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ABSTRACT: In-cell distance determination by electron paramagnetic resonance (EPR)
spectroscopy reveals essential structural information about biomacromolecules under
native conditions. We demonstrate that the pulsed EPR technique RIDME (relaxation
induced dipolar modulation enhancement) can be utilized for such distance
determination. The performance of in-cell RIDME has been assessed at Q-band using
stiff molecular rulers labeled with Gd(III)-PyMTA and microinjected into Xenopus laevis
oocytes. The overtone coefficients are determined to be the same for protonated aqueous
solutions and inside cells. As compared to in-cell DEER (double electron−electron
resonance, also abbreviated as PELDOR), in-cell RIDME features approximately 5 times
larger modulation depth and does not show artificial broadening in the distance
distributions due to the effect of pseudosecular terms.

Electron paramagnetic resonance (EPR) spectroscopy
provides the means to determine distances between

magnetically coupled electron spins. By combination of pulsed
EPR techniques with site-directed spin labeling, distances in
the range up to 8 nm, and under the very special condition of a
perdeuterated biomacromolecule up to 16 nm, can be
determined.1−10 Distance determination is based on the
measurement of the dipolar coupling frequency, ωdd, which
is inversely proportional to the cube of the distance between
two magnetically coupled spins and can be performed in any
kind of environment, including living cells. Because most cell
components are diamagnetic, EPR-based distance determi-
nation inside cells is virtually background-free. Double
electron−electron resonance (DEER or PELDOR)11,12 is the
commonly used technique to perform such in-cell distance
determination.13−19 In-cell EPR distance determination puts
tight requirements on spin labels in terms of toxicity and
stability. Complexes of Gd(III) with chelating ligands are ideal
candidates for in-cell EPR and feature low toxicity, high
stability, suitable spin relaxation times, and no orientation
selection.18,20−25 Despite all these favorable properties of
Gd(III)-based spin labels, conventional Gd(III)−Gd(III)
DEER with rectangular pulses is still not the ideal technique
for in-cell distance determination because of its low
modulation depth and artifacts at short distances, e.g., below
3.4 nm if Gd(III)-PyMTA is used as the spin label.17,18,26,27

Though it is possible to increase the modulation depth and to
reduce the artifacts at short distances by using chirp pulses28

and a dual-mode cavity,29 these improvements can be achieved
only with an additional comprehensive and expensive equip-
ment of the EPR spectrometer with a high-power microwave
amplifier, an arbitrary-waveform generator, a broad-band, or a
dual-mode cavity.
Alternatively, the downsides of conventional Gd(III)−

Gd(III) DEER can be overcome in a related experiment
abbreviated RIDME (relaxation-induced dipolar modulation
enhancement).30−32 RIDME is a single-frequency technique
and makes use of relaxation-induced spin flips, whereas DEER
is a two-frequency technique which detects at the observer
frequency while flipping coupled spins in a controlled way by a
π-pulse at the pump frequency. Thus, RIDME is technically
less demanding than DEER and has no limitations with respect
to the excitation bandwidth. As an example, consider a
rectangular pump pulse of 24 ns (excitation bandwidth of 40
MHz), which flips only a small part of the spins out of the 2
GHz-broad spectrum of Gd(III). While the contribution to the
DEER signal is determined by this part of excited Gd(III)
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spins, the contribution to the RIDME signal is determined by
the spins from the entire spectrum, which flip because of
relaxation. Consequently, the modulation depth of in vitro
Gd(III)−Gd(III) RIDME is increased by a factor of 10
compared to in vitro Gd(III)−Gd(III) DEER.26,33−35 These
features of RIDME can also be beneficial for distance
measurements inside cells. While the performance of Gd-
(III)−Gd(III) RIDME has recently been demonstrated for
model systems in deuterated solvents at Q- and W-band
frequencies,33−35 the in-cell application remained elusive. To
the best of our knowledge, the only reported in-cell RIDME
experiment was for trityl spin labels, which are S = 1/2 systems
and have very different relaxation properties as compared to
Gd(III) complexes.36 Here, we utilize stiff molecular rulers
spin labeled with a Gd(III)-PyMTA complex (Figure 1A,B)
and demonstrate that the 5-pulse dead-time free RIDME
sequence32 (Figure 1C) is suitable for in-cell distance
measurements between Gd(III)-based spin labels.

