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Abstract

Understanding the modularity of functional magnetic resonance imaging (fMRI)-derived brain 

networks or “connectomes” can inform the study of brain function organization. However, fMRI 

connectomes additionally involve negative edges, which may not be optimally accounted for by 

existing approaches to modularity that variably threshold, binarize, or arbitrarily weight these 

connections. Consequently, many existing Q maximization-based modularity algorithms yield 

variable modular structures. Here, we present an alternative complementary approach that exploits 

how frequent the blood-oxygen-level-dependent (BOLD) signal correlation between two nodes is 

negative. We validated this novel probability-based modularity approach on two independent 

publicly-available resting-state connectome data sets (the Human Connectome Project [HCP] and 

the 1,000 functional connectomes) and demonstrated that negative correlations alone are sufficient 

in understanding resting-state modularity. In fact, this approach (a) permits a dual formulation, 

leading to equivalent solutions regardless of whether one considers positive or negative edges; (b) 

is theoretically linked to the Ising model defined on the connectome, thus yielding modularity 

result that maximizes data likelihood. Additionally, we were able to detect novel and consistent 

sex differences in modularity in both data sets. As data sets like HCP become widely available for 

analysis by the neuroscience community at large, alternative and perhaps more advantageous 

computational tools to understand the neurobiological information of negative edges in fMRI 

connectomes are increasingly important.
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1 | INTRODUCTION

Just as social networks can be divided into cliques that describe modes of association (e.g., 

family, school), the brain’s connectome can be divided into modules or communities. 

Modules contain a series of nodes that are densely interconnected (via edges) with one 

another but weakly connected with nodes in other modules (Meunier, Lam- biotte, & 

Bullmore, 2010). Thus, modularity or community structure best describes the intermediate 

scale of network organization, rather than the global or local scale. In many networks, 

modules can be divided into smaller sub-modules, thus can be said to demonstrate 

hierarchical modularity and near decomposability (the autonomy of modules from one 

another), a term first coined by Simon in 1962 (Meunier et al., 2010; Simon, 2002). Modules 

in fMRI-derived networks comprise anatomically and/or functionally related regions, and 

the presence of modularity in a network has several advantages, including greater 

adaptability and robustness of the function of the network. Understanding modularity of 

brain networks can inform the study of organization and mechanisms of brain function and 

dysfunction, thus potentially the treatment of neuropsychiatric diseases.

Mathematical techniques derived from graph theory (Fornito, Zale-sky, & Breakspear, 2013) 

have been developed to measure and describe the modular organization of neural 

connectomes (Bullmore & Sporns, 2009; Sporns & Betzel, 2016). Different methods for 

module detection have been applied in network neuroscience, and offer different strengths 

and weaknesses (reviewed in Sporns & Betzel, 2016). Optimization algorithms are typically 

used to maximize the Q modularity metric or its variants (Danon, Diaz-Guilera, Duch, & 

Arenas, 2005). These algorithms vary in accuracy as there are tradeoffs made with 

computational speed (Rubinov & Sporns, 2010). Simulated annealing (e.g., Guimera & 

Amaral, 2005; Guimera, Sales-Pardo, & Amaral, 2004) is a slower, more accurate method 

for smaller networks, however, could be computationally expensive with larger networks 

(Danon et al., 2005). The Newman method (Newman, 2006; Newman & Girvan, 2004) 

reformulates modularity with consideration of the spectral properties of the network, and is 

also considered fairly accurate with adequate speed for smaller networks (Rubinov & 

Sporns, 2010). More recently, the Louvain method (Blondel, Guillaume, Lambiotte, & 

Lefebvre, 2008) has been developed for large networks (millions of nodes and billions of 

edges). Its rapid computation and ability to detect modular hierarchy (Rubinov & Sporns, 

2010) has led to it becoming one of the most widely utilized methods for detecting 

communities in large networks. Comparisons with other modularity optimization methods 

have found that the Louvain method outperforms numerous other similar methods (Aynaud, 

Blondel, Guillaume, & Lambiotte, 2013; Lancichi- netti & Fortunato, 2009).

However, these existing methods were mostly originally developed for networks with only 

positive connections and may additionally suffer from suboptimal reproducibility (Butts, 
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2003; Fortunato & Barthe-lemy, 2007; Guimera & Sales-Pardo, 2009). With the advent of 

connectomics, they also have been heuristically applied to fMRI brain networks, in which 

we have the additional complication of negative correlations. To this end, some methods 

largely ignore fMRI networks’ negative edges (Fornito et al., 2013), only considering the 

right tail of the correlation histogram, that is, the positive edges (Schwarz & McGo-nigle, 

2011). However, in functional neuroimaging, negative edges may be neurobiologically 

relevant (Sporns & Betzel, 2016), depending on factors such as data preprocessing steps, 

particularly the removal of potentially confounding signal such as head motion, global 

white-matter or whole-brain average signal, before calculation of the correlation matrix, 

because removal of such signal could result in detection of anticorrelations that were not 

present in the original data (Schwarz & McGonigle, 2011). Ignoring negative edges is 

achieved with binarization of a network (so-called “hard thresholding”), by selecting a 

threshold then replacing edge values below this threshold with zeros, and replacing supra-

threshold values with ones (van den Heuvel et al., 2017). Some researchers retain the 

weights of the supra-threshold edge values, which has the effect of compressing the positive 

edges, however, the negative edges remain suppressed (Schwarz & McGonigle, 2011). 

Choice of threshold is important as more severe thresholds increase the contributions from 

the strongest edges, but can result in excessive disconnection of nodes within networks, in 

comparison to less stringent thresholds. Rather than binarizing networks, some researchers 

choose a “soft thresholding” approach that replaces thresholding with a continuous mapping 

of correlation values into edge weights, which had the effect of suppressing, rather than 

removing weaker connections (Schwarz & McGonigle, 2011). Linear and nonlinear 

adjacency functions can be employed, and the choice can be made to retain the valence of 

the edge weights, when appropriate.

