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Abstract

Since antiquity, humans have used body fluids like saliva, urine and sweat to diagnosis diseases. 

The amount, color and smell of body fluids are still used in many traditional medical practices to 

evaluate an illness and make a diagnosis. The development and application of analytical methods 

for the detailed analysis of body fluids has led to the discovery of numerous disease biomarkers. 

Recently, mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), and 

multivariate statistical techniques have been incorporated into a multidisciplinary approach to 

profile changes in small molecules associated with the onset and progression of human diseases. 

The goal of these efforts is to identify metabolites that are uniquely correlated with a specific 

human disease in order to accurately diagnose and treat the malady. In this review we will discuss 

recent developments in sample preparation, experimental techniques, the identification and 

quantification of metabolites, and the chemometric tools used to search for biomarkers of human 

diseases using NMR.
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INTRODUCTION

Anthropological and folk medical practices have revealed that humans have used body fluids 

for the diagnosis of disease since antiquity.[1] Hippocrates’s theory of disease postulates an 

imbalance between the four humors of the body: phlegm, blood, black bile and yellow bile.

[2] Thus, early medical treatments and diagnosis were based on attempts to understand these 

humors. Before the 18th century, chemistry was not involved in supporting a physician’s 

decision or providing a rationalization in a disease diagnoses. Instead, medics of the era used 

their senses to analyze urine and other biofluids.[3] Examining body fluids by color, taste, 

amount, and smell were accepted practices for diagnosing diseases and treating patients in 

folk, ancient and medieval medicine.[1, 4] But in the 16th and 17th century, there were 

reported successes with precipitating proteins from urine using vinegar and heat treatments. 

Similarly, in the late 18th century, the chemical analysis of urine was able to disentangle the 

mystery between the sweetness of urine and a diabetic patient.[5] By the 19th century, 

Robert Powers, University of Nebraska Lincoln, Department of Chemistry, 722 Hamilton Hall, Lincoln, NE 68588-0304, (402) 
472-3039, Fax: (402) 472-2044, rpowers3@unl.edu. 

HHS Public Access
Author manuscript
Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

Published in final edited form as:
Comb Chem High Throughput Screen. 2012 September ; 15(8): 595–610.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemistry was a vital element in both understanding human physiology and diagnosing 

diseases.[6] The concept of searching for chemicals to understand human diseases has been 

enhanced by technology advancements for the analysis of hundreds of metabolites from 

small quantities of body fluids.[7]

Metabolites are end products of gene expression, and are a direct result of enzymatic and 

protein activity. Thus, metabolites are more proximal to a phenotype or disease than either 

genetic or proteomics information.[8, 9] Genetics provides a fingerprint of hereditary 

information, where many diseases are associated with genetic defects. But not all human 

diseases are a result of an inherited genetic disorder or mutations at the gene level.[10] 

Importantly, the presence of a genetic mutation does not necessitate the development of the 

associated disease or predict all possible occurrences of the disease. For example, only five 

percent of breast cancer patients carry the BRCA mutation, where carrying a harmful 

BRCA1 or BRCA2 mutation results in a five-fold increase in the likelihood of developing 

breast cancer.[11] Other genetic modifiers and environmental factors also contribute to the 

progression of the disease.[12] Clearly, the disconnect between carrying a harmful BRCA 

mutation and definitively developing breast cancer significantly complicates decisions 

regarding preventative treatment.[13, 14] Essentially, the presence of a genetic mutation 

does not necessarily lead to a change in the biological activity of the gene product. As an 

alternative and complementary approach, proteomics studies the functional and structural 

elements of gene products, mainly the expression of proteins and enzymes.[15, 16] The up- 

or down-regulation of proteins has been correlated with the development or progression of a 

disease.[17] Similarly, posttranslational modifications of proteins have also been shown to 

be associated with different diseases.[18–20] Unlike genomics, only a small-fraction of the 

proteome is observed. But similar to genomics, a modulation in a protein’s expression or 

modification does not necessarily correlate with a perturbation in its biological activity. 

Furthermore, it is challenging to identify the specific protein(s) that are responsible for the 

disease state. It is difficult to distinguish between biologically relevant proteins and proteins 

indirectly affected through a complex biological network. For example, hundreds of proteins 

have been identified in proteomic studies of pancreatic cell lines.[21–25] Clearly, all those 

proteins are not relevant to cancer. Also, there are serious concerns with mistaken protein 

identification and inconsistencies between proteomics studies.[26, 27]

Metabolomics is the measurement and analysis of metabolites, such as amino acids, 

carbohydrates and lipids, from biofluids, plants and cellular extracts.[28, 29] The underlying 

premise for the field of metabolomics was first described by Pauling in his 1971 publication 

using gas chromatography to analyze urine and breath metabolites.[30] Metabolic samples 

have been obtained from a diversity of organisms under various environmental conditions 

that includes drug treatments and diseases. Correspondingly, studying metabolic profiles of 

living cells has wide applications in many scientific disciplines and systems biology.[31–34] 

Metabolomics has been used to understand the pathology of disease,[35] to diagnose 

disease,[36] to monitor diet,[37] and to investigate host vector relationship.[38] The unique 

value of metabolomics to drug discovery and disease diagnoses is based on the fact that 

changes in the metabolome are a direct outcome from perturbations in cellular activity.
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Mass spectrometry (MS)[39] and nuclear magnetic resonance spectroscopy (NMR)[28] are 

the primary analytical techniques used in metabolomics. The two techniques have inherently 

distinct capabilities and limitations, making them ideally complementary.[40, 41] MS is 

significantly more sensitive than NMR and covers a wider diversity of the metabolome. But, 

because of the limited molecular-weight dispersion of metabolites, MS requires 

chromatographic separations that may bias any analysis. Also, there is a significant 

uncertainty in a specific metabolite’s ability to generate a detectable molecular ion peak by 

MS. This also makes quantitation by MS challenging. Conversely, NMR requires minimal 

sample handling, allows for easy quantitative analysis of metabolite concentrations, and 

provides redundant means of metabolite identification. Most metabolites have multiple 

characteristic NMR resonances and coupling patterns, where peak intensity is directly 

proportional to concentration. Fundamentally, MS and NMR provide a distinct spectral 

analysis of the same sample. The complementary nature of MS and NMR has been 

demonstrated by a number of metabolomic studies using both techniques.[42–46]

The growing interest in NMR based metabolomics was initiated by Nicolson’s extensive 

drug activity and toxicity research using NMR analysis of body fluids.[47, 48] NMR 

metabolomics is currently being used to search for disease biomarkers for infectious 

diseases like tuberculosis,[49] malaria,[50] and pneumonia;[51] and for cancer,[52] 

Parkinson disease,[53] neurological disorders;[54] and numerous other human diseases. 

NMR metabolomics is being used to understand the underlying causes of these diseases, and 

to identify chemical markers to quickly and readily diagnose the disease. This review will 

discuss recent developments in sample preparation, experimental techniques, the 

identification and quantification of metabolites, and the chemometric tools used to search for 

biomarkers of human disease using NMR.

NMR metabolomics sample preparation

NMR metabolomics has been used to study a variety of different types of biofluids that 

include plasma,[55] serum,[56] cerebrospinal fluid,[57] pus,[58] saliva,[59] feces,[60] 

cervicovaginal secretions,[61] and urine.[62] NMR has also been used to analyze intact 

tissue samples.[63–66] One of the major advantages of NMR as a tool for metabolomics is 

its simplicity in sample preparation. Typically, a minimum of 0.1 to 0.5 mL of the biofluid is 

required to prepare an NMR sample. The most common protocol for preparing an NMR 

sample from biofluids is to simply add an aliquot of a deuterated buffer to adjust the sample 

to a common pH value (Table 1).[67] NMR chemical shifts are sensitive to both pH and 

temperature changes, which would result in a systematic bias in the data analysis if different 

samples had different pH values. The deuterated buffer also provides a necessary lock signal.

Storage and handling of biofluid samples affect metabolite stability. Correspondingly, 

storing urine samples at −80°C has been shown to maximize metabolite stability.[68, 69] A 

diurnal variation has been observed for both urine and plasma metabolites.[70–72] 

Preferably, urine samples are collected in the morning (8-hour samples).[73] The urine is 

typically more concentrated and contains more metabolites due to the length of time in the 

bladder. Urine samples are also collected midstream to avoid cellular and microbe 

contaminants. Preservatives such as NaN3 and NaF are commonly added to urine samples to 
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prevent bacterial growth.[74–76] The filtration or centrifugation of urine samples is also 

recommended to prevent bacterial growth.[68] Similarly, plasma samples are preserved by 

the addition of EDTA or heparin as anti-coagulants.[77] The addition of preservatives can 

also be applied to metabolomic samples collected from infected tissues. The stability of the 

biofluid sample and, correspondingly, the quality and value of the NMR spectrum would be 

detrimentally affected by bacterial growth, especially during long data acquisition times. The 

bacteria would generate extracellular secretions and utilize available metabolites, changing 

the state of the sample as a function of time. Blood, serum, and plasma samples contain 

proteins, in addition to the small molecular-weight metabolites. The proteins need to be 

removed prior to analysis, which is typically done by the addition of a precipitant or an 

extractant, such as methanol or acetonitrile, followed by exchange back into an aqueous 

buffer. Additionally, chemical reactions such as redox reactions and enzymatic degradations 

are source of metabolite instability in biological samples. Additionally, some metabolites are 

simply not stable.[78, 79] Short sample preparation times and long term storage at −80°C 

are recommended to maximize the stability of samples for metabolomics study. [80] Another 

concern is the external influence on the metabolome due to differences in diet. 

Correspondingly, diet-standardization, fasting or time of sample collection may minimize 

variability between subjects due to diet differences.[81, 82] Internal NMR standards, such as 

11.1 μM of 3-(trimethylsilyl)propionic acid-2,2,3,3-d4 (TMSP-d4), are routinely added to 

metabolomic samples to provide for both a chemical shift and concentration reference.[83] 

The TMSP methyl NMR resonance is referenced to 0.00 ppm and its relative peak 

integration is set to 9-times the TMSP concentration, since the NMR peak corresponds to 3 

methyl groups or a total of 9 hydrogen nuclei.