In-cell RIDME implies that the measurement is performed
in protonated media, which results in shorter relaxation times,
as compared to deuterated solvents. Additionally, RIDME
features a steeper signal decay than DEER because of the
hyperfine spin diffusion. Therefore, accurate choice of
experimental conditions with respect to relaxation and spin
diffusion is crucial to realize in-cell RIDME. The measurement
of relaxation times for Gd-ruler-3.0 in H2O/glycerol (8/2 by
volume) were performed in the temperature range between 10
and 30 K (Figure S1). The phase memory time decreases from
1.4 to 0.8 μs, and the ratio T2/T1 increases from 0.02 to 0.09
upon increasing the temperature. Though the highest ratio T2/
T1 is favorable for RIDME, we performed all measurements at
10 K to have the longest phase-memory time. The pulse
lengths were set at 8 and 16 ns for

2
π and π, respectively. The

mixing time of 8 μs provided a reasonable trade-off between
the steepness of the RIDME background and the dipolar
modulation depth. No proton electron spin echo envelope
modulation (ESEEM) was observed for RIDME in protonated
aqueous solution (the 1H nuclear frequency is approximately

48 MHz at 1.2 T). Neither was nuclear ESEEM observed from
hyperfine and nuclear quadrupolar interactions with nitrogen
atoms of the PyMTA ligand. Thus, no suppression of ESEEM
effects was required. Consequently, the experimental RIDME
data were processed as measured. Figure 2 shows the results of

in vitro RIDME measurements in frozen protonated aqueous
solutions (8/2 mixture of H2O and glycerol) for two molecular
rulers that bear Gd-PyMTA as the spin labels with distances of
2.1 and 3.0 nm between the two Gd(III) ions.37−39 The
RIDME form factors display modulation depths of 15% and
21% and visible oscillations, which indicate narrow distance
distributions.
For determination of the interspin distances from the

RIDME data, it was taken into account that relaxation-induced
spin flips with Δm ≥ 1 are possible for Gd(III) ions which
have S = 7/2. Thus, apart from the fundamental frequency of
the dipolar coupling ωdd, which corresponds to spontaneous
spin flips with Δm = 1, overtones of this fundamental
frequency occur, which originate from spin flips with Δm > 1.
It has been shown for Gd(III) ions that only the first two
overtones, i.e., 2ωdd and 3ωdd, contribute significantly to the
RIDME form factor and that the overtone fractions can be
assumed constant for distances above 3 nm, but they may vary
if the distance is shorter.35

The RIDME data were processed with the OvertoneAnalysis
software package, which explicitly includes the overtone
fractions into the kernel function to extract the distance
distribution by the Tikhonov regularization procedure.35 The
fractions, which are represented by the coefficients P1, P2, and
P3 (for the fundamental frequency ωdd and its overtones at
2ωdd and 3ωdd, respectively), were determined by their
systematic variations toward a narrow single-peak distance
distribution, as is expected for the studied Gd-rulers.26,35 We
find the following overtone coefficients [P1 P2 P3]: [0.68 0.21
0.11] for Gd-ruler-2.1 and [0.4 0.3 0.3] for Gd-ruler-3.0. The
sets of coefficients for the Gd-rulers in the protonated solution
are different from the ones determined in the deuterated
solution (cf. [0.8 0.2 0.0] for Gd-ruler-2.1 and [0.51 0.40 0.09]

Figure 1. Structural formulas of Gd-ruler-2.1 (A) and Gd-ruler-3.0
(B). (C) Dead-time free RIDME pulse sequence.

Figure 2. RIDME form factors (left) and corresponding distance
distributions (right) obtained from frozen aqueous solutions of Gd-
ruler-2.1 (A) and Gd-ruler-3.0 (B) in H2O/glycerol (8/2 by volume).
Gray areas in the right panels show the uncertainty range (as defined
in the Supporting Information) in the distance distributions.
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for Gd-ruler-3.0).35 From the comparison of the overtone
coefficients for different solutions and different Gd-rulers, two
observations follow: (i) Upon a decrease of the Gd(III)−
Gd(III) distance but staying with the same solvent, P1
increases while P2 and P3 decrease.35 (ii) For the same
Gd(III)−Gd(III) distance but changing from a protonated to a
deuterated solvent, P1 increases and P3 decreases (P2 stays
about the same). The distance distributions for both molecular
rulers in aqueous solutions (Figure 2, right panel) were
determined with the optimized overtone coefficients. The
obtained distances are narrow and centered at 2.1 and 3.0 nm,
in perfect agreement with the expectation.35

