrease in VAlt in Equation 4. In short, RaC suggests that 

resurgence results from an increase in the allocation of responding to the target as a result of 

a decrease in the value of the alternative behavior.

As we hope is clear at this point, RaC is a formalization of the broader definition of 

resurgence noted above in terms of a “worsening of conditions” (e.g., Epstein, 1985; Lattal 

& Wacker, 2015). In the matching-law-based approach provided by RaC, a “worsening of 

conditions” is quantified as decreases in the value of the alternative behavior. In the 

examples above, we have shown how RaC uses the TWR to provide a quantitative 

description of how value decreases with exposure to extinction. But, in a broader sense, RaC 

can be applied to any conditions that affect the relative value of the target behavior. 

Decreases in the value of an alternative resulting from other operations would also be 

expected to generate resurgence. For example, decreases in the rate of alternative 

reinforcement to non-zero values would be expected to generate resurgence, and as is clear 

from the discussion above about reinforcement thinning, such decreases do generate 

resurgence (e.g., Briggs et al., 2018). Further, decreases in the magnitude of alternative 

reinforcement would be expected to induce resurgence of an extinguished target behavior, 

and in fact, they do (Craig, Browning, Nall, Marshall, & Shahan, 2017). Similarly, 

punishment of an alternative behavior would be expected to precipitate resurgence of an 

extinguished behavior, and it does (Fontes, Todorov, & Shahan, 2018; see also Wilson & 

Hayes, 1996). Although there has been no research on other forms of devaluation of the 

alternative behavior, RaC suggests that decreases in immediacy, quality, motivation, or 

increases in the effort required for alternative reinforcement should also induce resurgence. 

Indeed, in its most general conceptual sense, RaC suggests that a target behavior that is 

suppressed by any means might resurge as a result of any operation that produces an 

increase in the relative value of the target behavior. A target behavior might be suppressed 

by extinction, punishment, decreases in motivation, or by any other means, and resurgence 

might be induced by anything that decreases the value of an alternative behavior or that 

increases the value of the target behavior.
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The broad conceptual approach to resurgence provided by RaC and summarized above 

might be sufficient for many applied behavior analysts. The approach provides a way to 

think about resurgence that is consistent with existing conceptual approaches to differential-

reinforcement-based interventions in terms of concurrent operants and the matching law. 

Further, the approach provides general guidelines about when resurgence might be expected 

and what sorts of conditions one might avoid in order to prevent resurgence. In a general 

sense, to benefit from such insights provided by RaC, it is probably not necessary, or in 

many cases not possible, to have an accurate record of the reinforcement history for a 

particular problem behavior that would permit an explicit calculation of value. It most cases, 

it is a fairly reasonable assumption that there is a reinforcement history for problem behavior 

once a functional reinforcer has been identified. As a result, the general conceptual approach 

to resurgence provided by RaC would still provide insights about the sorts of conditions that 

might lead one to expect resurgence. In many cases, this is probably enough. But, because 

RaC provides a way to more specifically quantify the processes thought to be at work, the 

theory makes explicit predictions about how a variety of variables might affect resurgence. 

In what follows, we will explore some of those predictions that might be most relevant to 

applied behavior analysts. In order to do that, it is first necessary to describe how RaC 

generates predictions about the usual dependent measure employed in applied behavior 

analysis.

Equation 4 describes resurgence in terms of the probability of a target behavior. Although 

this is useful in a general sense for contemplating when resurgence might be expected, most 

behavior analysts do not measure the relative rate or probability of behavior—they measure 

the absolute rate of behavior (e.g., responses/min). Thus, in order to make predictions about 

the most relevant dependent variable, RaC needs to make predictions in terms of absolute 

response rates. Fortunately, because RaC is based on the matching law, it is fairly 

straightforward to generate a version of the theory that predicts absolute response rates.

Herrnstein (1970) proposed an absolute response rate version of the matching law, 

suggesting that when two response options are available, the absolute rate of one of those 

responses is,

B1 =
kR1

R1 + R2 + Re
(5),

where B1 is the absolute rate (i.e., response/min) of the target behavior, R1 is the rate of 

reinforcement for that behavior (i.e., reinforcers/hr), R2 is the rate of reinforcement for the 

other behavior, k is a parameter representing the asymptotic rate of B1 in that situation, and 