An alternative to optimization methods discussed above, independent components analysis 

(ICA) has been applied to functional neuroimaging data (Beckmann, DeLuca, Devlin, & 

Smith, 2005). This method assumes that voxel time series are linear combinations of subsets 

of representative time series (Sporns & Betzel, 2016). Patterns of voxels load onto spatially 

independent components (modules). Unlike optimization methods, ICA allows for 

overlapping communities (Sporns & Betzel, 2016), although the number of ICA components 

needs to be pre-specified.

Utilizing a distance-based approach, recently, a new technique for investigating the 

hierarchical modularity of structural brain networks has been developed (GadElkarim et al., 

2012, 2014). Rather than maximizing Q, the path length associated community estimation 

(PLACE) uses a unique metric that measures the difference in path length between versus 

within modules, to both maximize within-module integration and between-module 

separation (GadElkarim et al., 2014). It utilizes a hierarchically iterative procedure to 

compute global-to-local bifurcating trees (i.e., dendrograms), each of which represents a 

collection of nodes that form a module.

In this study, we developed a related novel method for functional brain networks–probability 

associated community estimation (PACE), that uses probability, not thresholds or the 

magnitude of BOLD signal correlations. We conducted experiments using this method, as 

well as six different implementations within the widely used brain connectivity toolbox 
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(BCT) (http://www.brain-connectivity-toolbox.net/) using data from the freely accessible 

1,000 functional connectomes or F1000 project data set (F1000, RRID:SCR_005361) 

(Biswal et al., 2010) and the Human Connectome Project (HCP, RRID:SCR_006942) (Van 

Essen et al., 2012, 2013), and further examined differences in resting-state functional 

connectome’s modularity (i.e., the resting-state networks [RSNs]) between males and 

females.

2 | METHODS

The popular Q-based modular structure (Blondel et al., 2008; Reichardt & Bornholdt, 2006; 

Ronhovde & Nussinov, 2009; Rubinov & Sporns, 2011; Sun, Danila, Josic, & Bassler, 2009) 

is extracted by finding the set of nonoverlapping modules that maximizes the modularity 

metric Q:

Q(G) = 1
2m ∑

i ≠ j
Ai j −

kik j
2m δ(i, j)

For a binary graph G, m is the total number of edges, Aij = 1 if an edge links nodes i and j 
and 0 otherwise, δ(i, j) if nodes i and j are in the same community and 0 otherwise, and ki is 

the node degree of i (i.e., its number of edges). For weighted graphs, m is the sum of the 

weights of all edges while Aij becomes the weight of the edge that links nodes i and j, and ki 

is the sum of all weights for node i.

Approaches based on Q-maximization are naturally suitable for understanding the 

modularity of structural connectome where all edges are nonnegative. As an alternative to Q 
maximization, we previously developed a graph distance (shortest path length) based 

modularity approach for the structural connectome. By exploiting the structural 

connectome’s hierarchical modularity, this path length associated community estimation 
technique (PLACE) is designed to extract global-to-local hierarchical modular structure in 

the form of bifurcating dendrograms (GadElkarim et al., 2012). PLACE has potential 

advantages over Q (GadElkarim et al., 2014), as it is hierarchically regular and scalable by 

design. Here, the degree to which nodes are separated is measured using graph distances 

(Dijkstra, 1959) and the PLACE benefit function is the ΨPL metric, defined at each 

bifurcation as the difference between the mean inter- and intra-modular graph distances. 

Thus, maximizing ΨPL is equivalent to searching for a partition with stronger intra-

community integration and stronger between-community separation (GadElkarim et al., 

2012, 2014; Lamar et al., 2016; Ye et al., 2015; Zhang et al., 2016).

2.1. | PACE for functional connectomes

Here, let us describe the PACE-based modularity of a functional connectome mathematically 

represented as an undirected graph FC(V, E), where V is a set of vertices (i.e., nodes) and E 
is a set of edges (indexed by considering all pairs of vertices). Each edge of E is associated 

with a weight that can be either positive or negative.
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Given a collection of functional connectomes S on the same set of nodes V (but having 

edges with different weights), we can define the following aggregation graph G (V, E). For 

each edge ei,j in E connecting node i and node j, we consider P−
i j, the probability of 

observing a negative value at this edge in S (i.e., nodes i and j exhibit an ‘anti-activating’ 

functional relationship). In the case of HCP, for example, S thus consists of all healthy 

subjects’ resting-state functional connectome and this probability can simply be estimated 

using the ratio between the number of connectomes in S having the edge eij < 0 and the total 

number of connectomes in S. Similarly, we define the probability of an edge in E being 

nonnegative as P+
i j (i.e., nodes i and j exhibit a co-activating relationship). Naturally, the 

P− − P+ pair satisfies the following relationship:

P−
i, j + P+

i, j = 1, ∀(i, j), i ≠ j

Then, given C1, C2,..., CN that are N subsets (or communities) of V, we define the mean 

intra-community edge positivity or negativity P± Cn  for the n-th community Cn as:

P± Cn =
∑

i, j ∈ Cn, i < j
P±

i, j

|Cn| |Cn| − 1 2

Here, |Cn| represents the size (i.e., number of nodes) of the n-th community. Similarly, we 

could define the mean inter-community edge positivity and negativity (between communities 

Cn and Cm) as:

P± Cn, Cm = P± Cm, Cn =
∑

i ∈ Cn, j ∈ CmP±
i, j

|Cn||Cm|

Here, the first equality holds as correlation-based functional con- nectomes are undirected. 

