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Abstract

The type | interferon pathway has been implicated in the pathogenesis of a number of rheumatic
diseases, including systemic lupus erythematosus, Sjogren syndrome, myositis, systemic sclerosis,
and rheumatoid arthritis. In normal immune responses, type | interferons have a critical role in the
defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate
persistent activation of the type | interferon pathway. Genetic variations in type | interferon-related
genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in
type | interferon responses seen between patients within a given disease. Inappropriate activation
of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to
the dysregulation of the type | interferon pathway in a number of rheumatic diseases.
Theoretically, differences in type | interferon activity between patients might predict response to
immune-based therapies, as has been demonstrated for rheumatoid arthritis. A humber of type |
interferon and type I interferon pathway blocking therapies are currently in clinical trials, the
results of which are promising thus far. This Review provides an overview of the many ways in
which the type I interferon system affects rheumatic diseases.

Overactivity of the type | interferon pathway has been observed in several rheumatic
conditions, including both monogenic diseases (for example, Aicardi-Goutieres syndrome
(AGS)1) and polygenic diseases (for example, systemic lupus erythematosus (SLE)2~4).
Human genetic studies of rheumatic diseases have identified numerous disease-risk genes
that function within the type I interferon pathway. In many cases, these genetic variations
augment the function of type | interferons. Data suggest that heterogeneity in type |
interferon pathway activation and genetic make-up contribute to the clinical heterogeneity
observed in rheumatic diseases®. Given that the type | interferon pathway is deeply entwined
with the pathogenesis of multiple rheumatic diseases, a robust effort is underway to
determine whether type | interferon activity might be a predictor of treatment response, or
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whether the type | interferon pathway could be targeted by treatment. It is attractive to think
that differences in type I interferon-related genes and pathway activation between patients
might lead to rational selection of immunomodulatory therapy.

In this Review, we discuss the role of the type | interferon pathway in rheumatic diseases,
focusing on the clinical implications. We briefly discuss type | interferon biology, followed
by the interferon signature and other measurements of type | interferon in rheumatic
diseases. We also examine genetic factors related to the type | interferon pathway, focusing
on common gene variants associated with rheumatic disease, as well as the rare monogenic
interferonopathies. We review current data regarding type | interferons in SLE, Sjogren
syndrome, myositis, systemic sclerosis (SSc), and rheumatoid arthritis (RA). Finally, we
consider treatments targeting type | interferons and the type | interferon pathway in
rheumatic diseases.

Type | interferon biology

Interferons are functionally related cytokines that have important roles in infection, cancer,
inflammation and autoimmunity. The antiviral properties of interferons were identified more
than 50 years ago®, and the roles of interferons in cell survival, proliferation, differentiation
and activation have since been highlighted and are reviewed elsewhere’. There are three
major types of interferon: type I, type Il and type I1l. Each type signals via a specific cell
surface receptor complex. The type | interferons in humans include twelve interferon-a
(IFNa) subtypes, IFNB, IFNw, IFNx and IFNe (reviewed elsewhere8). Each subtype is
produced by particular cells in response to specific stimuli. In this Review, we will focus on
IFNa and IFNB, the most extensively studied type | interferons in rheumatic diseases.

Type | interferon induction

Many cells can produce type I interferons (FIG. 1); plasmacytoid dendritic cells (pDCs) are
the predominant producers of IFNa, whereas many cell types (for example, fibroblasts,
epithelial cells, dendritic cells, phagocytes and synoviocytes) produce IFNp. Production of
type | interferons depends on the cell type and the environmental context. For example,
pDCs constitutively express high levels of interferon regulatory factor 7 (IRF7), which, in
part, enables them to produce relatively high amounts of IFNa910, whereas other cell types
must be ‘primed’ before high levels of type I interferons can be produced. In a steady
state, IFNP is present at physiological levels, which seems to be important for priming cells
for subsequent exposuresi112, Of note, over the past 5-10 years there has been strong
interest in the microbiome and its effect on inflammation and rheumatic diseases.
Interestingly, commensal intestinal flora influence this baseline production of IFNB13.

Type | interferon production can be induced fol-lowing the detection of microbial products
by patternrecognition receptors (PRRS), such as Toll-like receptors (TLRs) or cytosolic
nucleic acid sensors415; for example, lipopolysaccharide (LPS), a microbial cell wall
component, is detected by surface TLR4; endosomal TLRs (TLR3, TLR7, TLRS, and
TLR9) are ligated by nucleic acids delivered to the endosome via immune complexes; and
nucleic acids in the cytosol are detected by sensors such as retinoic acid inducible gene 1
(RIG-I, also known as DDX58), melanoma differentiation-associated protein 5 (MDADS, also
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known as IFIH1) and stimulator of interferon genes protein (STING) (FIG. 1). In normal
immune responses, these events occur after the sensing of pathogen-derived material.
However, PRRs can also detect nucleic acids from endogenous sources (for example, nucleic
acids within nucleic acid-containing antibody complexes, nucleic acids released as a result
of defective nucleic acid metabolism2® or reactivity with endogenous transcripts that contain
virus-like nuclear repeat elements (NREs)1?) and might thereby contribute to the
pathogenesis of rheumatic diseases. Interestingly, activation of the inflammasome can
negatively regulate type | interferon production via the cyclic GMP-AMP synthase (CGAS)-
STING pathway in the context of viral infection!®. In normal conditions, cytosolic double-
stranded DNA (dsDNA) triggers the synthesis of cyclic GMP-AMP (cGAMP) by cGAS,
which activates STING, leading to type | interferon production. However, upon canonical
and non-canonical inflammasome activation, caspase-1 cleaves cGAS and thereby dampens
STING-mediated type | interferon production?8,