Re is a parameter representing extraneous sources of reinforcement in the environment 

produced by unmeasured other behavior (see McDowell, 1988, for a tutorial). This equation 

suggests that the rate of the target behavior (i.e., B1) increases with increases in the rate of 

reinforcement for that behavior (i.e., R1) and decreases with increases in reinforcement for 

the other behavior (i.e., R2). The parameter Re determines how quickly rates of the target 

behavior approach the asymptotic level (i.e., k) with increases in R1 and is assumed to 

remain constant in a given situation.
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RaC uses a slightly modified version of Equation 5 to generate absolute response rates. First, 

RaC replaces reinforcement rates for the two responses with the values for the target (i.e., 

VT) and alternative (i.e., VAlt) behaviors. Second, as will be discussed in more detail below, 

RaC replaces Re with the invigorating (i.e., arousing) effects of reinforcement (i.e., A; see 

Killeen, 1994). Thus, the absolute response rate version of RaC is,

BT =
kVT

VT + V Alt + 1
A

A = a(VT + V Alt) (6),

where BT is the rate of the target behavior, k is the asymptotic rate of BT, and all other terms 

are as described above. Thus, RaC suggests that the absolute rate of a target behavior 

increases with increases in the value of the outcomes produced by that option (i.e., VT) and 

decreases with increases in the value of the outcomes produced by an alternative behavior 

(i.e., VAlt). Because 1/A is in the denominator of the equation, as A increases (i.e., more 

invigoration), BT tends to increase, and as A decreases, BT tends to decrease. RaC uses 1/A 
instead of Re from Herrnstein’s Equation because (a) the assumption that Re should remain 

constant, even during extinction of both the target and alternative behaviors, turns out to be 

untenable when accounting for resurgence data (see Shahan & Craig, 2017, for elaboration), 

and (b) the switch to the invigorating effects of reinforcement (i.e., A) allows the model to 

more naturally incorporate the effects of motivation. As shown in the right-hand portion of 

Equation 6, the degree to which target behavior is invigorated (i.e., A) is assumed to depend 

on the sum of the values of the two options. The parameter a determines how much of an 

impact the current values of the options have on invigoration and can be thought of as 

representing the strength of the motivating operations in effect for the relevant reinforcers 

(e.g., Laraway, Snycerski, Michael, & Poling, 2003). Higher values of parameter a (i.e., an 

establishing operation) mean that the current values of the available options produce more 

vigorous behavior. For an organism satiated on the relevant reinforcers (i.e., an abolishing 

operation), the prospect of even nominally highly valuable reinforcers (e.g., high rate, 

magnitude, immediacy, etc.), is not likely to produce much vigor (i.e., lower values of 

parameter a), and thus, not much responding. Most importantly, in a typical resurgence test, 

both target and alternative responding are on extinction. The longer extinction is in effect for 

both responses, the lower VT + VAlt becomes as all reinforcement drifts into the past, and A 
becomes smaller and behavior less invigorated.

Figure 3 shows target response rates calculated using Equation 6 for the same example 

shown previously in Figure 2. For this simulation, the VT and VAlt values for each session as 

shown in the middle panel of Figure 2 were plugged into Equation 6 using parameter values 

comparable to those used in previous applications of RaC to existing animal data (i.e., k=60, 

a=0.0005; Shahan & Craig, 2017). As shown in Figure 3, RaC can produce the usual pattern 

of behavior obtained in resurgence experiments. Rates of the target behavior are higher in 

Phase 1 when only the target is reinforced. In Phase 2 when the target behavior is placed on 

extinction and the alternative behavior is reinforced at a high rate, target response rates 

decrease to low levels. Finally, in Phase 3 when the alternative behavior is also extinguished, 
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the target behavior increases (i.e., shows resurgence) and then gradually decreases across 

continued extinction sessions.

At this point, it is important to briefly consider what happens with response rates (i.e., BT) in 

Figure 3 during Phase 3 and what happens with the probability of the target (i.e., pT) in 

Phase 3 in the bottom panel of Figure 2. Note that in Figure 2, the probability of the target 

response increases across Phase 3. What this means specifically is that given that one of the 
behaviors occurs (either target or alternative), how likely is it that the behavior that occurs is 

the target behavior? Thus, what Figure 2 shows is that as extinction of both behaviors 

continues in Phase 3, it becomes increasingly likely that when a behavior does occur, it is 

the target behavior. On the other hand, response rates in Phase 3 as shown in Figure 3 tend to 

decrease across sessions as both responses continue to be on extinction for a longer period of 

time. This decrease is the result of decreases in invigoration (i.e., A) in Equation 6, as 

extinction continues, and all reinforcer deliveries drift into the past (i.e., VT and VAlt 

continue to decrease). Thus, although the target response is becoming more likely when a 

behavior actually occurs (Figure 2), behavior is occurring less often (Figure 3) because of 

the increasing exposure to extinction. Importantly, as noted in the section on shortcomings 

of BMT above, resurgence data also show sometimes that when reinforcement is omitted for 

both the target and the alternative behavior, target behavior initially increases across the first 

few sessions in Phase 3 before then beginning to decrease across sessions (see Podlesnik & 