The intuition of PACE for fMRI connectomes is that edges that are most frequently 

anticorrelations should be placed across communities.

PACE operates as follows. Given a collection of functional connectomes S, PACE identifies 

a natural number N and a partition of V, C1 ∪ C2 ∪ … ∪ CN = V, Ci ∩ C j = Ø for all i ≠ j

which maximizes the PACE benefit function Ψ. Intuitively, Ψ computes the difference 

between mean inter-community edge negativity and mean intracommunity edge negativity. 

Moreover, considering the duality between P− and P+, our optimization problem thus 

permits an equivalent dual form.
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Formally,Ψ =

argmax
C1 ∪ C2 ∪ … ∪ CN = V , Ci ∩ C j = Ø for all i ≠ j

∑1 ≤ n < m ≤ N P− Cn, Cm

N(N − 1)/2 −
∑1 ≤ n ≤ N P− Cn

N =

argmax
C1 ∪ C2 ∪ … ∪ CN = V , Ci ∩ C j = Ø for all i ≠ j

∑1 ≤ n ≤ N P+ Cn

N −
∑1 ≤ n < m ≤ N P+ Cn, Cm

N(N − 1)/2

To solve the above PACE optimization problem, we adopt a PLACE-like algorithm, which 

has been extensively validated (Ajilore et al., 2013; GadElkarim et al., 2012, 2014; Lamar et 

al., 2016; Ye et al., 2015; Zhang et al., 2016), and computed global-to-local four-level 

bifurcating trees (yielding a total of 16 communities at the fourth level; please refer to 

GadElkarim et al. (2014) for implementation details).

2.2 | | Theoretical link between PACE and the Ising model

Here, let us further explore the relationship between PACE and the Ising model using a 

mean-field approximation approach. When defined on the human connectome, the Ising 

model consists of assigning atomic spins σ to each brain region or node to one of two states 

(+1 or –1). Given a specific ensemble spin configuration σ over the entire brain and 

assuming the absence of external magnetic field, the corresponding Hamiltonian is thus 

defined as:

H(σ) = − ∑(i, j) ∈ E Ji jσiσ j

Here, (i, j) ∈ E indicates that there is an edge connecting nodes i and j. In classic 

thermodynamics, the Hamiltonian relates a configuration to its probability via the following 

Boltzmann distribution equation:

P(σ) = e−βH(σ)
Z

Where β is the inverse temperature and the normalizing constant Z is often called the 

partition function Z = ∑σ e−βH(σ). Note, Jij is positive when the interaction is ferromagnetic 

Jij > 0, and antiferromagnetic when Jij < 0.

Given this general set-up, we are now ready to show the general equivalence between PACE 

and maximizing the joint likelihood of the observed resting state fMRI (rs-fMRI) 

connectome data over some unknown ferromagnetic/antiferromagnetic ensemble interaction 

J defined on the connectome.

First, as one subject’s rs-fMRI connectome is independent of other subjects’, the joint 

likelihood over S subjects can be computed by forming the product:
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Likelihood (oberseved rs‐fMRI data |J) = e
−β∑s = 1

s H ρs

Z = e
−βS∑s = 1

s H(ρ)

Z

For convenience of notations, let us work with the negative mean Hamiltonian

−H(ρ) = −
∑s = 1

s H ρs

S = ∑
(i, j) ∈ E

Ji j
∑s = 1

s σi
sσ j

s

S = ∑
(i, j) ∈ E

Ji jσiσ j

While the spin σi
s at a node i for any subject s is unknown, with PACE we nevertheless could 

proceed to estimate the expected value of spin product (across all S subjects) σiσ j by noting 

that PACE assigns σiσ j = 1 with probability P+
i j and −1 with probability P−

i j. Thus

σiσ j = 1 ⋅ P+
i, j + ( − 1) ⋅ P−

i, j = 1 ⋅ P+
i, j + ( − 1)

⋅ 1 − P+
i, j = 2P+

i, j − 1 = 1 − 2P−
i, j

Next, let us compute and simplify H ρ  using the above equations, coupled with mean-field 

approximation, by separately considering ferromagnetic versus antiferromagnetic 

interactions (i.e., with respect to the sign of Jij):

J+ =
∑(i, j) ∈ E, Ji j > 0Ji j

|(i, j) ∈ E, Ji j > 0| > 0; J− = −
∑(i, j) ∈ E, Ji j < 0Ji j

|(i, j) ∈ E, Ji j < 0| > 0

Thus,

−H(ρ) = ∑(i, j) ∈ E Ji jσiσ j = ∑(i, j) ∈ E, Ji j > 0Ji jσiσ j + ∑(i, j) ∈ E, Ji j < 0Ji jσiσ j

≈ J+ ∑
(i, j) ∈ E, Ji j > 0

σiσ j − J− ∑
(i, j) ∈ E, Ji j < 0

σiσ j

= J+ ∑
(i, j) ∈ E, Ji j > 0

2P+
i, j − 1 + J− ∑

(i, j) ∈ E, Ji j < 0
2P−

i, j − 1

Note, since here “mean-field” is constructed by averaging over ferromagnetic/

antiferromagnetic interaction terms, our formulation may instead be called a mean-

interaction approach.

Last, realizing that maximizing the joint likelihood of the observed data with respect to 

unknown ensemble interactions J (and thus unknown mean-interaction approximations J+

and J−) is equivalent to maximizing the negative mean Hamiltonian −H(ρ), we examine the 

right-hand side of the above equation (and note that both J+ and J− are nonnegative) and 

deduct that a general maximization strategy can be devised by:
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1. assigning as much as possible any two nodes i, j that are highly likely to exhibit 

co-activation ei,j > 0 (and thus the term [2P+
i,j − 1] more likely to be positive) to 

have ferromagnetic interactions (thus i, j more likely to be placed in the same 

community), and at the same time

2. assigning as much as possible nodes i, j that are highly likely to exhibit anti-

activation ei,j<0 (and thus the term 2P−
i, j − 1  more likely to be positive) to have 

antiferromagnetic interactions (thus i and j more likely to be placed in different 

communities).