The goal of applying NMR metabolomics to the analysis of biofluids is to identify potential 

biomarkers – metabolites correlated with a specific disease. Importantly, a reliable 

comparative analysis between biofluid samples requires consistency in sample preparation. 

The observed differences should be biologically relevant as opposed to an artifact or bias 

from handling the samples. In the case of biofluids, a significant challenge is maintaining a 

consistency in the source of the biological samples. For patient and animal studies, it is 

critical to have a similar diet, to be exposed to a common environment, to maintain similar 

physical activities, and to select participants with comparable medical histories. Numerous 

factors, such as age, sex, ethnicity, preexisting health conditions, and lifestyle may perturb 

the metabolome and complicate the identification of biomarkers. For example, a biomarker 

observed to be correlated with a neurological disease may result from an associated 

inflammatory response.[84]

NMR metabolomics experiments

One dimensional 1H NMR methods.—One-dimensional (1D) 1H NMR experiments 

are routinely used for metabolite biomarker research (Figure 1).[85] These experiments are 

generally fast, robust, easy to implement, and ideally suited for high-throughput screening.

[86] The information obtained from 1D 1H NMR experiments is used for metabolite 

identification and for the evaluation of global alterations in metabolites between different 

groups or classes.[87, 88] 1D 1H NMR experiments provide a global snap-shot of the state 

of the metabolome, but only the most abundant metabolites are observed (> 1 to 10 μM). 
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Also, metabolite identification is challenging because of the low chemical shift dispersion 

and high peak overlap. Biofluids are complex heterogeneous mixtures that contain hundreds 

of metabolites resulting in an NMR spectrum that is very crowded and suffers from 

extensive peak overlap, making it difficult to differentiate between multiple peaks. But 

importantly, the NMR spectrum is also used for quantitative analysis of metabolites by 

comparing the integral of metabolite peaks with the integral from the internal standard 

(TMSP).[89]

The Madison Metabolomics Consortium Database,[90] the BioMagResBank,[91] and the 

Human Metabolome Database (HMDB)[92] are routinely used to assign metabolites to 

NMR spectra. The databases contain experimental NMR spectra for hundreds of known 

metabolites and provide simple user interfaces to match experimental chemical shifts from 

biofluids data against the spectral database.[93] Typically, 1H and 13C chemical shift 

tolerances of 0.05 ppm and 0.50 ppm, respectively, are used to identify a match between the 

experimental and database chemical shifts. Simply, a list of NMR chemical shifts is 

uploaded to HMDB (http://www.hmdb.ca/), which provides a list of potential metabolites 

with the number of matching NMR resonances. Generally, each metabolite chemical 

structure contains multiple hydrogen atoms resulting in multiple NMR resonances. Ideally, 

each NMR resonance for a metabolite should be present in the experimental spectrum. In 

practice, only a subset of the NMR resonances is observed because of severe peak overlap 

and low resolution. Thus, the confidence level in a correct metabolite assignment is 

dependent on the number of matching NMR resonances.

The resolution and sensitivity of the 1D 1H NMR spectrum improves as a function of 

magnetic field strength. Thus, the quality of NMR metabolomics experiments has benefitted 

from the availability of 800 to 950 MHz NMR spectrometers (Figure 1).[94] In addition to 

the use of high-field NMR instruments, the application of spectral simplification techniques 

has resulted in improved NMR spectra with better peak separation.[95] Metabolites have 

relatively long T2 relaxation times and correspondingly narrow line-widths. Conversely, 

proteins and other biomolecules have relatively broad peaks and short T2s. This significant 

difference in relaxation times provides an opportunity to manipulate the NMR spectrum to 

select for small molecular-weight metabolites against a background of protein NMR signals. 

NMR pulse sequences have been implemented that filter the spectrum based on T2 

relaxation times.[96] Diaz et al. (2011) used NMR to search for metabolic biomarkers from 

urine and plasma that are associated with prenatal disorders (Figure 2).[97] An improved 

separation in metabolite signals from the protein background was achieved by using a T2 

edited experiment. This is accomplished by simply incorporating a Carr-Purcell or Carr-

Purcell-Meiboom-Gill (CPMG) sequence into a standard 1D pulse sequence. During this 

additional [τ−180°-τ]n cycle, NMR peak intensities are decaying proportional to their T2 

relaxation times. The pulse sequence is simply tuned to the minimal number of cycles (n) 

required to allow the protein NMR resonances to decay to zero with a minimal impact on the 

intensity of the metabolite signals. Figure 2 illustrates the metabolites obscured by the 

protein background using a standard 1D 1H pulse sequence. These metabolites are clearly 

visible in the T2 edited NMR spectra. The accompanying diffusion edited spectrum has the 

reverse effect compared to the T2 edited spectrum; it filters out molecules with rapid 

diffusion rates. Correspondingly, the diffusion edited spectra attenuated the NMR 
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resonances from the small molecular weight metabolites and emphasizes the protein 

background peaks.

Two dimension NMR methods.—1D 1H NMR spectra obtained from biofluids are very 

crowded with extensive spectral overlap. As a result, it is often difficult to unambiguously 

assign NMR resonances to a specific metabolite. Instead, it is common to identify multiple 

metabolites that are consistent with a given NMR peak. Two dimensional (2D) NMR 

experiments overcome this problem by significantly increasing the resolution and dispersing 

the peaks into two-dimensions (Figure 3).[98, 99] 2D 1H-1H-TOCSY (TOtal Correlation 

SpectroscopY) and 2D 1H-13C HSQC (Heteronuclear Single-Quantum Correlation) are the 

two most commonly used 2D NMR methods in metabolomics. The 2D 1H-13C HSQC 

experiment correlates the 1H and 13C chemical shifts for each C-H pair in a given structure. 

Similarly, the 2D 1H-1H-TOCSY experiment correlates the entire network of J-coupled 

hydrogen nuclei in a metabolite. For example, the CαH 1H chemical shift for valine will be 

correlated with the 1H chemical shifts for CβH, and the two CγH3 methyls. The dramatic 

improvement in peak separation along with the direct correlation of pairs of 1H or 1H-13C 

chemical shifts significantly increases the confidence in a correct metabolite assignment. 

However, 2D NMR experiments require significantly longer acquisitions times, upwards of 

hours per experiment, compared to < 10 minutes per 1D 1H NMR experiment.[100–102] 

Also, the 2D 1H −13C HSQC spectrum cannot be used for absolute quantitation of 

metabolite concentrations, but only for relative changes. This limitation arises because peak 

intensities are not only proportional to concentration, but are also modulated by J-coupling, 

T1 and T2 relaxation, imperfect pulse lengths, and recovery delays. It is impractical to 

correct for these parameters, since they vary between molecules and also atom type. 

Recently, a number of methods have been proposed to modify standard 2D HSQC pulse 

sequences to enable quantitative analysis of metabolite concentrations.[103–108] Hu et al. 
(2011) proposed the use of a time zero 2D 1H −13C HSQC experiment (Figure 4) to measure 

metabolite concentrations.[109] The time zero HSQC spectrum is back extrapolated from a 

series of HSQC spectra collected with incremental repetition times, the time between the 

first 1H excitation pulse and the beginning of data acquisition. Essentially, the HSQC 

spectrum is collected with either one, two or three copies of the standard core HSQC pulse 

sequence. Peak intensity decreases proportional to the repetition time (Figure 4b). At time 

zero, metabolite concentrations are proportional to peak intensities since peak attenuation 

due to J-coupling, relaxation, etc. are time-dependent and have been effectively removed.

Chemometrics for biomarker identification

Multivariate statistical methods are integral to the analysis of NMR metabolomics data.[110] 

Multivariate statistics provide a clear interpretation of the global alteration in the 

metabolome resulting from disease, environmental stress, nutrition, or toxins. The analysis is 

not limited to a few metabolites or specific metabolic pathways, but captures the overall 

impact on the system from the external factors. A 1D 1H NMR spectrum is a complex 

multivariable data set consisting of upwards of 32K of chemical shifts and intensities. 

Multivariate statistical techniques reduce the complexity of the NMR data set and present 

the information in a simple and easily interpreted format. Typically, the NMR spectrum is 

reduced to a single data point in a scores plot. Both 1D and 2D NMR spectra have been 
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analyzed using multivariate statistical techniques.[111] Multivariate statistical methods are 

categorized as either supervised or unsupervised. Supervised methods introduce sample 

classes, while unsupervised methods are based strictly on inherent variations in the data. 

Principal component analysis (PCA) is a widely-used unsupervised method for the analysis 

of NMR metabolomics data.[112] More recently, Orthogonal Partial Least Square 

Discriminant Analysis (OPLS-DA), a supervised method, has been growing in popularity as 

an approach to interpret NMR spectra for biomarker identification.[113]

Data pre-processing is a vital step in the NMR metabolomics protocol. Pre-processing of the 

NMR spectrum includes data reduction (binning),[114, 115] scaling,[116] and the exclusion 

of noise[117] and solvent regions known to bias the analysis. After phase correction to 

produce pure absorption line shapes and baseline correction of the 1D 1H NMR spectrum, 

the NMR spectrum is divided into uniform bins with a chemical shift range of 0.01 to 0.04 

ppm[114] or by using intelligent bucketing (ACD Labs, Toronto, Canada) that uses variable 

bin sizes to avoid the splitting of peaks between bins.[115] The numerical value within each 

bin is the integral of the corresponding spectral region. NMR spectra are binned in order to 

minimize effects from minor and random differences in chemical shifts, phasing, peak 

shape, baseline, etc. that are inevitable when dealing with replicate biological samples. 

Similarly, there is a significant and inherent variability in the quality and signal-to-noise of 

NMR spectra obtained from a collection of biological samples, such as biofluids. It is simply 

impossible and unreasonable to expect uniformity in biofluid samples obtained from 

multiple patients, animals or tissues. As a consequence, the NMR spectra needs to be 

normalized to eliminate or minimize variability in signal-to-noise due to overall volume or 

concentration differences between each sample.