Kelley, 2015, for discussion). Interestingly, Equation 6 can naturally describe such a pattern 

with variations in the motivation-related parameter (i.e., a). As parameter a increases, the 

pattern of response rates across Phase 3 becomes more bitonic (see Figure 9 below for 

simulations). Thus, according to RaC, the pattern of responding across continued extinction 

sessions during a resurgence test is influenced by motivating operations—with greater 

motivation likely to result in increases in target responding across the first few sessions in 

which the alternative behavior is also extinguished.

In applied settings, it is usually not just the target behavior that is of interest. For example, 

although FCT might be used to decrease problem behavior, the alternative behavior is a 

desirable, functional communication response. So, although a clinician might justifiably be 

interested in how much the target problem behavior decreases during treatment and whether 

it resurges, they are also likely to be keenly interested in how often the communication 

response occurs. Because RaC is a choice-based approach, it naturally also provides an 

account of the alternative behavior. All that is required for such an account is to rearrange 

Equation 6 so that it is stated in terms of the alternative behavior rather than the target 

behavior. Thus,

BAlt =
kV Alt

VT + V
Alt

+ 1
A

A = a(VT + V Alt) (7),

where BAlt is the rate of the alternative behavior, and all other terms are as in Equation 6. 

Note that in Equation 7, VAlt has simply replaced VT in the numerator. Figure 4 shows rates 

of the alternative behavior (i.e., BAlt) across the same phases as presented for the target 
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behavior in Figure 3 using the same parameter values (i.e., k=60, a=0.0005). Note that the 

alternative behavior does not occur in Phase 1 (i.e., prior to the introduction of reinforcement 

for that behavior) and occurs at a high rate in Phase 2 after the introduction of high-rate 

reinforcement for that behavior. In Phase 3, when the alternative behavior is placed on 

extinction, it declines across sessions. It is important to note, however, that if the target and 

alternative behaviors are topographically different (which is almost surely the case in applied 

settings), the asymptotic rate of the target behavior might be different than that of the 

alternative behavior (e.g., saying, “Play please” can happen many more times per minute 

than elopement). In these circumstances, a different value of the k parameter might be 

required to make reasonable predictions about the rates of the two behaviors.

Implications of Resurgence as Choice for Promoting Durable Treatments

RaC suggests a number of ways in which applied behavior analysts may mitigate the 

resurgence of problem behavior, and in so doing, promote treatment durability. In the 

sections below, we provide simulations of key predictions of RaC that may be especially 

relevant when treating problem behavior.

Value Manipulations

A core prediction of RaC is that any procedure that keeps the value of the alternative 

response (Valt) high relative to the value of the target response (Vt) will mitigate resurgence 

of target behavior. To help illustrate this prediction, we simulated various situations in which 

differences in value affect treatment efficacy, resurgence of target responding, and rates of 

alternative responding following treatment with differential reinforcement. For these and all 

subsequent simulations we set k=60, a=0.0005, and λ=0.006 (see Supporting Information 

for discussion of λ).

All simulations in Figure 5 begin with a VI 15-s schedule of reinforcement for the target 

response in Phase 1. Panels in the left column show target and alternative response rates (and 

associated values of each response) without extinction programmed for target responding in 

Phase 2. Panels in the right column show these same measures but under conditions in which 

extinction was programmed for target responding in Phase 2. In all panels, extinction was 

then arranged for alternative behavior in Phase 3. The top panels show simulations in which 

the rate of alternative reinforcement (i.e., VI 5 s) in Phase 2 was denser than that 

programmed in Phase 1 for target responding. The middle panels depict simulations in 

which the rate of alternative reinforcement (i.e., VI 15 s) in Phase 2 was identical to that 

programmed in Phase 1 for target responding. Finally, the bottom panels depict simulations 

in which the rate of alternative reinforcement (i.e., VI 45 s) in Phase 2 was leaner than that 

programmed in Phase 1 for target responding.