This is exactly the intuition of PACE, that is, we maximize the difference between mean 
inter-community edge negativity & mean intracommunity edge negativity (or equivalently 

maximizing the difference between mean intra-community edge positivity & mean 
intercommunity edge positivity).

2.3 | Relaxation of the powers-of-two constraint: constructing the PACE null model and 
testing the statistical significance of each bifurcation

As PACE attempts, for each branch at a specific PACE level, to further split nodes within 

that branch into two subsequent groups, it is thus natural to ask if a procedure can be 

constructed in order to determine the level of statistical significance for such a split. By 

stopping a branch from further splitting when there is evidence against it, PACE can in 

theory yield any number of communities (no longer restricted to powers of 2).

Here, we propose such a procedure by first constructing the null distribution based on the 

observed data. Indeed, we can sample the null distribution (i.e., there is no modular patterns 

of co-/antiactivation) of the PACE benefit function Ψ by first randomly permuting the pair 

P+
i, j/P

−
i, j for all (i, j) (i.e., randomly exchanging edge positivity with negativity, or simply 

put a probability value is replaced by 1 minus this value), followed by re-running PACE with 

shuffled edge positivity/neg- ative. Then, at each split the actual Ψ achieved by the original 

data is compared to the Ψ values of the reshuffled data at the same PACE level; if the former 

lies within the top 5% of the latter, such a split is determined to be significant (p < .05).

In sum, using this data-informed permutation procedure, we relax the powers-of-two 

constraint during PACE optimization, thus letting the observed data to inform us the 

statistically most meaningful number of modules. This number can now be any positive 

integer which is no longer constrained to be a power of two.

3. | RESULTS

3.1 | Data description

We tested our PACE framework on two publicly available connectome data sets (Biswal et 

al., 2010; Brown, Rudie, Bandrowski, Van Horn, & Bookheimer, 2012). The first one is a 

986-subject resting state fMRI connectome data set from the 1,000 functional connectome 

project (17 subjects’ connectomes were discarded due to corrupted files), downloaded from 

the USC multimodal connectivity database (http://umcd.humanconnectomeproject.org). The 

dimension of the network is 177 × 177. The second data set is 820 subjects’ resting state 

Zhan et al. Page 8

J Comp Neurol. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://umcd.humanconnectomeproject.org/


fMRI connectome from the HCP (released in December 2015, named as HCP900 

Parcellation + Timeseries + Netmats, https://db.humancon-nectome.org/data/projects/

HCP_900). The dimension of the network is 200 × 200, derived using ICA. For details of 

these two data sets, please refer to their respective websites and references.

3.2 | Simulation study

Here, we created a 100 × 100 edge-negativity probability map, which contains five modules 

(each module has 20 nodes; Figure 1a). The edge negativity values within each module are 

uniformly randomly generated between 0 and 0.5 (less likely antiactivation within module) 

and the values across modules are uniformly randomly assigned from 0.5 to 1. Then, three-

level PACE was applied to generate eight modules (Figure 1b), followed by sampling the 

null distribution of Ψ with 1,000 permutations using the procedure described in Section 2.3.

Results indicated that PACE correctly recovered the five-module ground truth, and the null 

distribution procedure indeed rejected any further splitting beyond five modules (Figure 1c; 

blue lines indicate statistically meaningful bifurcations). Figure 1d further shows the 

performance of PACE across different levels of noise (the exact procedure of how noise is 

applied is discussed in the Supporting Information).

3.3 | Stability analysis

To better understand the stability of the PACE with respect to the number of subjects used in 

estimating edge negativity/positivity, we tested PACE on subsets of HCP and F1000 

randomly generated with a bootstrapping procedure (Chung, Lu, & Henry, 2006) (sampling 

with replacement) to investigate the reproducibility of the extracted community structure as 

a function of the sample size (from N = 50 to 900 for F1000 and 50 to 800 for HCP; in 

increments of 50). For each N, 1,000 bootstrap samples were generated and the resulting 

1,000 community structures were compared to the community structure derived from the 

entire HCP/F1000 sample using the normalized mutual information (NMI; Alexander-Bloch 

et al., 2012). NMI values are between 0 and 1, with 1 indicating two modular structures are 

identical. Figure 2 illustrates the mean NMI (y axis) as a function of sample size N (x axis), 

for all levels of PACE. Careful examinations of these NMI values suggest that stable PACE-

derived modularity can be obtained with as few as ~100 subjects (note here we include all 

subjects, regardless of age and sex, during bootstrapping. it is likely that the NMI values 

would be even higher if we restrict the analysis to a narrower age range and/or one specific 

sex).

3.4 | Optimal number of PACE bifurcations informed by the null model in F1000 and HCP

To determine the significance of PACE-derived hierarchical modularity at each bifurcation, 

for HCP and F1000, we generated 1000 samples of Ψ under the null hypothesis using the 

procedure in Section 2.3, and tested the significance of each split up to the fourth level. For 

both data sets, all bifurcations up to the third level were significant. At the fourth level, in 

F1000 none of the eight possible bifurcations was significant (thus resulting in a total eight 

of modules) and in HCP only one of the eight bifurcations was (p = .002, which remained 

significant after Bonferroni correction with a cut-off of 0.05/8), thus yielding a total of nine 
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modules. Figure 3 illustrates the whole procedure in HCP. (Please refer to Supporting 

Information Figure S2 for the final community structures for F1000 and HCP.)