Triba et al. (2010) used the total sum of the bins for each spectrum as a scaling factor.[118] 

Simply, the value of each individual bin was divided by the sum of all the bins. This takes 

into account that variations in the spectral intensity due to different number of cells per 

sample. Pareto and autoscaling methods are alternative approaches to normalizing NMR 

spectra to variations in signal intensity.[119] For autoscaling, the NMR bins are mean 

centered and normalized by the standard deviation of the bins (eqn. 1)

Z =
Xi − X

σ (1)

where X is the mean of the NMR integrals, σ is the standard deviation of the NMR integrals, 

and Xi is the integral associated with bin i. In Pareto scaling, each bin is still mean centered, 

but normalization is accomplished through the square-root of the standard deviation.

Z =
Xi − X

σ
(2)

It is important to note, that each approach to data pre-treatment can significantly impact the 

analysis by emphasizing different aspects of the NMR metabolomics data.
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After pre-treatment, the table of NMR integrals (bins) is then subjected to multivariate 

statistical analysis. PCA is the most common multivariate statistical approach currently 

applied to NMR metabolomics data. PCA is an unbiased approach and, correspondingly, the 

information obtained from PCA is a direct result of any correlated structure to the data. PCA 

projects the multivariable NMR data into simple visual format. The table of NMR integrals 

is transformed into scores and loadings plots.[112] The PCA scores plot summarizes global 

similarities and differences between the NMR spectra, where each NMR spectrum is 

reduced to a single point. The coordinate axis in a PCA scores plot corresponds to the 

principal components (PC1, PC2, etc.), which represents the best-fit of each NMR spectrum 

to a series of orthogonal vectors (P 1, P 2, etc.) The first vector corresponds to the largest 

variation in the NMR data set, where each successive vector is in the direction of the next 

largest variation in the data set. Thus, the PCA scores plot captures the major differences 

between the NMR spectra resulting from changes in the metabolome. Correspondingly, 

NMR spectra will cluster in the PCA scores plot based on their relative differences or 

similarities, which is based on metabolite compositions and concentrations. The PCA 

loadings plot determines the relative contribution of each NMR bin (chemical shift, 

metabolite) to the principal components. In essence, the PCA loadings plot identifies the 

metabolites that primarily contribute to the class separation in the PCA scores plot (Figure 

5b).

The identification of metabolite biomarkers is dependent on determining the latent variables 

responsible for class separation (e.g., healthy vs. disease). PCA identifies the largest 

variations in the NMR data, but the latent variables (fundamental relationship) responsible 

for the class separation many not be in the direction of the largest variation.[113] Instead, 

OPLS-DA is preferred for identifying metabolite biomarkers (Figure 5a).[120] OPLS-DA is 

a regression model that reflects the correlation between multivariate data and dependent 

variables with class information. In OPLS-DA, a single component is used as a predictor for 

the class, where the other components are variations orthogonal to the predictive component.

[121] In other words, the predictive component describes the between class separation and 

the orthogonal components describe the within class separation. OPLS-DA emphasizes 

between class separations and reduces within class separation. As a result, an OPLS-DA 

scores plot will have tighter clusters with a larger separation relative to PCA. PCA data can 

be simply changed to OPLS-DA by including a value that discriminates between the classes 

as a Y direction vector.[122] Typically, a two-class system is used where one data set is 

designated the control (Y = 0) and the remaining data sets are designated as treated (Y = 1). 

For PCA and OPLS-DA, the quality of the model is assessed by the measure of goodness of 

fit (R2) and quality assessment score (Q2).[123] A good model has R2 values ≥ 0.5 (range of 

0 to 1) and is conceptually similar to simple linear regressions. An ideal value for Q2 is one, 

where a typical value for a biological model is ≥ 0.4. OPLS-DA is a supervised method and 

the model needs to be validated since over-fitting the data is a common concern. The leave-

one-out technique is commonly used to validate OPLS-DA models, where a sub-set of the 

NMR spectra are left out to calculate a model that is then used to predict the left out data.

[124] The predicted data is compared to the original data, where Q2 determines the 

consistency between the two data sets and the reliability of the model.
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Similar to a loadings plot, an S-plot can also be generated from the OPLS-DA model (Figure 

5c). The S-plots identifies the NMR bins (chemical shifts, metabolites) that are correlated (X 

≥ 0.10 and Y ≥ 0.8) or anti-correlated (X ≤ −0.10 and Y ≤ −0.80) with the class separation in 

the OPLS-DA scores plot (Figure 5a). The S-plot X and Y coordinates represents the 

correlation and reliability, respectively, of the NMR bins with the OPLS-DA model. NMR 

bins with the highest correlation and reliability fall in both extremes of the S-plot. These 

metabolites correspond to potential biomarkers.

Interpretation of PCA and OPLS-DA score plots are generally based on a visual inspection 

of the relative separation of class clusters. Assigning a statistical significance to this 

clustering pattern is fundamental to inferring an accurate biological relevance. Werth et al. 
(2010) introduced a new method to analyze PCA and OPLS-DA scores plots based on 

metabolic tree diagrams with associated bootstrap[125] numbers to quantify the statistical 

significance of the observed class clustering.[126] The technique is particularly valuable for 

the accurate analysis of complex datasets that contain multiple classes, where it may be very 

difficult to see distinct clustering patterns. Simply, the coordinates for the center of each 

cluster are used to measure a Euclidean distance between each pair of clusters to generate a 

standard distance matrix. The distance matrix is then used to create a tree diagram using a 

phylogenetic program such as PHYLIP (http://www.phylip.com).[127] The cluster centers 

are re-determined by randomly leaving out class members, resulting in a new distance 

matrix and tree diagram. The process is typically repeated 100 times, where a consensus tree 

is determined from the 100 individual trees. The bootstrap value is simply the number of 

times a node in the consensus tree was observed in the set of 100 tree diagrams, where 

bootstrap numbers less than 50 indicate a statistically insignificant node. Additionally, T2 

hoteling is used to identify the 95% confidence interval for each cluster, which adds an 

additional quantitative approach to distinguish between class clusters. An OPLS-DA scores 

plot shown in Figure 6 contains ellipses that represent the 95% confidence interval that helps 

identify the major drug classes.[128, 129] The associated metabolomic tree diagram 

provides a detailed analysis of the antibiotic activity of fifteen drugs against TB. 

Specifically, the OPLS-DA scores plot and tree diagram indicate the drugs cluster based on 

their in vivo mechanism of action.[129]

Recent applications of NMR for biomarker identification.

Lung cancer has a low 5-year survival rate of only 15% in the US and 10% in Europe. Early 

diagnosis is a key factor to increase patient survival, but, unfortunately, current diagnostic 

methods are inadequate. Carrola et al. (2010) utilized NMR metabolomics to analyze urine 

samples collected from lung cancer patients and healthy individuals. A 600 μL NMR sample 

was prepared by adding 60 μL of 1.5 M phosphate buffer (KH2PO4) that contains 0.1% 

TMSP-d4 to a 540 μL urine sample to obtain a uniform pH of 7.00 ± 0.02. The resulting 1D 
1H NMR spectra indicated a distinct metabolic difference between lung cancer patients and 

healthy individuals (Figure 7). The application of PCA, PLS, and OPLS-DA multivariate 

statistical analysis resulted in an increasing separation between the two classes (Figure 8). A 

clear separation was only obtained using OPLS-DA. The impact of age, gender and smoking 

on the 2D scores clustering pattern was also examined. Interestingly, none of these factors 

were shown to have a significant impact on the analysis. The corresponding OPLS-DA 
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loading plot was used to identify metabolites responsible for class separation. As a result, 

hippurate, trigonelline, β-hydroxyisovalerate, α-hydroxyisobutyrate, N-acetylglutamine, and 

creatinine were shown to have a statistically significant (P-value < 0.01) difference between 

healthy individuals and lung cancer patients.[130] NMR metabolomics has also been 

extensively used to study the pathology of cancer cell lines to investigate system-wide 

process such as transformation, progression, proliferation and metastasis.[131] This effort 

may lead to the identification of new biomarkers and therapies. For example, MacKinnon et 
al. (2012) describes the metabolomic analysis of an androgen-dependent prostate cancer cell 

line (LnCAP) using NMR and mass spectrometry.[132] Upon treating LnCAP cells with 

methyltrienolone (an androgen receptor agonist), a metabolic signature characteristic of 

aggressive prostate cancer was observed. Specifically, a decrease in myo-inositol, altered 

glutathione levels, perturbation in amino-acid levels, a decreased level of methionine, a high 

level of phosphocholine, and an increase in the phosphocholine/glycerophosphocholine ratio 

were all observed. These potential biomarkers could be used to guide clinical treatments and 

avoid premature termination of androgen ablation therapy that may lead to the unfortunate 

induction of an aggressive and incurable form of prostate cancer.

Cardio vascular diseases (CVD) are one of the leading causes of death in the US and the rest 

of the developed world. Predicting the risk of cardio vascular diseases is an important 

element of a preventive medical strategy. Bernini et al. (2011) conducted an NMR based 

metabolomics study to identify biomarkers associated with CVD risk in healthy individuals. 

After a rigorous analysis of 864 plasma samples, a similar CVD risk assessment was 

obtained relative to traditional clinical methods. In effect, changes in the metabolome, as 

determined by NMR, correlated with standard CVD risk factors such as high cholesterol, 

triglycerides, LDL and HDL. In fact, new metabolite markers, such as 3-hydroxybutyrate, α-

ketoglutarate, threonine, and dimethylglycine, were identified in addition to these commonly 

known risk markers for CVD. The NMR samples were prepared by simply mixing 300 μL of 

sodium phosphate buffer with 300 μL of a plasma sample. Standard 1D 1H NMR spectra, 

CPMG diffusion edited spectra and 1D-NOESY spectra were collected for each plasma 

sample. The primary goal of this diverse set of NMR experiments was to obtain an accurate 

analysis of known CVD risk factor metabolites to establish a reliable correlation between 

standard clinical analysis and the NMR results. Furthermore, the statistical analysis was 

focused on identifying a small set of metabolites that are highly reliable (P-value ≤ 0.0001) 

predictors of CVD risk. This extensive statistical approach enabled the authors to present a 

CVD risk model based on differently activated metabolic pathways (Figure 9).[133] The 

high risk and low risk pathways are interconnected, where the metabolome of a low risk 

individual is shifted toward HDL, α-ketoglutarate, dimethylglycine, and 3-hydroxybutyrate. 