Given that RaC is based on the matching law (Equation 1), the model suggests that the 

effects of alternative reinforcement on suppression of target responding in Phase 2 are 

consistent with existing conceptualizations of differential reinforcement in terms of relative 

reinforcement value (e.g., Fisher & Mazur, 1997; Piazza et al., 1997). Specifically, 

suppression of target responding in Phase 2 is highly influenced by the rate of alternative 

reinforcement arranged in Phase 2, even if there is no change in reinforcement arranged for 
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the target behavior. The left panels in Figure 5 clearly show this relation. When target 

responding continues to produce reinforcement across the three phases and alternative 

reinforcement is arranged only in Phase 2, target response rates decrease in Phase 2, with the 

magnitude of the reduction being greater with higher rates of alternative reinforcement 

(moving up panels in the left column). Whether response allocation favors the alternative in 

Phase 2 depends on the relative rates of reinforcement produced by each alternative in that 

phase. In Phase 2 of the top, left panel of Figure 5, a schedule of alternative reinforcement 

that is three times denser than that arranged for target responding produces three times the 

amount of alternative responding relative to the target response. In Phase 2 of the middle, 

left panel of Figure 5, equal reinforcement schedules arranged for target and alternative 

responding produce equal response allocation. Finally, in Phase 2 of the bottom, left panel of 

Figure 5, a schedule of alternative reinforcement that is three times leaner than that arranged 

for target responding produces a third of the amount of alternative responding relative to the 

target response. When alternative reinforcement is removed in Phase 3, target responding 

increases to its previous level, and alternative responding decreases. In each situation, 

transitions from Phases 1 to 2 and from Phases 2 to 3 produce relatively rapid transitions in 

response allocation toward the relatively denser of the two options. These rapid transitions 

are not immediate because, as discussed above and in the Supporting Information, RaC 

incorporates the TWR, which describes how a history of experiences (e.g., reinforcement for 

the target response) affects current behavior. It is this history of experiences that linger and 

continue to affect response allocation upon changes in reinforcement schedules.

When extinction is programmed for target responding in Phase 2 (right-hand panels of 

Figure 5), the impact of alternative reinforcement tends to be increased. When compared to 

corresponding panels to the left, target behavior is reduced more by the availability of 

alternative reinforcement when target behavior is simultaneously placed on extinction. This 

outcome is consistent with the well-known effects of combining extinction with differential 

reinforcement of alternative behavior (Fisher, Thompson, Hagopian, Bowman, & Krug, 

2000; Hagopian et al., 1998; Petscher et al., 2009; Shirley, Iwata, Kahng, Mazaleski, & 

Lerman, 1997). As with the panels on the left in which target responding was not placed on 

extinction, the degree to which target responding is suppressed in Phase 2 is dependent upon 

the density of reinforcement arranged for the alternative response relative to that arranged 

for the target response. Relatively denser schedules of alternative reinforcement in Phase 2 

help to better suppress target responding and promote acquisition of the alternative response. 

However, RaC suggests that even though target responding is suppressed more by higher 

rates of alternative reinforcement in Phase 2, greater resurgence can be expected as a result 

when alternative reinforcement is removed in Phase 3. This can be seen when comparing 

response rates in the final session of Phase 2 (Session 10) to those in the first session of 

Phase 3 (Session 11) across the three panels in the right column of Figure 5. In all three 

cases, removal of alternative reinforcement produces some increase in target responding, 

with the magnitude of the increase being larger for alternative behavior previously 

maintained by a higher rate of reinforcement. Such effects have been demonstrated in basic 

research with both non-humans and humans (e.g., Craig & Shahan, 2016; Smith, Smith, 

Shahan, Madden, & Twohig, 2017) and in applied settings (e.g., Fisher, Greer, Fuhrman, et 

al., 2018; Garner, Neef, & Gardner, 2018).
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The simulations in Figure 5 demonstrate an important aspect of RaC. Exactly the same 

processes are implemented in exactly the same way by the model to generate the simulations 

in the panels on the left in which target behavior was not placed on extinction and those on 

the right in which it was placed on extinction. Thus, the increases observed when alternative 

reinforcement is removed in both cases are due to exactly the same thing—the removal of 

alternative reinforcement and the resulting change in the relative value of the target behavior. 

In the left-hand panels, this is easily and traditionally understood as being governed by the 

matching law. In the right-hand panels, a similar increase after extinction of the target 

behavior has seemed to require a special explanation, and it has been given a special name 

(i.e., resurgence). But, RaC suggests that there is nothing different or special about 

resurgence. Resurgence is a natural result of the matching law and changing relative values 

of target and alternative behaviors across time. It is important to note that like the matching 

law in general, and unlike the response-prevention hypothesis (see above), RaC suggests that 

it is the changes in relative value themselves, rather than the accompanying changes in the 

rates of alternative behavior that produce these effects (see Catania, 1963, and Rachlin & 

Baum, 1972, for data and discussions).