The origin of the different overtone coefficients in
deuterated and protonated solutions still has to be investigated.
For the moment, it is worth noting that some artifacts are
possible in the RIDME experiment, which might affect the
calibration of the overtone fractions. In particular, the echo
crossing at zero time is very difficult to remove perfectly, and
this might interfere with the calibration of the overtone
fractions. Thus, the difference of these fractions between
protonated and deuterated samples should be verified on a
larger set of samples to be considered as an established fact.
After the proof-of-principle RIDME experiments in proto-

nated media had been performed, Gd-ruler-3.0 was measured
both in cell extract and inside oocytes of Xenopus laevis. The
redox stability of Gd(III)-based spin labels allows for long
incubation times.18,39 Thus, Gd-ruler-3.0 was incubated in the
cell extract and inside oocytes for 2.5 h prior to shock freezing
the sample for distance determination by RIDME. The form
factors and the corresponding distance distributions are shown
in Figure 3. In both cases at least one oscillation is clearly

visible in the form factor. The accurate measurement of the
second and further weak oscillations in the in-cell RIDME data
is difficult because of the lower signal-to-noise ratio. The
modulation depth of the in-cell measurement (13%, Figure
3B) is smaller than in the aqueous solution (21%, Figure 2B)
and in cell extract (17%, Figure 3A), which is most likely due
to the endogenous Mn(II) present in the cells (approximately
10 μM).18 Because endogenous Mn(II) ions contribute to the

intensity of the RIDME signal but not to the modulation
depth, the latter becomes diminished in in-cell measurements
as compared with measurements in H2O/glycerol and in cell
extract, in full analogy with in-cell DEER.18 The in-cell RIDME
data for Gd-ruler-3.0 was analyzed using the same overtone
coefficients as found for the protonated aqueous solution (vide
supra). The resulting distance distribution is in agreement with
the distance distribution determined in aqueous solution. This
suggests that the overtone coefficients determined with a
protonated aqueous solution can be used to determine
Gd(III)−Gd(III) distance distributions for both in-extract
and in-cell RIDME measurements.
In general, in vitro RIDME measurements applied to

Gd(III) spin-labeled compounds provide larger modulation
depths and more accurate distance distributions than in vitro
DEER measurements.34,35 In-cell measurements are performed
under the challenging conditions of a protonated environment.
In the presence of protons, the relaxation processes become
faster and the hyperfine spin diffusion stronger. This results in
a faster decay of the RIDME signal and shortens the length of
the dipolar evolution time trace. If the experimental settings
are chosen to maximize the length of the dipolar evolution
time trace, i.e., low temperature and short mixing time, a
RIDME time trace of at least 2 μs can be recorded, be it at the
cost of the modulation depth. In this case, the modulation
depths of in-cell and in vitro RIDME are in the range of 13−
21%, which is still less than the modulation depth of 50% for
RIDME measurements in deuterated solutions33 but is a
significant improvement over an in-cell DEER measurement
using the same Gd-ruler-3.0 (a modulation depth of about
4%).18

The overtone coefficients in a protonated aqueous solution
and inside cells are the same for Gd-PyMTA spin labels at a
given interspin distance. The distance distributions extracted
from RIDME do not contain artifacts caused by pseudosecular
terms, as opposed to DEER.20,26 We find that the overtone
coefficients for aqueous solutions are significantly different for
Gd(III)−Gd(III) distances of 2.1 and 3.0 nm, in agreement
with what was reported for deuterated solvents.35 This implies
that for broad distance distributions, which span distances
below and above 3 nm, the dependence of the overtone
coefficients on the interspin distance has to be included in the
processing of the RIDME data.
In conclusion, we demonstrated for the first time the

performance of Gd(III)−Gd(III) RIDME for distance
measurements inside cells. It is suggested that the overtone
fractions remain the same for samples in aqueous solution and
inside cells, being primarily determined by the presence of
protons in the medium. In the current state, Gd(III)−Gd(III)
RIDME can be applied only to distance distributions where the
overtone fractions can be assumed constant. Further
methodological developments are required to account for
variable overtone fractions during data processing and also to
slow the decay of the RIDME signal during data acquisition.
Along these lines, current developments of other Gd(III)-
based spin labels40−45 and the application of shaped pulses46

are very promising. Giving its inherent advantages, i.e., precise
distance determination and large modulation depth, RIDME
has the potential to become a method of choice for in-cell
distance measurements.

Figure 3. RIDME form factors (left) and the corresponding distance
distributions (right) for Gd-ruler-3.0 in cell extract (A) and in oocytes
(B). Gray areas in the right panels show the uncertainty range (as
defined in the Supporting Information) in the distance distributions.
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