Interferon regulatory factors (IRFs) are activated downstream of PRRs, and translocate to the
nucleus, where they function as transcription factors1®. In phagocytes and dendritic cells,
stimulation of TLR3 or TLR4 leads to the activation of IRF3 via the adaptor TIR domain-
containing adaptor molecule 1 (TICAM1, also known as TRIF)20. Activation of cytosolic
nucleic acid sensors (MDADS and RIG-1 by RNA or STING by DNA) also upregulate the
activation of IRF3 (REF. 21), which upregulates expression of /FNB1. The adaptor
mitochondrial antiviral-signalling protein (MAVS) interacts with RIG-I1 and MDAD5 to
facilitate activation of IRF3 in phagocytic and dendritic cells, and of IRF7 in pDCs. In
pDCs, recognition of nucleic acids by TLR7, TLR8 or TLR9 leads to recruitment of the
adaptor protein MyD88, which in turn interacts with IL-1 receptor-associated kinase 1
(IRAK1) and IRAK4 (REF. 22) (FIG. 1b). This signalling complex results in the
phosphorylation of IRFs, such as IRF5 and/or IRF7. The translocation of IRF5 to the
nucleus culminates in the transcription of genes encoding type | interferons, pro-
inflammatory cytokines (IL-6 and TNF) and IL-12p40, whereas IRF7 promotes expression
of type | interferons23.

IFNB production is also stimulated as a result of sig-nalling through TNF receptors
(TNFRs), such as receptor activator of nuclear factor-xB (RANK) and TNFR2. In
macrophages and endothelial cells, TNF induces IFNp production via IRF1, and can also
induce an IFNP autocrine loop that functions in synergy with canonical TNF signals to
induce sustained expression of inflammatory genes and delayed expression of signal
transducer and activator of transcription 1 (STAT1)-dependent interferon stimulated genes
(1SGs)?4 (FIG. 1c). This synergy primes macrophages for increased responses to subsequent
challenges?4. In human endothelial cells, this cascade seems to depend on TNFR2 and
results in the promotion of monocyte recruitment2®. Interaction between RANK and RANK
ligand (RANKL) activates pathways that include TNFR associated factor 6 (TRAF6) and c-
Fos, which promote expression of IFN and can also promote osteoclastogenesis (FIG. 1d).
IFNP promotes the transcription of genes that inhibit c-Fos activity2% and induce nitric
oxide, which inhibits osteoclastogenesis?5.
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Type | interferon signalling

Type | interferons bind to a shared cell surface receptor, the type | interferon receptor
(IFNAR). IFNa and IFNB induce different conformational changes in the cytosolic portion
of the receptor, which enables differential signalling by the two cytokines through the same
receptor28, Upon engagement, IFNAR activates kinases (for example, Janus kinase 1 (JAK1)
and tyrosine kinase 2 (TYK?2) in canonical type | interferon signalling), prompting
phosphorylation, dimerization and nuclear translocation of STAT proteins. The resulting
STAT complexes control distinct gene-expression programmes. For example, the interferon-
stimulated gene factor 3 (ISGF3) complex (composed of STAT1, STAT2 and IRF9) activates
classic antiviral genes. By contrast, STAT1 homodimers induce pro-inflammatory gene
expression, and STAT3 homodimers suppress pro-inflammatory gene expression2®.

IFNa signalling activates antigen-presenting cells, and increases the expression of CD86, as
well as MHC class | and Il molecules on these cells, which provide co-stimulatory signals
and augment antigen presentation, respectively30. Thus, IFNa can bridge the innate and
adaptive immune systems, demonstrating its importance in setting thresholds for self-
reactivity and autoimmunity. IFNP shares many downstream signalling properties with
IFNa., but also has anti-inflammatory and antiproliferative properties. ISG expression is
complex and seems to be cell and context dependent3! (reviewed elsewhere2?). Signalling
pathways that are also triggered by interferon receptor engagement (for example, mitogen-
activated protein kinase (MAPK), nuclear factor-xB (NF-xB) and protein kinase B (RACa
serine/threonine-protein kinase, also known as AKT) pathways) influence the transcription
of 1ISGs and/or translation of ISG mRNA downstream of type | interferon-activated JAK—
STAT pathways32:33, Physiological activation of the type | interferon pathway is even more
complex, as IFNB can function in synergy with TNF, which is produced at early stages
following innate recognition of a pathogen34. Co-stimulation with IFNB and TNF induces a
synergy-dependent delayed antiviral response via an as yet uncharacterized pathway that is
dependent on TYK2, STAT2 and IRF9, but is independent of STAT1 signalling3*. Thus,
various cytokine signalling pathways functioning through different receptors can affect the
outcome of type | interferon signalling.