The fact that RaC characterizes resurgence as resulting from changes in the relative values of 

the target and alternative behaviors allows it to predict the effects of reducing, but not 

necessarily eliminating, alternative reinforcement (i.e., reinforcement schedule thinning). As 

an example of how RaC predicts changes in target and alternative behavior as a result of 

reinforcement schedule thinning, consider a situation in which following a phase of 

treatment, the schedule of alternative reinforcement (a) remains intact and unchanged, (b) 

remains intact but decreases, or (c) is suspended entirely. Figure 6 simulates these three 

situations. In these and all subsequent simulations, a VI 15-s schedule is assumed for the 

target behavior during Phase 1, and target behavior is extinguished in Phase 2 while an 

alternative behavior is reinforced on a VI 5-s schedule. In Figure 6, black data points 

simulate no reinforcement schedule thinning (i.e., VI 5-s schedule for the alternative 

response remains constant across Phases 2 and 3), grey data points simulate a thinning of the 

schedule of alternative reinforcement from a VI 5-s schedule in Phase 2 to a VI 30-s 

schedule in Phase 3, and white data points simulate the complete suspension of alternative 

reinforcement (i.e., VI 5-s schedule in Phase 2 to extinction in Phase 3). Larger downshifts 

in the rate of alternative reinforcement (and the associated value of the alternative response) 

are predicted to produce larger magnitudes of resurgence, as can be seen in the relatively 

large increases in target responding when transitioning from Phases 2 to 3 when Phase 3 

arranges a leaner schedule of alternative reinforcement. The right panel in Figure 6 shows 

how these changes in rate of alternative reinforcement affect alternative responding in Phase 

3. As one might expect, leaner schedules of alternative reinforcement are predicted to 

maintain less alternative responding. If one were to use these predictions of RaC to inform 

clinical practice, a reasonable progression of steps to accomplish reinforcement schedule 

thinning would entail making only incremental reductions in the rate of alternative 

reinforcement across successive steps. Increases in the rate of problem behavior upon any 

given transition would suggest too large of a decrease in the rate of alternative reinforcement 

(i.e., an increase in the relative value of problem behavior), which would further suggest 

more gradual reductions in the rate of alternative reinforcement in future steps.
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Although we have limited the simulations above to changes in the relative value of a target 

response produced by changes in reinforcement rate, RaC provides a broader quantitative 

framework (see Shahan & Craig, 2017), describing how changes in relative value resulting 

from a wide range of manipulations might impact resurgence (e.g., changes in reinforcer 

magnitude, punishment). In the most general sense, RaC suggests that any intervention that 

can help to keep the value of the target behavior low relative to that of the alternative 

behavior should help to mitigate resurgence. Conversely, any change that might be 

reasonably expected to increase the relative value of the target behavior, whether via 

decreases in the value of alternative behavior or increases in the value of the target behavior 

itself, might be expected to increase the likelihood and magnitude of resurgence.

Asymmetrical Choice Situations

Although the effects of differential-reinforcement-based interventions on problem behavior 

have been conceptualized in terms of the matching law, it has long been noted that there is a 

disconnect between basic research and clinical practice in this area (see Fisher & Mazur, 

1997; Mace & Roberts, 1993, for reviews). As was the case in Herrnstein (1961), most 

research with animals has examined “symmetrical” situations with choices between two 

topographically similar responses (e.g., two keys) leading to the same reinforcer type (e.g., 

food). But, most applications of differential reinforcement to the treatment of problem 

behavior involve “asymmetrical” choices between topographically dissimilar behaviors (e.g., 

aggression and a communicative response), often leading to qualitatively different 

reinforcers (e.g., higher quality for the alternative). As noted above, the BMT of resurgence 

had no means to easily incorporate and make predictions about such asymmetrical choice 

situations. But, because RaC is based on the matching law, it can incorporate such 

asymmetries and describe their impact on the efficacy of treatment and the likelihood of 

resurgence.