Conversely, the metabolic pathways for the high-risk individual are shifted toward LDL, 

threonine and acetoacetate.

Another unique application of NMR metabolomics is demonstrated by Heinzmann et al. 
(2010).[134] Urine samples collected from eight individuals were analyzed using 1D 1H 

NMR to identify metabolites associated with nutrition. Analysis of the resulting NMR 

spectra identified proline betaine as a urine biomarker for citrus fruit consumption (Figure 

10). Numerous fruits and fruit juices were similarly analyzed by NMR to quantify the 

amount of proline betaine in order to establish citrus juice as the potential source of proline 
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betaine in the urine samples. Only citrus juices were shown to contain a significant quantity 

of proline betaine, with orange juice showing the highest concentration of the metabolite. To 

further validate proline betaine as a biomarker of citrus fruit consumption, 1D 1H NMR was 

used to study the kinetics of the urinary excretion of proline betaine after consuming orange 

juice (Figure 10). Urine was collected from six individuals before (−26 to 0 hrs) and after 

(+2 to +24 hrs) drinking 250 mL of orange juice. The isolated proline betaine methylene 

singlet at δ 3.11 was used to monitor the metabolite’s urine concentration as a function of 

time. The NMR spectrum clearly shows the presence of the metabolite in urine 2 hrs after 

consuming orange juice. Additionally, integration of the δ 3.106 – 3.116 spectral region 

revealed that proline betaine remains in the urine more than 24 hrs after consuming orange 

juice. After validating the utility of using NMR to monitor proline betaine as a biomarker for 

citrus fruit consumption, 1D 1H NMR spectra were collected from the INTERMAP UK 

urine collection (n > 1000) to classify participants as citrus or non-citrus consumers. 

INTERMAP is a large-scale epidemiologic study to determine dietary factors associated 

with high blood pressure. Citric consumers were shown to have healthier diets, and 

correspondingly to be in better health (lower BMI and blood pressure), and to also be better 

educated.

CONCLUSION

NMR metabolomics continues to make significant contributions to the identification of 

biomarkers to aid in the diagnosis and treatment of various human diseases. NMR has 

assisted in identifying biomarkers for various types of cancers, neurological diseases, 

genetic disorders, and infectious diseases, among others. The appeal of NMR metabolomics 

is the simplicity in sample preparation and its robust, versatile, and easy application. Global 

metabolomic changes can be quickly obtained with relatively routine one-dimensional 1H 

NMR experiments. Specific metabolites correlated with a disease and potential biomarkers 

can be identified by two dimensional NMR experiments in combination with chemometrics 

techniques that include S plots and loading plots. Furthermore, including statistical analysis, 

such as tree diagrams, bootstrap numbers and T2 hoteling provides an important level of 

confidence to the biological interpretation of NMR metabolomics data.

ACKNOWLEGMENTS

This manuscript was supported in part by the NIH National Center for Research Resources (P20 RR-17675.

REFERENCES

[1]. Freeman BC, Third-World Folk Beliefs and Practices: Haitian Medical Anthropology. La Presse 
Evangélique, Port-au-Prince, 2007.

[2]. Falagas ME Science in Greece: from the age of Hippocrates to the age of the genome. FASEB J, 
2006, 20, (12), 1946–1950. [PubMed: 17012246] 

[3]. White WI A New Look at the Role of Urinalysis in the History of Diagnostic Medicine. Chlinical 
Chemistry, 1991, 37, (1), 119–125.

[4]. Lindon J. K. N.a. J. C. Metabonomics. Nature: Systems Biology, 2008, 455, (23), 1045–1056.

[5]. Eknoyan G; Nagy J A history of diabetes mellitus or how a disease of the kidneys evolved into a 
kidney disease. Adv. Chronic Kidney D, 2005, 12, (2), 223–229.

Gebregiworgis and Powers Page 11

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[6]. Durner J Clin. Chem.: Challenges for Anal. Chem. and the Nanosciences from Medicine. Angew. 
Chem., Int. Ed, 2009, 49, (6), 1026–1051.

[7]. Robinson B; Pauling L Techniques of Orthomolecular Diagnosis. Clin. Chem, 1974, 20, (8), 961 
−965. [PubMed: 4854609] 

[8]. Messerli G; Partovi Nia V.; Trevisan M; Kolbe A; Schauer N; Geigenberger P; Chen J; Davison 
AC; Fernie AR; Zeeman SC Rapid Classification of Phenotypic Mutants of Arabidopsis via 
Metabolite Fingerprinting. Plant Physiol, 2007, 143, (4), 1484–1492. [PubMed: 17277092] 

[9]. Fiehn O Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 
(1–2), 155–171 [PubMed: 11860207] 

[10]. Badano JL; Katsanis N Beyond Mendel: an evolving view of human genetic disease transmission. 
Nat. Rev. Genet, 2002, 3, (10), 779–789. [PubMed: 12360236] 

[11]. Rebbeck TR; Domchek SM Variation in breast cancer risk in BRCA1 and BRCA2 mutation 
carriers. Breast Cancer Res, 2008, 10, (108), ePub.

[12]. Mavaddat N; Antoniou AC; Easton DF; Garcia-Closas M Genetic susceptibility to breast cancer. 
Mol. Oncol, 2010, 4, (3), 174–191. [PubMed: 20542480] 

[13]. Nathanson KL; Domchek SM Therapeutic approaches for women predisposed to breast cancer. 
Annu. Rev. Med, 2011, 62, 295–306. [PubMed: 21034216] 

[14]. Howard AF; Balneaves LG; Bottorff JL; Rodney P Preserving the self: the process of decision 
making about hereditary breast cancer and ovarian cancer risk reduction. Qual Health Res, 2011, 
21, (4), 502–519. [PubMed: 20980697] 

[15]. Alberio T; Fasano M Proteomics in Parkinson’s disease: An unbiased approach towards 
peripheral biomarkers and new therapies. J. Biotechnol, 2011, 156, (4), 325–337. [PubMed: 
21925549] 

[16]. Denman B; Goodman SR Emerging and neglected tropical diseases: translational application of 
proteomics. Exp. Biol. Med, 2011, 236, (8), 972–976.

[17]. Hanash S Progress in mining the human proteome for disease applications. OMICS, 2011, 15, 
(3), 133–139. [PubMed: 21375461] 

[18]. Wang J-Z; Grundke-Iqbal I; Iqbal K Glycosylation of microtubule-associated protein tau: An 
abnormal posttranslational modification in Alzheimer’s disease. Nature, 1996, 2, (8), 871–875.

[19]. Vucic D; Dixit VM; Wertz IE Ubiquitylation in apoptosis: a post-translational modification at the 
edge of life and death. Nat. Rev. Mol. Cell Biol, 2011, 12, (7), 439–452. [PubMed: 21697901] 

[20]. Ehrnhoefer DE; Sutton L; Hayden MR Small Changes, Big Impact: Posttranslational 
Modifications and Function of Huntingtin in Huntington Disease. The Neuroscientist, 2011, 17, 
(5), 475–492. [PubMed: 21311053] 

[21]. Yamada M; Fujii K; Koyama K; Hirohashi S; Kondo T The proteomic profile of pancreatic 
cancer cell lines corresponding to carcinogenesis and metastasis. J. Proteomics Bioinf, 2009, 2, 
(1), 001–018.

[22]. Shen J; Person MD; Zhu J; Abbruzzese JL; Li D Protein Expression Profiles in Pancreatic 
Adenocarcinoma Compared with Normal Pancreatic Tissue and Tissue Affected by Pancreatitis 
as Detected by Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Cancer Res, 2004, 
64, (24), 9018–9026. [PubMed: 15604267] 

[23]. Chen R; Yi EC; Donohoe S; Pan S; Eng J; Cooke K; Crispin DA; Lane Z; Goodlett DR; Bronner 
MP; Aebersold R; Brentnall TA Pancreatic cancer proteome: The proteins that underlie invasion, 
metastasis, and immunologic escape. Gastroenterology, 2005, 129, (4), 1187–1197. [PubMed: 
16230073] 

[24]. Crnogorac-Jurcevic T; Gangeswaran R; Bhakta V; Capurso G; Lattimore S; Akada M; Sunamura 
M; Prime W; Campbell F; Brentnall TA; Costello E; Neoptolemos J; Lemoine NR Proteomic 
analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology, 2005, 129, (5), 
1454–1463. [PubMed: 16285947] 

[25]. Grutzmann R; Boriss H; Ammerpohl O; Luttges J; Kalthoff H; Schackert HK; Kloppel G; Saeger 
HD; Pilarsky C Meta-analysis of microarray data on pancreatic cancer defines a set of commonly 
dysregulated genes. Oncogene, 2005, 24, (32), 5079–5088. [PubMed: 15897887] 

Gebregiworgis and Powers Page 12

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[26]. Biron DG; Brun C; Lefevre T; Lebarbenchon C; Loxdale HD; Chevenet F; Brizard J-P; Thomas 
F The pitfalls of proteomics experiments without the correct use of bioinformatics tools. 
Proteomics, 2006, 6, (20), 5577–5596. [PubMed: 16991202] 

[27]. Reinders J; Lewandrowski U; Moebius J; Wagner Y; Sickmann A Challenges in mass 
spectrometry-based proteomics. Proteomics, 2004, 4, (12), 3686–3703. [PubMed: 15540203] 