Measuring type | interferon in blood

Traditionally, the term “interferon signature’ has been used to describe the pattern of
increased expression of >100 type | ISGs in studies comparing the expression of genes in
peripheral blood cells from patients with SLE and controls?=. In addition to being present in
SLE, such a signature has been found in other rheumatic diseases, including Sjogren
syndrome, myositis, SSc and RA35. An important caveat regarding the interferon signature
is that genes that are type I interferon-induced can sometimes also be induced by other
factors. For example, type Il interferons can induce the expression of some of the same
genes as type | interferons, and evidence is accumulating for a circulating type Il interferon
signature in SLES,

Many studies of the interferon signature have examined gene expression in either whole
blood or in peripheral blood mononuclear cells (PBMCs)237. In these approaches, multiple
different cell types are mixed together. Different individuals typically have different
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proportions of immune cell types; thus, a difference in the amount of a measured transcript
reflects a combination of the amount of transcript expressed by each cell type and the
proportion of each cell type in the cellular mixture. This limitation can be partially addressed
by enumerating the proportion of each immune cell type in the sample before study,
although adjusting for these differences in cell numbers with covariates is also challenging
and cannot account for every possibility in the data. To address this issue, individual immune
cell populations can be sorted before lysing the cells and measuring gene expression31:38,
Interestingly, such analysis has shown that different immune cell types from the same blood
sample express different ISGs31. These data suggest a great diversity in the downstream type
| interferon responses of different cell types, and highlight the fact that we are still just
beginning to understand the varied consequences of chronic type I interferon stimulation in
human cellular immunity.

To address the limitations of interferon signature studies, functional assays have also been
used to assess type | interferon activity in large cohorts of patients3® (BOX 1). These
functional assays are sensitive and utilize IFNAR and the downstream gene expression
cascade to detect even very small amounts of type | interferons. To date, many commercial
enzyme-linked immunosorbent assays (ELISAs) and multiplex assays that measure type |
interferon protein levels have proven to be insufficiently sensitive or specific in detecting
type | interferons in human samples®®. However, a new method for detecting type |
interferons was described by Wilson et al. in 2016 (REF. 41) that uses single-molecule array
(Simoa) digital ELISA technology. This method reportedly detects attomolar (femtograms
per milliliter) concentrations of IFNa protein in human samples®!. This methodology is
based on counting individual enzyme-labelled immune complexes captured on paramagnetic
beads in single-molecule arrays#142 and utilizes unique high-affinity anti-IFNa antibodies
isolated from patients with autoimmune polyendocrinopathy—candidiasis—ectodermal
dystrophy (APECED)*3. Additional validation of this technology is anticipated in the future.

Type | interferons in SLE

Disease initiation

Type | interferons have been linked with SLE initiation. Some patients being treated with
recombinant human IFNa for viral hepatitis and haematologic malignancy develop de novo
SLE*445 When IFNa therapy is stopped, the rheumatic symptoms usually improve,
supporting a causal role for type I interferons in the initiation of SLE in some patients*°.
Circulating type | interferon activity is frequently high in unaffected relatives of patients
with SLE and familial correlations in type I interferon activity have been observed*6:47,
suggesting that high levels of type I interferon in the circulation is a heritable risk factor for
SLE. This heritability of high levels of type I interferon activity is shared across patients
with SLE from all ancestral backgrounds*6 and follows a polygenic inheritance pattern. In
longitudinal studies of serum samples from patients before they were diagnosed with SLE,
type | interferon activity increases precipitously in the year before disease onset*8, also
supporting the importance of type | interferon in disease initiation in SLE.
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Genetic factors

Among the SLE-associated loci identified in case—control genetic studies, there is an over-
representation of genes involved in type I interferon signalling, production and response?®.
In general, many of the SLE-associated variants in type | interferon pathway genes are
associated with increased activity in the type | interferon pathway in humans (reviewed
elsewhere®9). Variants have also been associated with increased circulating type | interferon
activity or increased ISG expression®%:51, Genes that are overexpressed in peripheral blood
cells (creating the interferon signature) are not necessarily the same as the genes that are
implicated as genetic risk factors®.

Interferon response factors.—IRFs coordinate type | interferon and 1ISG expression in a
cell-type specific manner (reviewed elsewhere23). IRF5 is involved in the production of both
pro-inflammatory cytokines and type | interferons in innate immune cells®2, and IRF5 also
influences B cell responses downstream of TLR stimuli®3. Human genetic variants in /RF5
have been identified as rheumatic disease susceptibility factors in SLE®#:%5, Sjégren
syndrome®®, SSc57, RA%8 and juvenile idiopathic arthritis (JIA)%°.

In SLE, risk variants of /RF5 are associated with increased circulating type | interferon
activity in patients with SLE; this association is dependent upon the presence of anti-RNA-
binding protein (RBP) or anti-dsDNA autoantibodies89-61. These data suggest that /RF5 risk
variants might be an important factor in the ‘stimulated’ scenario, in which the autoantibody
immune complexes provide a constant endogenous stimulus that synergizes with a
hyperresponsive TLR system, resulting in chronic over-production of type | interferons. The
SLE /RF5risk haplotype is associated with the production of autoantibodies in otherwise
healthy individuals®?, suggesting a potential feed-forward loop. In such a loop, an /RF5risk
variant predisposes individuals to the production of autoantibodies, possibly via
hyperactivity of the TLR pathway in B cells, and the autoantibodies produced can then form
nucleic acid immune complexes that stimulate the overactive TLR system in innate immune
cells. Genetic variants in both /RF7and /RF8have been associated with an increased risk of
SLE556364 and such variants are also associated with altered type | interferon responses in
patients with SLE23:65.66,

Other interferon-related genes.—Beyond the IRF family, a number of other genes
associated with risk of SLE (for example, STAT4, MAVS, IFIH1 (which encodes MDADb)
and PTPNZ2) have also been demonstrated to alter type | interferon pathway
function®0:51.67-69 \/ariants in some of these genes have also been associated with other
rheumatic diseases, for example, STAT4 is associated with Sjégren syndrome’9, SSc’1,
RA’2, psoriasis’ and, possibly, JIA4; JF/H1 is associated with late-onset psoriasis’>; and
PTPNZ22is associated with RA and JIA78.77. Overall, type | interferon activity is clearly
controlled to some degree by genetic factors and is a polygenic trait.