To incorporate asymmetries between response options in a choice situation, the matching 

law uses the concept of bias (Baum, 1974). In the context of the matching law, bias refers to 

preference for one option over the other due to unaccounted-for factors (e.g., Baum, 1974; 

see McDowell, 1989, for a tutorial). Thus, even when the values of the reinforcers arranged 

for two behaviors are nominally equivalent (i.e., the same rates, magnitudes, and 

immediacies), organisms may still show a preference for one of the options. Indeed, clients 

in applied settings can show an unaccounted-for bias for problem behavior over appropriate 

behavior (e.g., DeLeon, Fisher, Herman, & Crosland, 2000) or a bias for one appropriate 

behavior over another (e.g., Ringdahl et al., 2018) under identical reinforcement conditions. 

Bias can also be used to quantify asymmetries in choice. For example, the concept of bias 

allows one to quantify the qualitative differences in effort of two topographically different 

responses (e.g., engaging in aggression versus saying, “Play please”). Similarly, the concept 

of bias allows one to quantify differences in reinforcer quality (e.g., 15-s access to a tablet 

computer versus escape from demands).

RaC incorporates bias into its absolute response-rate equations (i.e., Equations 6 & 7) in a 

manner suggested by McDowell (2005) for Herrnstein’s original equation (i.e., Equation 5). 

Specifically, for the target behavior RaC suggests,
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BT =
kVT

VT +
V Alt

b + 1
A

(8),

and for the alternative behavior,

BAlt =
k

V Alt
b

VT +
V Alt

b + 1
A

(9),

where all terms are as above, and b represents the bias term. Note that value of the 

alternative behavior (i.e., VAlt) is simply divided by the bias term. When b is equal to 1, 

there is no bias, and Equations 8 and 9 are identical to Equations 6 and 7. When b is greater 

than 1, there is a bias in favor of the target because value of the alternative behavior is being 

reduced, and Equation 8 predicts that target response rates will be higher than when b is less 

than or equal to 1. When b is less than 1, there is a bias in favor of the alternative behavior 

because the value of the alternative is being increased (i.e., dividing VAlt by a number less 

than 1 increases it), and Equation 8 predicts that target response rates will be lower as a 

result.

As an example of how bias can influence resurgence, consider the case of two responses 

requiring different effort. For this example, assume that the two responses produce exactly 

the same reinforcer at the same rate and with the same immediacy. Thus, value of the two 

responses might be expected to be the same. But, one response requires less effort than the 

other (e.g., saying, “Please?” versus saying, “May I please stop working and play now?”). If 

a child were given free choice between these two responses such that either produces the 

reinforcer, perhaps the child emits the less-effortful response 5 times more often than the 

more-effortful response. In this case, the bias term (i.e., b) would be 5. Specifically, the bias 

term in RaC represents the ratio by which the target behavior is preferred over the alternative 

behavior if all else is equal. Thus, the effect of the differential effort requirements is being 

measured by the degree to which those differential requirements shift preference. In terms of 

finding out what the bias term should be in Equation 8, the most straightforward approach 

would be to do a preference assessment under conditions where all else is equal to obtain the 

preference ratio (and thus b). Similarly, the bias term can be used in exactly the same way to 

account for the effects of qualitatively different reinforcers if all else is equal. Finally, if the 

responses differ in terms of both effort and in terms of qualitative differences in the 

reinforcers they produce, then the bias term would measure the combined effects of those 

differences in effort and quality.

Incorporation of the bias term in Equations 8 and 9 allows RaC to make predictions about 

how differences in unaccounted-for bias (e.g., DeLeon et al., 2000; Ringdahl et al., 2018), 

effort, or reinforcement quality might be expected to affect resurgence in the asymmetrical 

choice situations typical of applied settings. For example, a general finding in the clinic is 
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that differential reinforcement is more effective at reducing problem behavior when the 

alternative response is less effortful and when the alternative response produces a higher-

quality reinforcer (e.g., Horner & Day, 1991; Piazza et al., 1997). As such, applied behavior 

analysts are encouraged to select an alternative response that is of low effort and that 

produces a high-quality reinforcer when initiating FCT (Tiger et al., 2008). RaC actually 

predicts these same therapeutic effects when initiating treatments using differential 

reinforcement (e.g., FCT). RaC further suggests that any manipulation increasing bias 

toward the alternative response over the target response (e.g., less effort, higher-quality 

reinforcer) will promote acquisition of the alternative response while in treatment, and 

importantly, will better mitigate resurgence if and when treatment is later disrupted.