[28]. Powers R NMR metabolomics and drug discovery. Magn. Reson. Chem, 2009, 47, (S1), S2–S11. 
[PubMed: 19504464] 

[29]. Zhang G-F; Sadhukhan S; Tochtrop GP; Brunengraber H Metabolomics, Pathway Regulation, 
and Pathway Discovery. J. Biol. Chem, 2011, 286, (27), 23631–23635. [PubMed: 21566142] 

[30]. Pauling L; Robinson AB; Teranishit R; Cary P Quantitative Analysis of Urine Vapor and Breath 
by Gas-Liquid Partition Chromatography. Proc. Natl. Acad. Sci. U. S. A, 1971, 68 (10), 2374–
2376. [PubMed: 5289873] 

[31]. Dixon RA; Gang DR; Charlton AJ; Fiehn O; Kuiper HA; Reynolds TL; Tjeerdema RS; Jeffery 
EH; German JB; Ridley WP; Seiber JN Applications of Metabolomics in Agriculture. J. Agric. 
Food Chem. , 2006, 54 (24), 8984–8994. [PubMed: 17117782] 

[32]. Wang TJ; Larson MG; Vasan RS; Cheng S; Rhee EP; McCabe E; Lewis GD; Fox CS; Jacques 
PF; Fernandez C; O’Donnell CJ; Carr SA; Mootha VK; Florez JC; Souza A; Melander O; Clish 
CB; Gerszten RE Metabolite profiles and the risk of developing diabetes. Nat. Med, 2011, 17, 
(4), 448–453. [PubMed: 21423183] 

[33]. Viant MR Metabolomics of aquatic organisms: the new ‘omics’ on the block. Mar Ecol Prog Ser, 
2007, 332, 301–306.

[34]. Bundy JG; Davey MP; Viant MR Environmental metabolomics: a critical review and future 
perspectives. Metabolomics, 2008, 5, (1), 3–21.

[35]. Vinayavekhin N; Homan EA; Saghatelian A Exploring Disease through Metabolomics. ACS 
Chem. Biol, 2010, 5, (1), 91–103. [PubMed: 20020774] 

[36]. Gowda G. n; Zhang S; Gu H; Asiago V; Shanaiah N; Raftery D Metabolomics-based methods for 
early disease diagnostics. Expert Rev. Mol. Diagn, 2008, 8, (5), 617–633. [PubMed: 18785810] 

[37]. Gu H; Chen H; Pan Z; Jackson AU; Talaty N; Xi B; Kissinger C; Duda C; Mann D; Raftery D; 
Cooks RG Monitoring Diet Effects via Biofluids and Their Implications for Metabolomics 
Studies. Anal. Chem, 2007, 79, 89–97. [PubMed: 17194125] 

[38]. Olszewski KL; Morrisey JM; Wilinski D; Burns JM; Vaidya AB; Rabinowitz JD; Llinas M Host-
parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe, 
2009, 5, 191–199. [PubMed: 19218089] 

[39]. Drexler DM; Reily MD; Shipkova PA Advances in mass spectrometry applied to pharmaceutical 
metabolomics. Anal. Bioanal. Chem, 2011, 399, 2645–2653. [PubMed: 21107980] 

[40]. Birungi G; Meijie Chen S; Pheng Loy B; Lee Ng M.; Fong Yau Li S. Metabolomics Approach 
for Investigation of Effects of Dengue Virus Infection Using the EA.hy926 Cell Line. J. Proteome 
Res. 2010, 9, 6523–6534. [PubMed: 20954703] 

[41]. Krishnan P Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot, 2004, 56, 
(410), 255–265. [PubMed: 15520026] 

[42]. Atherton HJ; Bailey NJ; Zhang W; Taylor J; Major H; Shockcor J; Clarke K; Griffin JL A 
combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the 
PPAR- null mutant mouse defines profound systemic changes in metabolism linked to the 
metabolic syndrome. Physiol. Genomics, 2006, 27, (2), 178–186. [PubMed: 16868074] 

[43]. Pan Z; Raftery D Comparing and combining NMR spectroscopy and mass spectrometry in 
metabolomics. Anal. Bioanal. Chem, 2007, 387, (2), 525–527. [PubMed: 16955259] 

[44]. Zheng S; Zhang S; Yu M; Tang J; Lu X; Wang F; Yang J; Li F An 1H NMR and UPLC-MS-
based plasma metabonomic study to investigate the biochemical changes in chronic unpredictable 
mild stress model of depression. Metabolomics, 2011, 7, (3), 413–423.

[45]. Lanza IR; Zhang S; Ward LE; Karakelides H; Raftery D; Nair KS Quantitative metabolomics by 
1H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One, 2010, 5, 
(5), e10538.

[46]. Gu H; Pan Z; Xi B; Asiago V; Musselman B; Raftery D Principal component directed partial 
least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in 

Gebregiworgis and Powers Page 13

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolomics: Application to the detection of breast cancer. Anal. Chim. Acta, 2011, 686, (1–2), 
57–63. [PubMed: 21237308] 

[47]. Nicholson JK; Buckingham MJ; Saldler PJ High resolution 1H n.m.r. studies of vertebrate blood 
and plasma. Biochem. J. , 1983, 211, (3), 605–615. [PubMed: 6411064] 

[48]. Lindon JC; Holmes E; Nicholson JK Metabonomics in pharmaceutical R & D. FEBS J., 2007, 
274, (5), 1140–1151. [PubMed: 17298438] 

[49]. Shin J-H; Yang J-Y; Jeon B-Y; Yoon YJ; Cho S-N; Kang Y-H; Ryu DH; Hwang G-S 1H NMR-
based Metabolomic Profiling in Mice Infected withMycobacterium tuberculosis. J. Proteome 
Res, 2011, 10, (5), 2238–2247. [PubMed: 21452902] 

[50]. Teng R; Junankar PR; Bubb WA; Rae C; Mercier P; Kirk K Metabolite profiling of the 
intraerythrocytic malaria parasitePlasmodium falciparumby1H NMR spectroscopy. NMR 
Biomed, 2009, 22, (3), 292–302. [PubMed: 19021153] 

[51]. Slupsky CM NMR-based analysis of metabolites in urine provides rapid diagnosis and etiology 
of pneumonia. Biomarkers Med, 2010, 4, (2), 195–197.

[52]. DeFeo EM; Wu C-L; McDougal WS; Cheng LL A decade in prostate cancer: from NMR to 
metabolomics. Nat. Rev. Urol, 2011, 8, (6), 301–311. [PubMed: 21587223] 

[53]. Ahmed SSSJ; Santosh W; Kumar S; Christlet H Metabolic profiling of Parkinson’s disease: 
evidence of biomarker from gene expression analysis and rapid neural network detection. J. 
Biomed. Sci, 2009, 16, (63), Epub.

[54]. Sinclair AJ; Viant MR; Ball AK; Burdon MA; Walker EA; Stewart PM; Rauz S; Young SP 
NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases - a 
diagnostic tool? NMR Biomed, 2009, 23, (2), 123–132.

[55]. Beger RD; Schnackenberg LK; Holland RD; Li D; Dragan Y Metabonomic models of human 
pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics, 2006, 2, (3), 
125–134.

[56]. Bathe OF; Shaykhutdinov R; Kopciuk K; Weljie AM; McKay A; Sutherland FR; Dixon E; Dunse 
N; Sotiropoulos D; Vogel HJ Feasibility of Identifying Pancreatic Cancer Based on Serum 
Metabolomics. Cancer Epidem. Biomar, 2010, 20, (1), 140–147.

[57]. Uversky VN; Blasco H; Corcia P; Moreau C; Veau S; Fournier C; Vourc’h P; Emond P; Gordon 
P; Pradat P-F; Praline J; Devos D; Nadal-Desbarats L; Andres CR 1H-NMR-Based Metabolomic 
Profiling of CSF in Early Amyotrophic Lateral Sclerosis. PLoS One, 2010, 5, (10), e13223.

[58]. Bharti SK; Jaiswal V; Ghoshal U; Ghoshal UC; Baijal SS; Roy R; Khetrapal CL Metabolomic 
profiling of amoebic and pyogenic liver abscesses: an in vitro NMR study. Metabolomics, 2011, 
Epub.

[59]. Ramadan Z; Jacobs D; Grigorov M; Kochhar S Metabolic profiling using principal component 
analysis, discriminant partial least squares, and genetic algorithms. Talanta, 2006, 68, (5), 1683–
1691. [PubMed: 18970515] 

[60]. Monleón D; Morales JM; Barrasa A; López JA; Vázquez C; Celda B Metabolite profiling of fecal 
water extracts from human colorectal cancer. NMR Biomed, 2009, 22, (3), 342–348. [PubMed: 
19006102] 

[61]. Auray-Blais C; Raiche E; Gagnon R; Berthiaume M; Pasquier J-C Metabolomics and preterm 
birth: What biomarkers in cervicovaginal secretions are predictive of high-risk pregnant women? 
International J. Mass Spectrom, 2011, 307, (1–3), 33–38.

[62]. Beckonert O; Keun HC; Ebbels TMD; Bundy J; Holmes E; Lindon JC; Nicholson JK Metabolic 
profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, 
serum and tissue extracts. Nat. Protoc., 2007, 2, (11), 2692–2703. [PubMed: 18007604] 

[63]. Beckonert O; Coen M; Keun HC; Wang Y; Ebbels TMD; Holmes E; Lindon JC; Nicholson JK 
High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact 
tissues. Nat. Protoc, 2010, 5, (6), 1019–1032. [PubMed: 20539278] 

[64]. Somashekar BS; Kamarajan P; Danciu T; Kapila YL; Chinnaiyan AM; Rajendiran TM; 
Ramamoorthy A Magic Angle Spinning NMR-Based Metabolic Profiling of Head and Neck 
Squamous Cell Carcinoma Tissues. J. Proteome Res, 2011, 10, (11), 5232–5241. [PubMed: 
21961579] 

Gebregiworgis and Powers Page 14

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[65]. Chan ECY; Koh PK; Mal M; Cheah PY; Eu KW; Backshall A; Cavill R; Nicholson JK; Keun HC 
Metabolic Profiling of Human Colorectal Cancer Using High-Resolution Magic Angle Spinning 
Nuclear Magnetic Resonance (HR-MAS NMR Spectroscopy and Gas Chromatography Mass 
Spectrometry (GC/MS). J. Proteome Res, 2009, 8 (1), 352–361. [PubMed: 19063642] 

[66]. Wilson M; Davies NP; Brundler M-A; McConville C; Grundy RG; Peet AC High resolution 
magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol. Cancer, 
2009, 8, (6), Epub.