Interestingly, thus far, robust evidence demonstrating gene—gene interactions between
interferon pathway genes (that is, the effect of one gene being modified by one or several
interferon pathway genes) is lacking. Studies that have examined type | interferon in patients
in the context of these risk variants have demonstrated additive effects without evidence for
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either synergy or redundancy to date59-51.65_ |n addition, other factors, such as epigenetic
regulation’®, probably influence the effect of these risk variants.

Tissue expression.—Most studies in SLE have examined circulating type | interferons,
however, the action of type I interferons in the tissue is likely to be important and complex.
Genetic polymorphisms in /FNK (encoding IFN«) are implicated in the pathogenesis of
cutaneous lupus erythematosus, and disease associated single-nucleotide polymorphisms in
IFNK differ between male and female patients’®. Interestingly, type | interferon activity was
frequently increased in the circulation of female patients with such /FNK variants compared
with that in healthy controls’®. However, IFN« was not a major contributor to the type |
interferon activity observed in the circulation of these patients*6:79. The /FNK variants could
instead be influencing type I interferon production by pDCs in the affected skin, and thereby
increasing type | interferon activity in the circulation’®. Keratinocytes from the skin of
patients with cutaneous lupus erythematosus produce more IL-6 in vitro than keratinocytes
from healthy individuals after exposure to TLR agonists or ultraviolet B (UVB) radiation;
this increased IL-6 production seems to be dependent on IFN«80. Such cytokine production
might also contribute to the skin inflammation observed in cutaneous lesions in SLE.

Heterogeneity in SLE

IFNa is the predominant circulating type | interferon in patients with SLE46. Serum IFNa
activity varies widely between patients with SLE, and in 40-50% of patients, serum IFNa
activity is normal6. Therefore, type | interferon is probably not an important pathogenic
factor for all patients with SLE, contributing to the pathological heterogeneity of this
disease. A high degree of functional circulating type I interferon activity is strongly
correlated with the presence of anti-RBPs, such as antibodies to 52 kDa SSA/Ro antigen
(R052, also known as TRIM21) and ribonucleoprotein (RNP), in patients with SLE39. These
autoantibody titres frequently do not change considerably over time, supporting the idea of a
stable subset of patients with SLE who have high levels of type | interferon activity. A study
comparing gene expression in African American and European American patients with SLE
demonstrated that patients from both ancestral backgrounds had a type | interferon signature,
but in African Americans this signature was particularly dependent on the presence of anti-
RBP autoantibodies®L. This finding is interesting as these autoantibodies, particularly anti-
RNP and anti-Sm antibodies, are more common in African American patients than in
European American patients3®, suggesting differences in the molecular pathogenesis of SLE
between ancestral backgrounds.

Case—case genome-wide genetic studies, which com-pare patients with high levels of type |
interferon activity to those with low levels of type | interferon activity, have implicated
additional genes that modulate circulating IFNa activity in patients with SLE>#/. These
studies identified a number of novel loci associated with risk of SLE and high degree of type
| interferon activity that were not identified in case—control studies, including risk loci in
PRKGI, PNP, and ANKS1A>*!. Further bioinformatic analyses suggested that these loci
mediate functional effects in DCs and natural killer (NK) cells®. NK cells cooperate with
DCs to induce IFNa production in SLE®2, The PNP variant is a loss-of-function mutation in
the gene encoding purine nucleoside phosphorylase (PNP), an enzyme involved in purine
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metabolism, that leads to cell-cycle abnormality (a block in S phase entry) and type |
interferon pathway activation in human lymphocytes3. Interestingly, this block in S phase
can be rescued in vitro by providing hypoxanthine and adenosine, supporting the notion that
relative PNP deficiency is the cause of the S-phase block, and suggesting a potential for
personalized therapeutics in patients with SLE who harbour this PP variant83.

Clinical implications

In SLE, the peripheral blood type | interferon signature correlates with disease severity2. In a
cross-sectional study, patients with a prominent peripheral type | interferon signature
fulfilled a substantially higher number of SLE clinical diagnostic criteria and, upon
retrospective review, more commonly had kidney, central nervous system (CNS) and/or
haematologic involvement at some point during the course of their disease?. However, in
longitudinal studies, the interferon signature in blood is relatively stable and cannot be used
to predict SLE disease flares over time8485, The expression of certain chemokines (CXC-
chemokine ligand 10 (CXCL10), CC-chemokine 2 (CCL2), and CCL-chemokine ligand 19
(CCL19)) that are induced by interferons and other cytokines also correlate with disease
activity and might predict risk of flares over time in SLE8®, suggesting that other factors
beyond type | interferon are involved in disease flares. Gene expression studies support this
idea, showing that other non-type | interferon-induced gene signatures, such as the
plasmablast signature, correlated more strongly with disease activity than the interferon
signature3’. Thus, type | interferons might be more important in disease initiation and in the
early phases of disease than in disease flares.