3.5 | Modular structures revealed using PACE versus weighted-Q maximization based 
methods

In this section, we compared PACE-derived modularity with Q-based modularity computed 

from the mean F1000 or HCP functional connec- tome (mean connectome is computed by 

element-wise averaging). As the optimal number of PACE-derived communities is eight in 

F1000 and nine in HCP (with a relatively small fifth community, C5, shown in Figure 3e) 

while Q-based methods primarily yield three to five communities, we selected a comparable 

PACE level, up to level 3, for our analyses.

Table 1 lists six Q-based methods adopted in this study (five weighted and one binarized). 

We conducted 100 runs for each of the six methods as well as PACE, and quantified pairwise 

similarity between two modular structures using NMI. We report summary statistics of these 

pairwise NMI values in Table 2 (the total number of NMI values are 4950 = 100 × 99/2). As 

shown in this table, Q-based methods produced substantially variable modular structures 

across runs (and the number of communities across runs is also variable). By contrast, PACE 

produced identical results up to the third level (i.e., eight communities) for HCP and F1000.

To visualize these modularity results, we show axial slices of representative modular 

structures, for the HCP data set, generated using different methods (Figure 4, also see Figure 

3e for rearranged connectome matrices based on PACE).

As Q-based methods yielded variable results (with variable number of communities, see 

Table 2), for a fair comparison, we randomly select a 4-community modular structure to 

visualize each of the five Q-based methods. Visually, except for the Q-amplitude and Q-

negative-only, Q-based results shared strong similarities with results generated using second-

level PACE (variability among Q-based methods notwithstanding). Table 3 summarizes, for 

each Q-based method, the mean and standard deviation of NMI between the 100 runs and 

second-level PACE-derived modularity.

Last, to better visualize the effect of variable numbers of modules in Q-based methods, we 

randomly selected one 3-community and one 4-community Q-derived HCP modular 

structure and compared them (Figure 5), with the visualizations supporting the potential 

issue of reproducibility with Q (for comparison, the first-level 2-community and second-

level 4-community PACE HCP results are also shown).

3.6 | Variability in the modular structure computed using Q-based thresholding-binarizing 
method

For the sixth Q-based modularity method, which applies an arbitrary nonnegative threshold 

to the mean connectome followed by binarization (all edges below threshold set to zero, and 

above threshold to one), we again conducted 100 runs for each threshold (starting, as a 

fraction of the maximum value in the mean functional connectome, from 0 to 0.5 with 

increments of 0.02) using the unweighted Louvain method routine implemented in the BCT 

toolbox. Figure 6 plots the mean pairwise NMI ± SD as a function of the threshold, between 
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each of the 100 runs and those generated using the Q-Comb-Sym or Q-Comb-Asym 

methods. Results again demonstrated the substantial variability in Q as we vary the 

threshold, especially in the case of HCP.

3.7 | Comparison between PACE modularity and spectral graph cut

Last, for completeness, we also evaluated a network clustering algorithm derived from 

spectral graph theory (the normalized spectral cut or Ncut) (Ng, Jordan, & Weiss, 2001). 

Since the Ncut algorithm only deals with positive edges and one needs to pre-specify the 

value of “k” (the number of clusters to be generated), we artificially set all negative edges to 

zero in the network and ran Ncut 100 times for k = 2, 4, and 8. Our results revealed that 

clustering derived from Ncut was also variable, as evidenced by the mean/standard deviation 

of pairwise NMI between any two of the 100 runs (Table 4). Note this should not come as a 

surprise, since the Ncut algorithm requires a random initialization step during the k-means 

step (i.e., even after k is determined, results are still dependent on how one initializes the 

center locations of the k clusters).

Further, we also computed the NMI between each of the 100 Ncut-derived modularity and 

that from PACE and reported the results in Table 5, which suggests substantial differences 

between the two.

3.8 | Sex differences in RSNs using a PACE-based hierarchical permutation procedure

Because the HCP data set has a better spatial resolution (2 mm3) and thus better suited for 

detecting modularity differences at a granular level (Van Essen et al., 2012, 2013), we 

demonstrate here that the stability of PACE makes it possible to pinpoint modularity 

differences between males and females in the HCP data set, while minimizing potential 

confounding influences of age. As PACE uses a hierarchical permutation procedure to create 

trees, controlling for multiple comparisons is straightforward. Here, if two modular 

structures exhibit significant differences at each of the m most-local levels of modular 

hierarchy (each of them controlled at 0.05), collectively it would yield a combined false 

positive rate of 0.05 to the power of m. For the actual permutation procedure, we first 

computed the NMI between the two PACE-derived modular structures generated from the 

367 males and the 453 females in the HCP data set. Then, under the null hypothesis (no sex 

effect), we randomly shuffled subjects between male and female groups and recomputed the 

NMI between the permuted groups across all three levels of PACE-derived modularity. This 

shuffling procedure was repeated 10,000 times and the resampled NMI values were 

recorded.

By ranking our observed NMI among the re-sampled 10,000 NMI values, we detected 

significant sex differences in modularity starting at the first-level (p values: < 1e-04, 1e-04, 

and 1.4e-03 for hierarchical level 1–3, respectively; a combined p value would thus be in the 

scale of 10−11). By contrast, a similar strategy to detect sex effect using any of the Q-based 

methods failed to identify significant differences in the two sex-specific modular structures. 

Figure 7 visualizes the PACE-identified modular structure sex differences (highlighted using 

blue arrows and rectangles) in HCP.
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Figure 7 shows sex differences primarily in the bilateral temporal lobes, which was not 

detected using Q-based methods. These differences extended to the hippocampus and 

amygdala, which in females, were part of the green module, and in males formed part of the 

red module.