[67]. Spratlin JL; Serkova NJ; Eckhardt SG Clinical Applications of Metabolomics in Oncology: A 
Review. Clin. Cancer Res, 2009, 15, 431–440. [PubMed: 19147747] 

[68]. Saude EJ; Sykes BD Urine stability for metabolomic studies: effects of preparation and storage. 
Metabolomics, 2007, 3, (1), 19–27.

[69]. Maher Anthony D., v SFMZ., Holmes Elaine, and Jeremy K. Nicholson Experimental and 
Analytical Variation in Human Urine in 1H NMR Spectroscopy-Based Metabolic Phenotyping 
Studies. Anal. Chem, 2007, 79 (14), 5204–5211. [PubMed: 17555297] 

[70]. Slupsky CM; Rankin KN; Wagner J; Fu H; Chang D; Weljie AM; Saude EJ; Lix B; Adamko DJ; 
Shah S; Greiner R; Sykes BD; Marrie TJ Investigations of the Effects of Gender, Diurnal 
Variation, and Age in Human Urinary Metabolomic Profiles. Anal. Chem. , 2007, 79, (18), 6995–
7004. [PubMed: 17702530] 

[71]. Minami Y; Kasukawa T; Kakazu Y; Iigo M; Sugimoto M; Ikeda S; Yasui A; van d. H. G. T. J; 
Soga T.; Ueda HR. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. 
Sci. U. S. A, 2009, 106, (24), 9890–9895. [PubMed: 19487679] 

[72]. Saude EJ; Adamko D; Rowe BH; Marrie T; Sykes BD Variation of metabolites in normal human 
urine. Metabolomics, 2007, 3, (4), 439–451.

[73]. NCCLS, Urinalysis and Collection, Transportation, and Preservation of Urine Specimens; 
Approved Guideline-Second Edition NCCLS document GP16-A2 [ISBN 1–56238-448–1], 
NCCLS, 940 West Valley Rd, Suite 1400, Wayne, Pennsylvania 19087–1898 USA, 2001.

[74]. Lauridsen M; Hansen SH; Jroszewski JW; Cornett C Human Urine as Test Material in 1H NMR-
Based Metabonomics: Recommendations for Sample Preparation and Storage. Anal Chem, 2007, 
79, (3), 1181–1186. [PubMed: 17263352] 

[75]. Winning H; Roldán-Marín E; Dragsted LO; Viereck N; Poulsen M; Sánchez-Moreno C; Cano 
MP; Engelsen SB An exploratory NMR nutri-metabonomic investigation reveals dimethyl 
sulfone as a dietary biomarker for onion intake. The Analyst, 2009, 134, (11), 2344–2351. 
[PubMed: 19838425] 

[76]. Winnike JH; Busby MG; Watkins PB; O’Connell TM Effects of a prolonged standardized diet on 
normalizing the human metabolome. Am. J. Clin. Nutr, 2009, 90, (6), 1496–1501. [PubMed: 
19864408] 

[77]. Bando K; Kawahara R; Kunimatsu T; Sakai J; Kimura J; Funabashi H; Seki T; Bamba T; 
Fukusaki E Influences of biofluid sample collection and handling procedures on GC-MS based 
metabolomic studies. J. Biosci. Bioeng, 2010, 110, (4), 491–499. [PubMed: 20547363] 

[78]. Briscoe CJ; Hage DS Factors affecting the stability of drugs and drug metabolites in biological 
matrices. Bioanalysis, 2009, 1, (1), 205–220. [PubMed: 21083197] 

[79]. Canelas AB; Ras C; ten Pierick A; van Dam JC; Heijnen JJ; van Gulik WM Leakage-free rapid 
quenching technique for yeast metabolomics. Metabolomics, 2008, 4, (3), 226–239.

[80]. Bernini P; Bertini I; Luchinat C; Nincheri P; Staderini S; Turano P Standard operating procedures 
for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol 
NMR, 2011, 49, (3–4), 231–243. [PubMed: 21380509] 

[81]. Rasmussen LG; Savorani F; Larsen TM; Dragsted LO; Astrup A; Engelsen SB Standardization of 
factors that influence human urine metabolomics. Metabolomics, 2011, 7, (1), 71–83.

[82]. Van CE; Shapiro ET; Tillil H; Polonsky KS Circadian modulation of glucose and insulin 
responses to meals: relationship to cortisol rhythm. Am. J. Physiol, 1992, 262, (4, Pt. 1), E467–
E475. [PubMed: 1566835] 

[83]. Alum MF; Shaw PA; Sweatman BC; Ubhi BK; Haselden JN; Connor SC 4,4-Dimethyl-4-
silapentane-1-ammonium trifluoroacetate (DSA), a promising universal internal standard for 

Gebregiworgis and Powers Page 15

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NMR-based metabolic profiling studies of biofluids, including blood plasma and serum. 
Metabolomics, 2008, 4, (2), 122–127.

[84]. Bone I The increasing importance of inflammation in neurological disease. Curr Opin Neurol, 
2007, 20, (3), 331–333. [PubMed: 17495629] 

[85]. Bales JR; Higham DP; Howe I; Nicholson JK.; Sadler PJ. Use of High-Resolution Proton 
Nuclear Magnetic Resonance Spectroscopy for Rapid Multi-Component Analysis of Urine. Clin. 
Chem, 1984, 30, (3), 426–432. [PubMed: 6321058] 

[86]. Jukarainen NM; Korhonen S-P; Laakso MP; Korolainen MA; Niemitz M; Soininen PP; 
Tuppurainen K; Vepsäläinen J; Pirttilä T; Laatikainen R Quantification of 1H NMR spectra of 
human cerebrospinal fluid: a protocol based on constrained total-line-shape analysis. 
Metabolomics, 2008, 4, (2), 150–160.

[87]. Amathieu R; Nahon P; Triba M; Bouchemal N; Trinchet J-C; Beaugrand M; Dhonneur G; Le 
Moyec L Metabolomic Approach by1H NMR Spectroscopy of Serum for the Assessment of 
Chronic Liver Failure in Patients with Cirrhosis. J. Proteome Res, 2011, 10, (7), 3239–3245. 
[PubMed: 21568267] 

[88]. Wang J; Zhang S; Li Z; Yang J; Huang C; Liang R; Liu Z; Zhou R 1H-NMR-based metabolomics 
of tumor tissue for the metabolic characterization of rat hepatocellular carcinoma formation and 
metastasis. Tumor Biol., 2010, 32, (1), 223–231.

[89]. Kang S-M; Park J-C; Shin M-J; Lee H; Oh J; Ryu DH; Hwang G-S; Chung JH 1H nuclear 
magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. 
Clin. Biochem, 2011, 44, (4), 293–299. [PubMed: 21167146] 

[90]. Cui Q; Lewis IA; Hegeman AD; Anderson ME; Li J; Schulte CF; Westler WM; Eghbalnia HR; 
Sussman MR; Markley JL Metabolite identification via the Madison Metabolomics Consortium 
Database. Nat Biotechnol, 2008, 26, (2), 162–164. [PubMed: 18259166] 

[91]. Ulrich EL; Akutsu H; Doreleijers JF; Harano Y; Ioannidis YE; Lin J; Livny M; Mading S; 
Maziuk D; Miller Z; Nakatani E; Schulte CF; Tolmie DE; Kent Wenger R; Yao H; Markley JL 
BioMagResBank. Nucleic Acids Res, 2008, 36, (Database issue), D402–408. [PubMed: 
17984079] 

[92]. Wishart DS; Tzur D; Knox C; Eisner R; Guo AC; Young N; Cheng D; Jewell K; Arndt D; 
Sawhney S; Fung C; Nikolai L; Lewis M; Coutouly MA; Forsythe I; Tang P; Shrivastava S; 
Jeroncic K; Stothard P; Amegbey G; Block D; Hau DD; Wagner J; Miniaci J; Clements M; 
Gebremedhin M; Guo N; Zhang Y; Duggan GE; Macinnis GD; Weljie AM; Dowlatabadi R; 
Bamforth F; Clive D; Greiner R; Li L; Marrie T; Sykes BD; Vogel HJ; Querengesser L HMDB: 
the Human Metabolome Database. Nucleic Acids Res, 2007, 35, (Database issue), D521–526. 
[PubMed: 17202168] 

[93]. Forsythe IJ; Wishart DS Exploring human metabolites using the human metabolome database. 
Curr Protoc Bioinformatics, 2009, 25, 14.18.11–14.18.45.

[94]. Bertram HC; Malmendal A; Petersen BO; Madsen JC; Pedersen H; Nielsen NC; Hoppe C; 
Molgaard C; Michaelsen KF; Duus JO Effect of Magnetic Field Strength on NMR-Based 
Metabonomic Human Urine Data. Comparative Study of 250, 400, 500, and 800 MHz. Anal. 
Chem, 2007, 79, (18), 7110–7115. [PubMed: 17702531] 

[95]. He Q; Ren P; Kong X; Wu Y; Wu G; Li P; Hao F; Tang H; Blachier F; Yin Y Comparison of 
serum metabolite compositions between obese and lean growing pigs using an NMR-based 
metabonomic approach. The J. Nutr.al Biochemistry, 2011, 23, (2), 133–139.