Type | interferon in Sjogren syndrome

Some of the genes associated with increased type | interferon pathway activation in SLE
(such as /RF5and STAT4) are also associated with risk of Sjégren syndrome>6, and a type |
interferon signature has been reported in both the blood and tissues of patients with Sjégren
syndrome®7-89_ In Sjégren syndrome, a peripheral blood type I interferon signature strongly
correlates with the presence of anti-SSA/Ro antibodies®8, which parallels the association
observed between anti-RBP antibodies and the interferon signature in SLE. Thus, despite the
many clinical differences that exist between Sjogren syndrome and SLE, parallels can be
drawn between these two diseases regarding type | interferon pathway activation with
respect to autoantibody associations and background genetics. Although anti-SSA/Ro
antibodies are associated with increased type | interferon activity in patients with either SLE
or Sjogren syndrome, asymptomatic individuals with high anti-Ro antibody titres do not
have high levels of circulating type I interferon activity®°. This finding suggests that other
disease-associated factors must be present in addition to anti-SSA/Ro antibodies to cause a
chronic increase of circulating type I interferonC,

In Sjogren syndrome, a type | interferon signature might help identify clinically meaningful
subgroups of patients. A peripheral blood monocyte type | interferon signature identified a
subgroup of patients with Sjogren syndrome who had high levels of clinical disease activity,
autoantibodies and the expression of B-cell activating factor (BAFF, also known as
TNFSF13)-encoding mRNA in their monocytes®l. OASZ, one of the I1SGs, is a Sjégren
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syndrome risk locus, and disease-associated variants of OASZ result in alternate splicing of
the gene transcript, leading in multiple alternative transcripts that result in a lack of
translational response to type | interferon stimulation®2. The 620W polymorphism in
PTPNZ22is also associated with Sjogren syndrome and with a low expression of 1SGs,
implying the presence of distinct genetic backgrounds among subsets of patients with
Sjogren syndrome that can be defined by type | interferon activity®3. Interestingly,
investigators found that the pattern of expression of RNA-sensing receptors (TLR7, RIG-I
and MDAD5) in monocytes and pDCs from patients with Sjogren syndrome differed
substantially between those who did and did not have a peripheral type | interferon
signature94. This type of differentiation might help identify subsets of patients who will
benefit from therapies targeting these pathways.

In contrast to the type | interferon signature that predominates in the blood in patients with
Sjogren syndrome, a type Il interferon signature predominates in minor salivary gland
(MSG) biopsy samples from such patients®>. Concomitant low expression of IFNa.-encoding
mRNA and high expression of IFN-y-encoding mRNA in MSG tissue is strongly associated
with lymphomagenesis, suggesting that the ratio between these two mRNA species in MSG
biopsy samples can serve as a biomarker for in situ Sjégren syndrome-related lymphoma®.

Type | interferon in myositis

In patients with either dermatomyositis or polymyositis, type I interferon levels are
increased in the circulation and a type | interferon signature is detectable in muscle
tissue35.96.97 Muscle tissue from patients with juvenile dermatomyositis has increased
numbers of infiltrating pDCs and increased expression of the 1ISG M.X1%8 compared with
tissue from healthy controls. Multiple studies have shown an association between type |
interferon in the circulation and disease activity in myositis?6:99.100 These studies provide
stronger evidence for an association between type | interferon activity and longitudinal
disease activity than has been observed in SLE.

Although the genetic basis of inflammatory disease is currently less well described in
myositis compared with SLE, a number of polymorphisms in several genes associated with
increased type | interferon activity in patients with SLE (for example, OPN rs28357094G
and 7NFA-308A alleles) have been associated with high levels of type | interferon activity
in patients with dermatomyositis1®2. Furthermore, type | interferon levels are higher in
patients with dermatomyaositis who have a family history of SLE compared with in those
without a family history of SLE192, which supports the idea of a shared genetic basis for
type | interferon pathway activation in various rheumatic diseases. The presence of anti-RBP
antibodies in patients with myositis, such as anti-SSA/Ro and anti-Sm antibodies, is
associated with high levels of circulating type | interferon activityl03, paralleling that seen in
other rheumatic diseases. Interestingly, the use of TNF inhibitors in patients with myositis1%4
or Sjogren syndromel95 results in increased type I interferon activity, which, in myositis, is
associated with lack of improvement or worsening of disease1%4.

Circulating IFNa is an important contributor to the total functional type I interferon activity
observed in dermatomyositis?; however, some studies support the idea that IFNp also
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contributes to the interferon signature seen in PBMCs from patients with
dermatomyositisl®6. TLR3 stimulation of cultured myoblasts induces the production of
IFNB when combined with IFNy stimulation, and upregulates the expression of HLA class |
moleculesi97. In muscle biopsy samples from patients with polymyositis or
dermatomyositis, immature muscle precursor cells that overexpress HLA class | are a source
of IFNB197. Thus, IFNP from immature muscle precursor cells might contribute to the type |
interferon signature seen in muscle tissue in myositis. A 2015 study of muscle tissue from
patients with dermatomyaositis demonstrated that TLR3 and RIG-1 are preferentially
expressed in the perifascicular fibres, indicating that these type I interferon pathway
components might be involved in the formation of perifascicular atrophy, a hallmark feature
of dermatomyositisi8. In the same study, the investigators found that expression of TLRs
and RIG-I was upregulated in the muscle tissue of patients with dermatomyositis compared
with controls (which included patients with polymyositis, facioscapulohumeral muscular
dystrophy, and patients without neuromuscular disease) and that TLR4 and TLR9 were
expressed mainly in inflammatory infiltrates198, The researchers concluded that endogenous
production of type | interferon in dermatomyositis is generated by pDCs, mainly through the
TLR9 pathway. However, the TLR4 pathway can also contribute to type I interferon
induction?? (FIG. 1a), and as TLR4 was also expressed in the inflammatory infiltrates, it is
conceivable that TLR4 might also contribute to the endogenous type I interferon found in
the muscle of patients. Additionally, non-immune cells that produce IFNp (such as
endothelial cells, FIG. 1c) might also contribute to type I interferon production in myositis.