Figure 7 simulates three different situations in which changes in bias affect target-response 

suppression and alternative-response acquisition in treatment (Phase 2), as well as 

resurgence of target responding and persistence of the alternative response when treatment is 

suspended (Phase 3). For Figure 7, we set the bias term (i.e., b) to 5 (a five-fold bias for the 

target response; white data points), 1 (no bias; grey data points), or 0.20 (a five-fold bias for 

the alternative response; black data points). As the figure shows, RaC predicts better 

suppression of target responding and higher rates of alternative responding in Phases 2 and 3 

when biased responding favors the alternative over the target. An equal, yet opposite, bias 

for the target response is predicted to minimize treatment efficacy in Phase 2 and to interfere 

with treatment maintenance in Phase 3.

RaC further suggests that a change in bias might also induce resurgence. For example, in 

addition to initially selecting an alternative response that is simple and low effort, it is also 

typically desirable to increase the complexity and effort of the alternative response 

(Ghaemmaghami, Hanley, Jessel, & Landa, 2018). RaC suggests that such an increase in 

effort of the alternative behavior might be expected to produce resurgence of problem 

behavior, even if the reinforcement conditions have not otherwise changed. Figure 8 shows 

simulations of the effects of different increases in effort of alternative behavior. In Phases 1 

and 2, the conditions are the same for all three simulations. In Phase 3, the effects of no 

change in effort of the alternative behavior (i.e., 1 to 1, black data points), a five-fold 

increase in effort (i.e., 1 to 5, grey data points), and a 10-fold increase in effort (i.e., 1 to 10, 

white data points). The left panel shows that larger increases in effort of the alternative 

behavior are predicted to produce more resurgence of target behavior, and the right panels 

show that larger increases in effort of the alternative behavior are also expected to produce 

larger decreases in the rates of alternative behavior. There is existing evidence consistent 

with this prediction of RaC that increases in alternative-response effort can produce 

resurgence of problem behavior (see Ghaemmaghami et al., 2018). In addition, 

Ghaemmaghami et al. showed that such resurgence might be reduced by employing a 

gradual shaping process in which progressively complex and effortful alternative responses 

are reinforced at a high rate. Although it is difficult to precisely quantify such a procedure 

with RaC at this point, the outcome of the procedure is at least conceptually consistent with 

RaC in terms of establishing and increasing the value of approximations to the terminal 

response relative to problem behavior.
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Finally, although our description of Figure 8 focused on increases in the effort of the 

alternative behavior, the figure displays what would be expected with increases in bias for 

the target behavior resulting from any number of manipulations. For example, decreases in 

the quality of reinforcement for the alternative behavior or even increases in the quality of 

reinforcer for the problem behavior would be expected to have a similar effect. Further, a 

switch from an alternative behavior for which a client has an unaccounted-for bias to an 

alternative for which they have a bias against (e.g., differentially preferred mands as in 

Ringdahl et al., 2018) would also be expected to produce resurgence, the magnitude of 

which would depend on the strength of the bias.

Motivation Manipulations

As discussed above, parameter a first introduced above in Equation 6 of RaC can be thought 

of as representing the current state of motivation, with higher values of a indicating more 

vigorous behavior. Motivation to obtain reinforcement (i.e., a) persists in Phase 3 even 

though the values associated with each response (i.e., VT and VAlt) decline when extinction 

is programmed for both responses. Thus, the specific value of parameter a is predicted to 

impact the magnitude and persistence of the resurgence effect according to RaC. The a 
parameter of RaC might be influenced by a wide range of events, including biological events 

(Carr, Smith, Giacin, Whelan, & Pancari, 2003); deprivation of social-positive reinforcers 

(e.g., Sy & Borrero, 2009; Vollmer & Iwata, 1991); as well as task novelty, rate of task 

presentation, and session duration (e.g., Smith, Iwata, Goh, & Shore, 1995). Gradations of 

parameter a represent the continuum of motivation (see Kelley, Shillingsburg, & Bowen, 

2017), with smaller values of a indicating lower motivation and larger values of a indicating 

higher motivation.

Figure 9 shows three simulations in which motivation for the reinforcer maintaining problem 

behavior ranges from relatively low (i.e., a small value of parameter a; black data points) to 

relatively high (i.e., a large value of parameter a; white data points). Grey data points in 

Figure 9 simulate moderate motivation (i.e., a moderate value of parameter a, which is the 

value used in all other simulations above). At lower values of parameter a, resurgence of 

target responding is smaller and less persistent than when parameter a takes on a higher 

value. At higher values of parameter a, resurgence of target responding is larger and more 

persistent. As might be expected, higher values of parameter a are predicted to result in more 

persistent alternative responding than when the value of parameter a is lower. Figure 9 

further suggests that any improvement in the persistence of alternative responding afforded 

by increased values of parameter a is heavily offset by large increases in target responding in 

Phase 3.