[96]. Rastrelli F; Jha S; Mancin F Seeing through Macromolecules: T2-Filtered NMR for the Purity 
Assay of Functionalized Nanosystems and the Screening of Biofluids. J. AM. CHEM. SOC. , 
2009 131, 14222–14224. [PubMed: 19775095] 

[97]. Diaz S. l. O; Pinto J; Graç G. a.; Duarte IF.; Barros A. n. S.; Galhano E. l.; Pita C; Almeida M. d. 
C. u.; Goodfellow BJ.; Carreira IM; Gil AM. Metabolic Biomarkers of Prenatal Disorders: An 
Exploratory NMR Metabonomics Study of Second Trimester Maternal Urine and Blood Plasma. 
J. Proteome Res, 2011, 10, (8), 3732–3742. [PubMed: 21649438] 

[98]. Lewis IA; Schommer SC; Hodis B; Robb KA; Tonelli M; Westler WM; Sussman MR; Markley 
JL Method for Determining Molar Concentrations of Metabolites in Complex Solutions from 
Two-Dimensional 1H-13C NMR Spectra. Anal. Chem, 2007, 79, 9385–9390. [PubMed: 
17985927] 

Gebregiworgis and Powers Page 16

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[99]. Jeannerat D; Furrer J NMR Experiments for the Analysis of Mixtures: Beyond 1D 1H Spectra 
Comb. Chem. High Throughput Screening, 2012, 15, (1), 15–35.

[100]. Zhang F; Bruschweiler-Li L; Robinette SL Self-Consistent Metabolic Mixture Analysis by 
Heteronuclear NMR. Application to a Human Cancer Cell Line. Anal. Chem, 2008, 80, (19), 
7549–7553. [PubMed: 18771235] 

[101]. Fan TWM; Lane AN; Higashi RM; Farag MA; Gao H; Bousamra M; Miller DM Altered 
regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved 
metabolomics (SIRM). Mol. Cancer, 2009, 8, (41), Epub.

[102]. Moseley HNB; Lane AN; Belshoff AC; Higashi RM; Fan TWM A novel deconvolution method 
for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass 
isotopologue profiles under non-steady-state conditions. BMC Biology, 2011, 9, (1), 37. 
[PubMed: 21627825] 

[103]. Heikkinen S; Toikka MM; Karhunen PT; Kilpeläinen IA Quantitative 2D HSQC (Q-HSQC) via 
Suppression of J-Dependence of Polarization Transfer in NMR Spectroscopy: Application to 
Wood Lignin. J. Am. Chem. Soc, 2003, 125, (14), 4362–4367. [PubMed: 12670260] 

[104]. Henderson TJ Sensitivity-Enhanced Quantitative 13C NMR Spectroscopy via Cancellation of 
1JCH Dependence in DEPT Polarization Transfers. J. AM. CHEM. SOC, 2004, 126, 3682–3683. 
[PubMed: 15038699] 

[105]. Koskela H; Kilpeläinen I; Heikkinen S Some aspects of quantitative 2D NMR. J. Magn. Reson, 
2005, 174, (2), 237–244. [PubMed: 15862240] 

[106]. Gronwald W; Klein MS; Kaspar H; Fagerer SR; Nürnberger N; Dettmer K; Bertsch T; Oefner 
PJ Urinary Metabolite Quantification Employing 2D NMR Spectroscopy. Anal. Chem, 2007, 80, 
9288–9297.

[107]. Hu F; Furihata K; Kato Y; Tanokura M Nondestructive Quantification of Organic Compounds in 
Whole Milk without Pretreatment by Two-Dimensional NMR Spectroscopy. J. Agric. Food 
Chem. , 2007, 55, 4307–4311. [PubMed: 17488021] 

[108]. Koskela H; Heikkilä O; Kilpeläinen I; Heikkinen S Quantitative two-dimensional HSQC 
experiment for high magnetic field NMR spectrometers. J. Magn. Reson, 2010, 202, (1), 24–33. 
[PubMed: 19853484] 

[109]. Hu K; Westler WM; Markley JL Simultaneous Quantification and Identification of Individual 
Chemicals in Metabolite Mixtures by Two-Dimensional Extrapolated Time-Zero1H−13C HSQC 
(HSQC0). J. Amer. Chem. Soc, 2011, 133, (6), 1662–1665. [PubMed: 21247157] 

[110]. Lindon JC; Nicholson JK Analytical technologies for metabonomics and metabolomics, and 
multi-omic information recovery. TrAC Trends in Anal. Chem, 2008, 27, (3), 194–204.

[111]. Parsons HM; Ludwig C; Günther UL; Viant MR Improved classification accuracy in 1- and 2-
dimensional NMR metabolomics data using the variance stabilising generalised logarithm 
transformation. BMC Bioinformatics, 2007, 8, (834), Epub.

[112]. Lindon JC; Holmes E; Nicholson JK Pattern recognition methods and applications in 
biomedical magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc, 2001, 39, (1), 1–40.

[113]. Bylesjoe M; Rantalainen M; Cloarec O; Nicholson JK; Holmes E; Trygg J OPLS discriminant 
analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemom, 2007, 20, 
341–351.

[114]. Holmes E; Nicholson JK; Nicholls AW; Lindon JC; Connor SC; Polley S; Connelly J The 
identification of novel biomarkers of renal toxicity using automatic data reduction techniques and 
PCA of proton NMR spectra of urine. Chemom. Intell. Lab. Syst, 1998, 44, 245–255.

[115]. De Meyer T; Sinnaeve D; Van Gasse B; Tsiporkova E; Rietzschel ER; De Buyzere ML; 
Gillebert TC; Bekaert S; Martins JC; Criekinge WV NMR-Based Characterization of Metabolic 
Alterations in Hypertension Using an Adaptive, Intelligent Binning Algorithm. Anal. Chem, 
2008, 80, 3783–3790. [PubMed: 18419139] 

[116]. Craig A; Cloarec O; Holmes E; Nicholson JK; Lindon JC Scaling and Normalization Effects in 
NMR Spectroscopic Metabonomic Data Sets. Anal. Chem, 2006, 78, 2262–2267. [PubMed: 
16579606] 

[117]. Halouska S; Powers R Negative impact of noise on the principal component analysis of NMR 
data. J. Magn. Reson, 2006, 178, (1), 88–95. [PubMed: 16198132] 

Gebregiworgis and Powers Page 17

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[118]. Triba MN; Starzec A; Bouchemal N; Guenin E; Perret GY; Le Moyec L Metabolomic profiling 
with NMR discriminates between biphosphonate and doxorubicin effects on B16 melanoma 
cells. NMR Biomed, 2010, 23, (9), 1009–1016. [PubMed: 20963798] 

[119]. van den Berg RA; Hoefsloot HCJ; Westerhuis JA; Smilde AK; van der Werf MJ Centering, 
scaling, and transformations: improving the biological information content of metabolomics data. 
BMC Genomics, 2006, 7, (142), Epub.

[120]. Zhang B; Halouska S; Schiaffo CE; Sadykov MR; Somerville GA; Powers R NMR Analysis of 
a Stress Response Metabolic Signaling Network. J. Proteome Res, 2011, 10, 3743–3754. 
[PubMed: 21692534] 

[121]. Westerhuis JA; Velzen EJJ; Hoefsloot HCJ; Smilde AK Multivariate paired data analysis: 
multilevel PLSDA versus OPLSDA. Metabolomics, 2009, 6, (1), 119–128. [PubMed: 20339442] 

[122]. Molteni CG; Cazzaniga G; Condorelli DF; Fortuna CG; Biondi A; Musumarra G Successful 
Application of OPLS-DA for the Discrimination of Wild-Type and Mutated Cells in Acute 
Lymphoblastic Leukemia. QSAR Comb. Sci, 2009, 28, (8), 822–828.

[123]. Basant A; Rege M; Sharma S; Sonawat HM Alterations in urine, serum and brain metabolomic 
profiles exhibit sexual dimorphism during malaria disease progression. Malaria J, 2010, 9, (110), 
Epub.

[124]. Westerhuis JA; Hoefsloot HCJ; Smit S; Vis DJ; Smilde AK; van Velzen EJJ; van Duijnhoven 
JPM; van Dorsten FA Assessment of PLSDA cross validation. Metabolomics, 2008, 4, 81–89.

[125]. Efron B; Halloran E; Holmes S Bootstrap confidence levels for phylogenetic trees. Proc. Natl. 
Acad. Sci. U. S. A, 1996, 93, (23), 13429–13434. [PubMed: 8917608] 

[126]. Werth MT; Halouska S; Shortridge MD; Zhang B; Powers R Analysis of metabolomic PCA data 
using tree diagrams. Anal. Biochem, 2010, 399, (1), 58–63. [PubMed: 20026297] 

[127]. Retief JD Phylogenetic analysis using PHYLIP. Methods Mol. Biol, 2000, 132, 243–258. 
[PubMed: 10547839] 

[128]. Zhang B; Halouska S; Schiaffo CE; Sadykov MR; Somerville GA; Powers R NMR Analysis of 
a Stress Response Metabolic Signaling Network. J. Proteome Res, 2011, 10, (8), 3743–3754. 
[PubMed: 21692534] 

[129]. Halouska S; Fenton RJ; Barletta R. l. G; Powers R. Predicting the in Vivo Mechanism of Action 
for Drug Leads Using NMR Metabolomics. ACS Chem. Biol, 2012, 7, (1), 166–171. [PubMed: 
22007661] 

[130]. Carrola J; Rocha CM; Barros AS; Gil AM; Goodfellow BJ; Carreira IM; Bernardo J; Gomes A; 
Sousa V; Carvalho L; Duarte IF Metabolic signatures of lung cancer in biofluids: NMR-based 
metabonomics of urine. J Proteome Res, 2011, 10, (1), 221–230. [PubMed: 21058631] 

[131]. Chiaradonna F; Moresco RM; Airoldi C; Gaglio D; Palorini R; Nicotra F; Messa C; Alberghina 
L From cancer metabolism to new biomarkers and drug targets. Biotechnol. Adv, 2012, 30, (1), 
30–51. [PubMed: 21802503] 

[132]. MacKinnon N; Khan AP; Chinnaiyan AM; Rajendiran TM; Ramamoorthy A Androgen receptor 
activation results in metabolite signatures of an aggressive prostate cancer phenotype: an NMR-
based metabonomics study Metabolomics, 2012, published online.