Type | interferon in SSc

A number of studies have documented increased type | interferon-induced gene expression
in patients with SSc, in both circulating blood cells and in affected lung tissue109-112,
Interestingly, patients with SSc who have antiSSB/Ro antibodies are more likely to have
high levels of type | interferon than patients without these antibodies, resembling
associations seen in myositis, Sjégren syndrome and SLE13. Other autoantibodies have also
been associated with high circulating type | interferon expression in SSc, including anti-U1
RNP and antitopoisomerase autoantibodies'9. This finding suggests that a similar process
of immune complex-mediated type | interferon generation might contribute to the increased
circulating type | interferon levels observed in many rheumatic diseases.

A number of variants in type | interferon pathway genes (for example, /RF5 (REF. 57), IRF7
(REF. 114), /RF8 (REF. 115), TREXI (REF. 116), /RAK1 (REF. 114), and STAT4 (REF.
71)) are associated with SSc. pDCs are also implicated in SSc pathogenesis. In SSc, in
addition to the role of pDCs in type | interferon production, there is a striking and disease-
specific over-production of CXC-chemokine ligand 4 (CXCL4, also known as platelet factor
4) by pDCs, which corresponds with severe skin disease and lung fibrosis!’. CXCL4, a
potent antiangiogenic chemokine that also has profibrotic properties and stimulates the
proliferation of regulatory T cells that have impaired function118-120 is suspected to have a
major role in the vasculopathy of SSc and to influence fibrosis by downregulating AL/ in
endothelial cells and fibroblasts'1’. It is speculated that CXCL4 does not act in isolation11’;
hence other factors, such as alterations in the type | interferon pathway, could function
together with CXCL4 to contribute to SSc pathogenesis. Intramuscular administration of
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recombinant IFNa showed some initial promise in improving or stabilizing skin scores in a
pilot study of patients with diffuse cutaneous SSc12. However, in keeping with IFNa
having a pathogenic role in SSc, a randomized, double-blind, placebo-controlled trial
showed that recombinant IFNa therapy in SSc is ineffective and might in fact be harmful, as
those who received the IFNa treatment showed less improvement in skin scores and greater
deterioration of lung function than the placebo group22.

Type | interferon in RA

A type | interferon signature is detectable in the peripheral blood of patients with RA, and
can be present in the preclinical phase of the diseasel23. The relative level of expression of
ISGs in the circulation in RA is lower than that observed in SLE and other autoimmune
connective tissue diseases3>:124, However, some of the genes associated with increased type
| interferon pathway activation in SLE are also associated with the risk of RA, such as /RF5
(REF. 58), /RAK1 (REF. 125), STAT4 (REF. 72) and PTPN22 (REF. 77). The finding that
particular polymorphisms are associated with the risk of developing a number of rheumatic
diseases supports the idea that there is a shared pathway in these diseases!26.

The presence of pDCs and the expression of ISGs, IFNa and IFNp have been documented
in the synovium of patients with RA127-130_ |ENa positively correlates with TLR3 and
TLRY in the lining and sub-lining of RA synovium. IFNa increases the expression of TLR3
and TLR7 and downstream production of IL-6 and TNF. Additionally, IFNa markedly
potentiates TLR4-mediated production of IL-1p and IL-18 in synovial cells from patients
with RA130, By contrast, IFNp has an anti-inflammatory effect in inflammatory arthritis. In
PMBCs, IFNB can inhibit the production of IL-1p and TNF and can also increase the
production of IL-1 receptor antagonist (IL1Ra) in a dosedependent manner31, IFNB also
dose-dependently increases IL1Ra secretion by synovial fibroblasts and enhances the
secretion of IL1Ra induced by IL1p in synovial fibroblasts and chondrocytes32. Treatment
with IFNP is effective in alleviating arthritis in the collagen-induced arthritis mouse model
of RA133.134 However, in a multicentre, randomized, double-blind,placebo-controlled phase
I1 study, treatment with subcutaneous recombinant IFNp resulted in no improvement in
patients with active RA135,

In RA, type | interferon is potentially a predictive biomarker of response to biologic
therapies. For example, the presence of a pretreatment type | interferon signature reportedly
predicts response to the B cell-depleting therapy rituximab38. In another study, the ratio of
pretreatment IFNP activity to IFNa activity (IFNB:IFNa activity ratio) could predict the
response to anti-TNF therapy in RA37. A larger study from 2016 supported this idea,
finding that the pretreatment serum IFNB:IFNa activity ratio was strongly predictive of non-
response to TNF inhibitors in both discovery and independent replication cohorts138,
Although the reasons for the differences in the relative proportions of IFNa versus IFN in
the circulation are unknown, other studies support the idea that these two type I interferons
exist in different proportions in different rheumatic diseases3?, with IFNa predominating in
the circulation in SLE#6:96 and IFN being relatively more abundant in RA138.139, Reason
for the discrepancy between the finding that IFNP was anti-inflammatory in early functional
studies131-134.140 and the failure of the clinical trial of recombinant IFN treatment!3®, as
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well as the relatively increased IFNp levels observed in the circulation of patients with RA
who are unlikely to respond to anti-TNF therapy!38, is unclear. Given the complexity of type
| interferon signalling regulation (reviewed elsewhere??), the effects of IFN are probably
influenced by the amount, duration and location (for example, the circulation or tissue) of
IFNP expression, and the environmental context.