Last, to validate these modularity findings, we further replicated our hierarchical 

permutation procedure using a subset of F1000 in the age range of 20–30 (319 females at 

23.25 ± 2.26 years of age and 233 males at: 23.19 ± 2.35), with results yielding not only 

visually highly similar PACE modularity (despite that F1000 and HCP are based on 

completely different brain parcellation techniques), but also similar sex differences (Figure 

8; statistically significant at PACE level 1; p = .0378) in the limbic system (including the 

hippocampus) and the frontotemporal junction (including the pars opercularis as part of the 

inferior frontal gyrus), here primarily lateralized to the right hemisphere.

4 | DISCUSSION

In this study, we proposed PACE, a novel way of understanding how anticorrelations help 

define modularity of the resting-state fMRI connectome. The benefit function to be 

optimized exploits the intuition that a higher probability of an edge being anticorrelated 

indicates a higher probability of it connecting regions in different modules. Importantly, 

PACE permits a symmetric equivalent dual form, such that it can be equally conceived as 

placing edges that are most consistently positive within modules. Thus, PACE is intrinsically 

symmetrized.

Conventional Q-maximization methods take a variable approach at negative edges. For 

example, many studies to date simply ignore anticorrelations by setting any values below a 

threshold (usually positive) to be zero (Sporns & Betzel, 2016), while others have proposed 

to down-weight negative edges in a somewhat heuristic fashion. The PACE method offers a 

novel and theoretically advantageous interpretation of left-tail fMRI networks, as 

traditionally, the left-tail network, that is, those formed by negative edges alone, has been at 

times considered to be weak correlations that may “compromise” network attributes. For 

example, Schwarz and McGonigle (2011) argued that the left tail networks may not be 

biologically meaningful, despite noting that some connections were consistently observed in 

the negative-most tail networks, both with and without global signal removal. Schwarz and 

McGonigle (2011) thus recommended a “soft thresholding” approach be taken by replacing 

the hard thresholding or binarization operation with a continuous mapping of all correlation 

values to edge weights, suppressing rather than removing weaker connections and avoiding 

issues related to network fragmentation.

Rather than taking an approach that interprets the magnitude of correlations as the strength 

of connectivity, PACE determines the probability of a correlation being positive or negative. 

Interestingly, PACE can also be thought of as a different way of binarizing, with a “two-

way” thresholding at zero. Although thresholding at a different value is possible, it would 

compromise the equivalence of the PACE dual forms. Indeed, one could theoretically 

generalize PACE by setting pα ±
i, j to compute the probability of ei, j being larger or smaller 
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than an arbitrary threshold α. However, in the case of a positive α, the left tail is no longer 

strictly anticorrelations.

To validate PACE, we used full rather than partial correlations. We chose this method 

because recent literature has suggested that in general, partial correlation matrices need to be 

very sparse (Peng, Wang, Zhou, & Zhu, 2009), and partial correlations have a tendency to 

reduce more connections than necessary. In dense networks such as fMRI-based brain 

networks, partial correlations have not been shown to be necessarily better than the Pearson 

correlation. Thus, partial correlations are often used in small networks that (a) have small 

numbers of connections or (b) have been forced to be sparse by introducing a penalty term 

during whole-brain network generation (Lee, Lee, Kang, Kim, & Chung, 2011).

Following current practice in the literature, we compared PACE to Q maximization based 

modular structures in both the HCP and F1000 data sets using the default setting in the BCT 

toolbox (the Louvain method). Notably, for Q-maximization, we observed more variable 

modular structure, not only across different Q-based formulations (right tail, left tail, 

absolute value, and symmetric and asymmetric combined), but also across multiple runs 

within each formulation.

A secondary analysis further applied PACE to the investigation of potential sex differences 

in the resting functional connectome. Note, while sex differences have been reported in the 

structural connectome of the human brain (e.g., Szalkai, Varga, & Grolmusz, 2015), few 

studies have examined sex differences in the functional connectome in healthy individuals, 

and no studies to our knowledge have examined sex differences in higher-level connectome 

properties such as network modularity. Previously, one large study (Biswal et al., 2010) 

examined the functional connectome of the F1000 data set using three methods: seed-based 

connectivity, independent component analysis (ICA) and frequency domain analyses. Across 

the three analytic methods, they found consistent effects of sex, with evidence of greater 

connectivity in males than females in the temporal lobes, more so in the right hemisphere, 

and particularly when using ICA. Our results (Figure 8) are consistent with these reported 

findings.

Using the HCP data set, our study also revealed higher-level sex- specific connectome 

modularity differences in the temporal lobes, including the middle temporal gyrus, 

amygdala, and hippocampus. The amygdala (Cahill, 2010) and hippocampus (Addis, 

Moscovitch, Crawley, & McAndrews, 2004) are important for emotional and autobiographic 

memory, while previous studies have reported sex differences in their activities in this 

context (Davis, 1999; Seidlitz & Diener, 1998; St. Jacques, Conway, & Cabeza, 2011; 

Young, Bellgowan, Bodurka, & Dre- vets, 2013). In line with these findings that likely 

reflect differential, sex-specific cognitive strategies for recalling memories related to self, we 

found that in female, the amygdala and hippocampus are within the module that also 

contains the default mode network, whereas in males they belong to the module largely 

consisting of the visual and somatomotor networks. It is also consistent with Damoiseaux, 

Viviano, Yuan, and Raz (2016), which found that females had greater connectivity between 

the hippocampus and medial PFC than males, and Kogler et al. (2016) which found that 

females had greater connectivity between the left amygdala and left middle temporal gyrus 
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than males. These medial prefrontal and lateral temporal regions form part of the brains 

default mode network (Fox et al., 2005). Thus, these recent and preliminary findings may 

reflect stronger coupling within the default mode network and between the amygdala and the 

default mode network in females than in males, supporting previous reports of greater 

regional homogeneity in the right hippocampus and amygdala in females than males (Lopez-

Larson, Anderson, Ferguson, & Yurgelun- Todd, 2011).