The simulations in Figure 9 suggest that motivating operations might play an important role 

in the magnitude and persistence of the resurgence effect. RaC suggests that applied 

behavior analysts looking to mitigate the resurgence of problem behavior when treatments 

are likely to be challenged might consider minimizing motivation for the functional 

reinforcer.
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Conclusions

RaC is a novel, quantitative model of resurgence that combines the predictive utility of the 

matching law with the ability to quantify the effects of a history of reinforcement over time, 

including a history of extinction for one or more responses. In summary, RaC suggests that 

resurgence might be expected anytime there is a decrease in the value of a more recently 

reinforced alternative behavior relative to the value of a problem behavior. In addition, RaC 

suggests that resurgence might be reduced by manipulations that minimize the effects of 

such changes in value. As is the case with any novel theory, many of the predictions of RaC 

must be validated experimentally before we will fully know the pragmatic utility of RaC for 

treating problem behavior.

We simulated some predictions of RaC that may be especially relevant when using 

differential-reinforcement-based approaches to treating problem behavior (e.g., FCT). The 

simulations we chose to provide in this paper are far from exhaustive. RaC makes 

predictions about how a wide range of variables might be expected to impact treatment 

efficacy and resurgence. We encourage interested readers and researchers alike to explore 

these and other predictions of RaC by conducting their own simulations using Microsoft 

Excel or within the R software environment using code specifically designed to simulate 

RaC by Craig & Shahan (2017).

Inevitably, even the most efficacious treatments for problem behavior are likely to be 

disrupted when implemented outside of the clinic and by caregivers. Durable treatment 

effects are those that not only stand the test of time but produce continued therapeutic 

changes in behavior even when those treatment procedures supporting behavior change are 

disrupted. We encourage applied behavior analysts to take this broader view of treatment 

maintenance, as others have suggested (e.g., Nevin & Wacker, 2013; Wacker et al., 2011). 

With this broader view in mind, we hope that applied behavior analysts might find the 

implications of RaC described herein useful when attempting to design more durable 

treatments for problem behavior.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A record of reinforcement rates across baseline (i.e., VI 30 s) and extinction conditions (top 

panel), examples of weighting functions generated by the Temporal Weighting Rule for 

Sessions 5, 7, and 10 (middle panel), and the value of the response obtained by applying 

weighting functions, like those in the middle panel, to the reinforcement rates across 

sessions in the top panel.
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Figure 2. 
Changes in value (middle panel) and response probability (bottom panel) as a function of 

changes in reinforcement rate (top panel) of target and alternative responding across three 

phases of a resurgence sequence. Increases in the probability of target responding when 

transitioning from Phase 2 to Phase 3 drive the resurgence effect.
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Figure 3. 
Target response rate across three phases of a resurgence sequence in which reinforcers are 

provided for target responding in Phase 1, an alternative response in Phase 2, and neither 

response in Phase 3. Increases in target responding when transitioning from Phase 2 to Phase 

3 constitute resurgence.
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Figure 4. 
Alternative response rate across three phases of a resurgence sequence in which reinforcers 

are provided for target responding in Phase 1, an alternative response in Phase 2, and neither 

response in Phase 3.
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Figure 5. 
Target and alternative response rates across three phases. Shaded areas correspond to values 

of the target and the alternative responses. Panels in the left column simulate different 

reinforcement schedules in Phase 2 for the alternative response when extinction is not 

programmed for target responding, whereas panels in the right column simulate these same 

conditions in Phase 2 when extinction is programmed for target responding (i.e., a typical 

resurgence sequence).
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Figure 6. 
Target (left panel) and alternative (right panel) response rates when Phase 3 constitutes a 

downshift in the rate of alternative reinforcement programmed in Phase 2. Lighter data 

points simulate greater downshifts in rate of alternative reinforcement.
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Figure 7. 
Target (left panel) and alternative (right panel) response rates when responding is biased 

toward the target (white data points), the alternative (black data points), or neither response 

(grey data points).
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Figure 8. 
Target (left panel) and alternative (right panel) response rates when there is no shift (black 

data points), an intermediate shift (grey data points), or a large shift (white data points) in 

bias toward the target behavior in Phase 3 (e.g., an increase in effort of the alternative 

behavior).
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Figure 9. 
Target (left panel) and alternative (right panel) response rates under various conditions of 

motivation (i.e., the a parameter). Lighter data points simulate greater motivation.
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