Monogenic interferonopathies

The gene variants mentioned thus far moderately effect activation of the type I interferon
pathway and/or susceptibility to complex polygenic rheumatic diseases, and it is likely that
combinations of these genetic variations are probably required to predispose to disease.
However, a number of monogenic diseases are characterized by interferon pathway
activation. Interestingly, these diseases are considered to lie on an autoimmune—
autoinflammation spectrum that depends on the driver of dysregulated type I interferon
production41, On the basis of this spectrum, Kim et al.141 have proposed grouping these
conditions into “autoinflammatory’ interferonopathies (those caused by a problem in the
innate immune sensing system), and ‘autoimmune’ interferonopathies (those caused by
immune complex stimulation of endosomal TLRs in B cells and pDCs). Dysregulation can
occur from both processes in a given patient; however, the initial ‘driver’ of the
interferonopathy is typically at one end of this spectrum. Monogenic forms of SLE (such as
those caused by loss-of-function mutations in the genes encoding complement protein C1q,
deoxyribonuclease 1 or deoxyribonuclease-y) are considered to be autoimmune monogenic
interferonopathies. Important examples among the autoinflammatory monogenic
interferonopathies include AGS, chronic atypical neutrophilic dermatosis with lipodystrophy
and elevated temperature (CANDLE), and STING-associated vasculopathy with onset in
infancy (SAVI).

AGS and related monogenic diseases

CANDLE

AGS is caused by gain-of-function mutations in 7REXZ or /FIH1. The TREXI gene
encodes the major mammalian 3’-5" DNA exonuclease that degrades endogenous DNA in
the cytoplasm42. In addition to AGS143144 mutations in 7REXI have also been reported in
SLE143.145 familial chilblain lupus#* and retinal vasculopathy with cerebral
leukodystrophy (RVCL) (reviewed elsewherel46). AGS and RVCL are characterized
clinically by CNS inflammation and high levels of type | interferon in the circulation and
cerebrospinal fluid. Mutations in the gene encoding nucleic acid sensor RIG-1, DDX58,
cause an atypical Singleton—Merten syndrome, which manifests with variable clinical
presentations of glaucoma, aortic calcification and skeletal abnormalities, such as acro-
osteolysis without dental anomalies4’. Although there are no classical signs of apparent
inflammation in patients with Singleton—-Merten syndrome, the clinical manifestations are
suspected to relate to chronic inflammation, at least in part conferred by constitutive
activation of RIG-I resulting in increased type | interferon activity and 1SG expression.

CANDLE is caused by mutations in protein subunits of the proteosome—immunoproteasome
system. Disease can be the result of any of several recessive mutations in different protein

Nat Rev Rheumatol. Author manuscript; available in PMC 2019 July 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Muskardin and Niewold Page 13

SAVI

subunits of the system, located either in one single subunit (monogenic, homozygous or
compound heterozygous inheritance) or in two different subunits (digenic and compound
heterozygous inheritance)148:149, Defects in the catalytic activity of the proteasome—
immunoproteasome system result in a sustained production of type | interferon148:149 that is
independent of STING and MAVS141,

SAVI is caused by gain-of-function mutations in ST/NG and is characterized by cutaneous
vasculopathy and pulmonary inflammation®0. In vitro studies indicate that these ST/ING
variants stimulate /FNVBI expression and other gene targets of STING0. Data from STING
N153S knock-in mice demonstrates that at least some of the phenotype of SAVI occurs
independently of IRF3, suggesting that the phenotype is not solely 1SGrelated!®. However,
patients with SAVI have a strong type | interferon signature in their PMBCs, and JAK
inhibitors reduce the constitutive upregulation of phosphorylated STAT1 in the lymphocytes
of these patients in vitro, indicating that JAK inhibition could be a promising therapy for
SAVI1%0,

Type | interferon pathway therapies

Insights gleaned from studies of the type | interferon pathway, including those identifying
disease risk loci and functional studies of molecules involved in the type | interferon
pathway, might help explain the heterogeneity in the molecular pathogenesis of rheumatic
diseases. Such insights might explain some of the heterogeneity in treatment responses
observed in these diseases, and type | interferon pathway studies could also reveal new
targets. These insights should inform the development of new therapies and the design of
clinical trials. Multiple antilFNa, anti-IFNAR and anti-TLR strategies are currently in
clinical development for the treatment of rheumatic diseases (TABLE 1).