5 | LIMITATIONS AND FUTURE DIRECTIONS

First, we note that the proposed PACE framework is based on the estimation of edge 

positivity/negativity frequency, which encodes details of functional co-activation/

antiactivation. Unlike Q-based methods that encode such details using correlation 

magnitudes, PACE procedure discards edge weights, which may be part of the reason why it 

yields more stable results by discarding otherwise useful details and reducing accuracy. 

However, a counter argument can also be made in that a majority of noisy features tend to be 

close to zero with arbitrary signs; thus Q-based methods that employ thresholding can 

simply remove these noisy features and probably yield more stable results (although this is 

not supported by our thresholding-binarization experiments in Section 3.6).

Further, the idea that correlation magnitudes always encode meaningful details is also not 

universally accepted in the imaging community, as evidenced by studies that instead adopted 

a thresholding-binarization approach. For example, in (van den Heuvel et al., 2017), the 

authors extensively tested a proportional threshold (PT) approach that “includes the selection 

of the strongest PT% of connections in each individual network, setting all (in the binary 

case) surviving connections to 1 and other connections to 0” in order to “remove spurious 

connections and to obtain sparsely connected matrices, a prerequisite for the computation of 

many graph theoretical metrics.”

Second, with the PACE benefit function cast as a difference between inter-modular versus 

intra-modular mean edge negativity, the optimization problem is non-deterministic 

polynomial-time hard or NP- hard and thus the global solution is not computable in realistic 

terms. Thus, we instead used a top-down hierarchical bifurcating solver that was previously 

extensively tested in PLACE. Despite this limitation, we (a) outlined a theoretical 

connection between PACE and the Ising model, demonstrating that the PACE algorithm is a 

maximum likelihood estimation algorithm, (b) showed that PACE results were robust and 

insensitive to multiple runs while recovering known RSNs, and (c) showed that PACE-

derived number of communities is not restricted to powers of 2, due to a permutation 

procedure that constructs the null distribution of the observed data allowing us to determine, 

at each branch, if further bifurcation is statistically meaningful.

Although the novel PACE-based symmetrized functional modularity is shown to be a 

powerful and mathematically elegant approach to understanding anticorrelations in fMRI 

connectomes, it cannot be computed without robust estimates of edge negativity/positivity 

frequencies, and thus there may be instances where Q yields more biologically meaningful 

results. Here, we tested PACE using large-N cohorts of HCP and F1000 functional 

connectomes. Although theoretically feasible, individual-level PACE would require multiple 
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runs for each individual or alternatively a completely different mathematical formulation 

(e.g., noncorrelation based, see below) for estimating these frequencies.

Along this line, we note that recently several more sophisticated approaches for rigorous null 

modeling of correlation matrices and for multilayer multiscale Q maximization have been 

proposed (Bazzi et al., 2016; Betzel, Fukushima, He, Zuo, & Sporns, 2016; Betzel et al., 

2015; MacMahon & Garlaschelli, 2015). For example, in MacMahon and Gar- laschelli 

(2015), the authors used random matrix theory to identify nonrandom properties of empirical 

correlation matrices, leading to the decomposition of a correlation matrix into a “structured” 

and a “random” component. While beyond the scope of this study, we note that (a) such a 

decomposition requires strong assumptions that have been criticized and may not hold for 

the human brain, (b) PACE extracts modularity given some estimation of functional co-

activation/antiactivation via edge positivity/negativity, which can be based on time series 

correlation (an approach we adopted here due to its conventional popularity), based on more 

advanced null modeling as in this cited study, or based on other information-theoretical 

approaches that we are currently exploring and are completely noncorrelation-based. Thus, 

individual subject-level PACE becomes possible.

Last, a new multi-scale modularity maximization approach has been recently investigated 

that seeks to generalize the Q modularity metric, and is thus likely to outperform the Q 
methods we studied here. However, in contrast to the simplicity of the PACE model (that 

does not require any parameter tuning) and in addition to the several caveats and nuances of 

the existing Q methods, this multi-scale approach introduces additional resolution parameter 

(γ) that needs to be further tuned (a range from 10−2.0 to 100 was studied in Betzel et al., 

2015)

Notwithstanding the several limitations of correlation-based PACE noted above, we 

demonstrated that testing specific effects (e.g., sex) can be achieved with careful permutation 

testing while controlling for other variables (such as age), as in our secondary analyses 

showing significant sex effects in the temporal lobes. Last, a recent study has utilized the 

rich data set provided by the HCP to develop a new multimodal method for parcellating the 

human cerebral cortex into 180 areas per hemisphere (Glasser et al., 2016). This semi-

automated method incorporates machine-learning classification to detect cortical areas. It 

would be interesting to apply PACE to this new parcellation once the classifier becomes 

publicly available.