[133]. Bernini P; Bertini I; Luchinat C; Tenori L; Tognaccini A The Cardiovascular Risk of Healthy 
Individuals Studied by NMR Metabonomics of Plasma Samples. J. Proteome Res, 2011, 10, (11), 
4983–4992. [PubMed: 21902250] 

[134]. Heinzmann SS; Brown IJ; Chan Q; Bictash M; Dumas ME; Kochhar S; Stamler J; Holmes E; 
Elliott P; Nicholson JK Metabolic profiling strategy for discovery of nutritional biomarkers: 
proline betaine as a marker of citrus consumption. Am. J. Clin. Nutr, 2010, 92, (2), 436–443. 
[PubMed: 20573794] 

Gebregiworgis and Powers Page 18

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
1H NMR spectra of a representative baseline urine sample acquired at (a) 250, (b) 400, (c) 

500, and (d) 800 MHz. Key:  DMA, dimethylamine, Leu, leucine; Ileu, Isoleucine; Val, 

valine; TMAO, trimethylamine-N-oxide. (Reprinted with permission from reference,[94] 

Copyright 2007 by American Chemical Society)
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Figure 2. 
1H NMR spectra (500 MHz) recorded for 2nd trimester urine and plasma of a healthy 

pregnant woman: blood plasma, standard 1D (top), T2-edited (middle) and diffusion-edited 

(bottom) spectrum. Legend: (1) β-hydroxybutyrate, (2) 3-aminoisobutyrate, (3) lactate, (4) 

threonine, (5) alanine, (6) γ-aminobutyrate (GABA), (7) succinate, (8) citrate, (9) 

dimethylamine, (10) creatine, (11) creatinine, (12) trimethylamine N-oxide (TMAO), (13) 

betaine, (14) glycine, (15) guadinoacetate, (16) trigonelline, (17) glucose, (18) histidine, (19) 

phenylacetylglycine, (20) hippurate, (21) formate, (22) N-methyl-nicotinamide, (23) lipid 

CH3, (24) lipid (CH2)n, (25), glycoproteins (26) choline, (27) lipid CH=CH, (28) valine, 

(29) glutamine, (30) tyrosine, (31) lipid CH2CH2CO, (32) lipid CH2CH=CH, (33) lipid 

CH=CHCH2CH=CH, (34) albumin lysyl εCH2. (Reprinted with permission from reference,

[97] Copyright 2011 by American Chemical Society).
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Figure 3. 
Overlay of (a) 2D 1H-13C HSQC spectra and (b) 2D 1H-1H TOCSY spectra comparing wild-

type S. epidermidis strain 1457 (red) and aconitase mutant strain 1457-acnA::tetM (black) 

grown for 6 h in standard tryptic soy broth media augmented with 0.25% 13C-glucose. NMR 

resonances corresponding to specific metabolites are labeled, where citrate is circled. (c) 

Expanded view of the crowded region of the 2D 1H-13C HSQC spectra in (a). (Reprinted 

with permission from reference,[120] Copyright 2011 by American Chemical Society).
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Figure 4. 
(a) Shown are examples of HSQC1, HSQC2, and HSQC3 spectra following Fourier 

transformation to yield frequency domain spectra. Peak intensities in the virtual HSQC0 

spectrum (bordered by the dashed line) are derived from linear ln extrapolation of the peak 

intensities of the corresponding peaks in the HSQC1, HSQC2, and HSQC3 spectra. (b) 

Extrapolation of the 500 MHz 2D HSQCi (i = 1, 2, 3) peak intensities from integrated peak 

volumes (Ai) to yield A0 values. (Reprinted with permission from reference,[109] Copyright 

2011 by American Chemical Society).
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Figure 5. 
(a) 2D OPLS-DA scores plot comparing 2 h growth of wild-type S. epidermidis 1457 ( ), 2 

h growth of aconitase mutant strain 1457-acnA::tetM ( ), 6 h growth of wild-type S. 
epidermidis 1457 ( ), and 6 h growth of aconitase mutant strain 1457-acnA::tetM ( ). The 

ellipses correspond to the 95% confidence limits from a normal distribution for each cluster. 

For the OPLS-DA scores plot, the 6 h growth of wild-type S. epidermidis 1457 ( ) was 

designated the control class and the remainder of the cells were designated as treated. The 

OPLS-DA used 1 predictive component and 3 orthogonal components to yield a R2X of 
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0.788, R2Y of 0.992 and Q2 of 0.992. (b) OPLS-DA S-plot comparing the mutant strain 

1457-acnA::tetM grown for 2 hours and 6 hours. The two conditions are shown to be 

separated along the PC2 axis in (a). The metabolites identified are associated with variations 

in the utilization of glucose for cell growth. (c) OPLS-DA loading plot comparing the 

mutant strain 1457-acnA::tetM grown for 2 hours and 6 hours. Negative values indicate a 

decrease in peak intensity when comparing the wild type to the mutant, while positive values 

indicate an increase in peak intensity. (Reprinted with permission from reference,[120] 

Copyright 2011 by American Chemical Society).
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Figure 6. 
(a) 2D OPLS-DA scores plot demonstrating the clustering pattern for 12 antibiotics with 

known biological targets and three compounds of unknown in vivo activity: untreated M. 
smegmatis cells (black square), chloramphenicol (blue diamond), ciprofloxacin (orange 

diamond), gentamicin (pink diamond), kanamycin (lavender diamond), rifampicin (red 

diamond), streptomycin (yellow diamond), ethambutol (green down triangle), ethionamide 

(blue down triangle), isoniazid (pink down triangle), ampicillin (red up triangle), D-

cycloserine (purple up triangle), vancomycin (orange up triangle), amiodorone (purple 

circle), chlorprothixene (green circle), and clofazimine (red circle) treated M. smegmatis 
cells. The ellipses correspond to the 95% confidence limits from a normal distribution for 

each cluster. The untreated M. smegmatis cells (black square) was designated the control 

class, and the remainder of the cells were designated as treated. The OPLS-DA used one 

predictive component and six orthogonal components to yield a R2X of 0.715, R2Y of 0.803, 

and Q2 of 0.671. (b) Metabolomics tree diagram determined from the OPLS-DA scores plot. 

The coloring scheme for each compound in the tree diagram correlates with the data point 

colors in the OPLS-DA scores plot. The bootstrap numbers for each node are indicated on 

the tree diagram. (Reprinted with permission from reference,[129] Copyright 2011 by 

American Chemical Society).

Gebregiworgis and Powers Page 25

Comb Chem High Throughput Screen. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
The 500 MHz 1H NMR spectra of urine from (a) a healthy (control) subject, and (b) a lung 

cancer patient. Signal assignment: 1, α-hydroxybutyrate; 2, valine; 3, isobutyrate; 4, β-

aminoisobutyrate; 5, methyl-β-hydroxybutyrate; 6, β-hydroxyisovalerate; 7, lactic acid and 

threonine; 8, α-hydroxyisobutyrate; 9, alanine; 10, N-acetylglutamine; 11, pyruvate; 12, 

succinate; 13, α-ketoglutarate; 14, citrate; 15, dimethylamine; 16, creatinine; 17, 

trimethylamine-N-oxide and betaine; 18, scyllo-inositol; 19, glycine; 20, hippurate; 21, 

trigonelline; 22, p-hydroxyphenylacetate; 23, phenylacetylglycine; 24, histidine; 25, 3-
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methylhistidine; 26, formate; 27, trigonellinamide. Reprinted with permission from 

reference,[130] (Copyright 2011 by American Chemical Society)
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Figure 8. 
Scores scatter plots (a) PC1 vs PC3, (b) LV1 vs LV2, (c) LV1 vs o-LV1 resulting from 

applying, respectively, PCA, PLS-DA, and OPLS-DA to the 1H NMR spectra of urine 

(δ0.40 to 10.0, excluding 4.55−6.05) from healthy controls (open symbols) and lung cancer 

patients (full symbols). Reprinted with permission from reference,[130] (Copyright 2011 by 

American Chemical Society)
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Figure 9. 
Metabolic fingerprint in low and high risk subjects (metabolites whose amount differs 

significantly between the low- and high-risk subjects are marked with an asterisk). Reprinted 

with permission from reference,[133] (Copyright 2011 by American Chemical Society)
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Figure 10. 
Urinary excretion kinetics of proline betaine after orange juice consumption (n = 6). (a) 

Proline betaine singlet at δ 3.11 was integrated over the spectral region δ 3.106–3.116 as 

shown, where the peak overlap is minimal. (b) Mean and SD proline betaine integral (solid 

bold line) and the proline betaine integral for each of the 6 volunteers plotted over time. The 

red arrow indicates the time of orange juice consumption. ppm, parts per million. Reprinted 

with permission from reference,[134] (Copyright 2011 by American Society for Nutrition)
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Table 1:

Biofluid Sample Preparation
a

Biofluid Required sample handling

Urine Add deuterated phosphate buffer to 0.2–0.4 mL urine

Blood/plasma/serum Add deuterium oxide (to lock)
Add acetonitrile (for protein precipitation)
Add methanol/chloroform extraction (for lipid extraction)

Cerebrospinal fluid Add deuterium oxide to 0.5 mL of CSF

Expressed prostatic secretions Add deuterium oxide to 0.03 – 0.10 mL of EPS

Bile Add deuterium methanol to 0.5 mL of bile

Bronchoalveolar lavage fluid Add deuterium oxide to 0.5 mL of BALF

Tissue Add 0.01 mL of deuterium oxide to 3–10 g of tissue in MAS rotor
Add perchloric acid extraction on 20–200 g frozen tissue
Add methanol/chloroform extraction to 20–200 g frozen tissue

a
Adapted from Spratlin et al. (2009)
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