6 | CONCLUSIONS

This methodological report outlines a novel PACE framework that complements the existing 

Q-based methods of defining modularity for brain networks in which negative edges 

naturally occur. When applied to the HCP and the F1000 data sets, we showed that PACE 

yielded stable reproducible results that are consistent with those derived from existing 

methods, providing evidence for convergent validity. Furthermore, given the high reliability 

of this new method, we have been able to demonstrate sex differences in resting state 

connectivity that are not detected with traditional methods.
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FIGURE 1. 
Simulation study for PACE. (a) A 100 × 100 5-community edge-negative probability map 

was generated, where each module has 20 nodes. Within-community, the edge negativity 

value is uniformly randomly selected from 0 to 0.5 and between-community, the value from 

0.5 to 1; (b) three-level PACE was computed and eight communities were generated; (c) 

using 1,000 permutations randomly exchanging edge positivity with negativity, we 

constructed the null distribution of Ψ, using which we tested the significance of each 

bifurcation. For the four possible bifurcations at the third-level PACE, only one was 

significant (significant bifurcations highlighted in blue), thus yielding a total of five 

modules, each of which matches the corresponding module in the ground truth (highlighted 

by the red square; from top to bottom, module correspondence is 3, 5, 4, 1, 2); (d) the 

performance of PACE in this toy example under different noise levels (L = 0.1, 0.3, 0.5, 0.7, 

and 0.9; the exact procedure of how L is applied is discussed in the Supporting Information) 

[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2. 
Stability of PACE as a function of the number of subjects used in estimating edge negativity 

(x axis; N = 50–900 for F1000 and N = 50–800 for HCP) using a bootstrapping procedure. 

For each N, we generated 1,000 copies (random sampling with replacement) and computed 

the NMI between each of the 1,000 corresponding PACE modular structures and that derived 

from the full sample. y axis plots the mean of these 1,000 NMI values, for each N and each 

of PACE levels [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3. 
Constructing the PACE null model in HCP. (a) Original HCP edge-negativity frequency 

map; (b) generating 1,000 samples of the same map under the null hypothesis, by randomly 

permuting the edge positivity/negativity pair (i.e., for each element of the matrix, its edge-

negativity value p is randomly reassigned to 1 − p with a probability of 50%); (c) Testing the 

significance of each PACE bifurcation in HCP up to the fourth-level tree structure. The ψ 
values achieved by the original data are shown at each bifurcation point, along with their 

statistical significance. (d) Histograms of the 1,000 PACE benefit function ψ values 

generated under the null model for each level. Only bifurcations with observed ψ values 

ranked in the top 50 (with respect to the 1,000 null-model values from the same PACE level) 

is considered “significant” (blue lines in c). At the fourth level, only one out of eight 

possible bifurcations was meaningful, resulting in nine final communities (C1-C9). (e) 

Rearranged matrix to show how these communities (C1-C9) are formed from level 1 to level 

4 [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4. 
Representative modular structures generated using different methods for the HCP data set. 

Regions coded in the same color (out of four: green, blue, red, and violet) form a distinct 

community or module. Note that unlike F1000, which uses structure parcellation to partition 

networks into nonoverlapping communities, HCP utilizes an ICA-based parcellation, which 

allows components (modules) to overlap (Sporns & Betzel, 2016), resulting in regions with 

mixed colors (e.g., yellow) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5. 
Visualization of randomly selected 3-community and 4-community Q maximization-derived 

modular structures in HCP, demonstrating the suboptimal reproducibility with Q 
maximization. For comparison, the first-level 2-community and second-level 4-community 

PACE results are also shown [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6. 
Mean and standard deviation of pair-wise similarity metric NMI, as a function of the 

threshold (x axis, as a fraction of the maximal value in the mean group connectome), 

between the modularity extracted using Q-based thresholding-binarizing and the weighted 

Q- Comb-Sym method or the Q-Comb-Asym method for F1000 (top) and HCP (bottom) 

[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7. 
Visualization of PACE-identified sex-specific resting-state network (RSN) modularity in 

females (left) and males (right) from the HCP data set. Using permutation testing, sex-

specific modularity differences are confirmed to be statistically significant throughout the 

entire PACE modular hierarchy starting at the first level. Here, the results are visualized at 

first-level PACE, yielding two modules coded in red (module 1) and green (module 2). As 

HCP utilizes an ICA-based parcellation, modules thus overlap, in this case resulting in some 

regions colored in yellow [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8. 
Visualization of PACE-identified RSN modularity and its sex differences between females 

(left) and males (right) from the F1000 data set. The difference in spatial resolutions 

notwithstanding, note the visually highly similar PACE-derived modularity in HCP (Figure 

7) and F1000, even though these two data sets utilize completely different brain parcellation 

techniques [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1

Summarizes the six Q-based methods, as implemented in the BCT toolbox, tested and compared in this study 

(Betzel et al., 2016; Rubinov & Sporns, 2011; Schwarz & McGonigle, 2011)

Method Equation

Weighted
version

Q-Comb-
Sym Q = C+Q+ − C−Q− C+ = C−

Q+ = f W i j
+ W i j

+ =
W i j if W j j > 0

0 otherwise

Q− = f W i j
− W i j

− =
−W i j if W i j < 0

0 otherwise

Q-Comb-
Asym Q = C+Q+ − C−Q− C+ ≠ C−

Q-Positive-
only Q = f W i j

+ W i j
+ =

W i j i f W i j > 0
0 otherwise

Q-Amplitude

Q = f |W i j| |W i j| =
W i j i f W i j > 0

−W i j otherwise

Q-Negative-
only Q = f W i j

− W i j
− =

−W i j i f W i j < 0
0 otherwise

Binarizing Thresholding
Q = f Bi j Bi j =

1 i f W i j > thres

0 otherwise
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TABLE 3

For each Q-based method, this table summarizes the pair-wise NMI’s mean and standard deviation between 

any of the repeated 100 runs and the second-level PACE-derived modularity

Method F1000 HCP

Q-Comb-Sym 0.725 ± 0.026 0.576 ± 0.051

Q-Comb-Asym 0.705 ± 0.043 0.603 ± 0.047

Q-Positive-only 0.740 ± 0.061 0.539 ± 0.035

Q-Amplitude 0.606 ± 0.064 0.235 ± 0.027

Q-Negative-only 0.170 ± 0.013 0.113 ± 0.017
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