Anti-IFNa therapies

Anti-IFNa monoclonal antibodies (such as sifalimumab and rontalizumab) can inhibit the
expression of the type | interferon signature in patients with SLE%2-154 and phase 11 studies
examining clinical responses to these antibodies in patients with SLE have had mixed
results1>5-157 Rontalizumab did not meet the primary endpoint in one phase Il trial, but did
demonstrate some efficacy in a subset of patients with SLE and a low type | interferon
signature metric (a set of 3 1ISGs (HERC5, EPST/and CMPKZ) were used as a surrogate for
the type | interferon signature)1°’. Treatment with sifalimumab did result in clinical
improvement in various clinical end points in patients with SLE in another phase Il study,
and the effect was strongest in those patients with a high type | interferon signature score
(based on a set of four I1SGs: /F/27, IFI44, IFI44L and RSAD2)8. Although these phase 11
trial findings seem somewhat contradictory, it is interesting that in both trials the
pretreatment type | interferon status of the patients affected the treatment response to anti-
IFNa antibodies. It is possible that differences in the strength of interferon blockade
between the two therapeutics or the dosing level could explain these differences in clinical
efficacy.
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Results from phase | and Il studies investigating the induction of humoral polyclonal anti-
IFNa responses by immunization with IFNa kinoid (a conjugate of an inactive form of
human IFNa and a carrier protein, keyhole limpet haemocyanin) in patients with SLE have
also shown some promise in improving control of the diseasel8, Furthermore, in a phase Ib
trial, sifalimumab reduced the expression of a type | interferon signature observed in the
blood of patients with dermatomyositis or polymyositis®9.

Anti-IFNAR therapies

Anifrolumab is an antibody that binds to the IFNAR and blocks signals from both IFNa and
IFNB160. In a phase Il study of patients with moderate to severe SLE61, anifrolumab
treatment resulted in greater rates of improvement across a broad range of composite and
organ-specific disease activity measures; a greater proportion of patients achieving and
maintaining low disease activity or corticosteroid tapering as well as a trend toward a
reduction in flare rate compared with placebo. Greater efficacy was seen in all end points in
patients with a high baseline type | interferon signature compared with those with a low
baseline interferon gene signature, suggesting that the former group represents a
subpopulation of patients who are likely to benefit from anifrolumab treatment. However,
the sample size of the low baseline type I interferon signature group was small, limiting
interpretations of the data from this group; thus, further studies are warranted to determine
efficacy in this subpopulation.

In early phase studies in patients with SSc, anifrolumab inhibited a type I interferon
signature (as measured by a composite score from five 1ISGs: RSADZ, IFI44, IFI44L, IFI27
and /F/6), and this inhibition correlated with decreases in T cell-related transcripts and
increases in collagen degradation-related transcripts in the skinl62, Thus far there have not
been overly concerning safety signals with regard to viral infection or malignancy risk with
these anti-IFNa and anti-IFNAR therapies, although herpes zoster reactivation has occurred
in some patients®L. In lupus-prone mice, type I interferon-induced synapse loss and
behavioural phenotypes are prevented by blocking signalling at IFNAR3, suggesting that
anifrolumab might be helpful in treating neuropsychiatric lupus and should be considered
for future clinical trials.

Hydroxychloroquine and TLR inhibition

Treatment with hydroxychloroquine impairs the ability of pDCs from patients with SLE to
produce IFNa and TNF in response to stimulation with TLR9 and TLR7 agonists in
vitrol64. Unless contraindicated, hydroxychloroquine is advocated for use in all patients with
SLE owing to its efficacy in reducing the number and intensity of flares, and in reducing
damage accruall65166_|n the treatment of RA, hydroxychloroquine has also been used in
combination with other drugs (for example, the widely use combination of methotrexate plus
sulfasalazine and hydroxychloroquine, known as the ‘triple therapy’ regimen); however,
hydroxychloroquine has limited efficacy in treating disease activity on its own. In a 2017
systematic review and meta-analysis of studies evaluating the effects of hydroxychloroquine
on cardiovascular outcomes in patients with RA, hydroxychloroquine seemed to decrease
insulin resistance and incidence of cardiovascular disease; however, the data were too few
for meta-analysis1®7. Hydroxychloroquine is currently being tested in phase 11 trials for
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endothelial dysfunction in RA8, antiphospholipid antibody syndrome69, neonatal SLE™70,
incomplete SLEY"1 and in the prevention of clinically apparent RA in seropositive
individualsl?2,

Several additional TLR-targeting strategies are in early development in SLE173, and a
humanized anti-TLR4 monoclonal antibody is currently being tested in phase 11 of trials for
the treatment of RAL74. TLR4 inhibition could be interesting in RA if TLR4 activation
contributes to the IFNP levels observed in this disease, which is associated with non-
response to anti-TNF therapies.

Kinase inhibition
The development of small molecule kinase inhibitors that target proteins in the type |

interferon pathway has been a major area of drug development, and a number of clinical
trials of these inhibitors in various rheumatic diseases are currently underway (TABLE 2).

Tofacitinib, a JAK1 and JAK3 inhibitor, was approved by the FDA in 2012 for the treatment
of patients with RA who have had an inadequate response or intolerance to methotrexate.
Tofacitinib is now being tested in phase Il trials for use in other rheumatic diseases (such as
JIAYTS-177 and psoriatic arthritis!78-180) and is being investigated in earlier phases studies
for use in SLE181-183 and dermatomyositis'84. Baricitinib, a JAK1 and JAK2 inhibitor, is
being evaluated in stage 111 trials for the treatment of RA185-190 in addition to being used as
part of a compassionate use protocol for the treatment of autoinflammatory syndromes
marked by high type I interferon (for example, SAVI, AGS and CANDLE)19, JAK
inhibitors that also inhibit TYK2 are in phase 1l trials for the treatment of RA192-197,
psoriatic arthritis198:199 and membranous lupus nephritis?®. Finally, an IRAK4 inhibitor is
currently in phase I1 trials for the treatment of RA20L, Kinase inhibitors are also being tested
in additional chronic autoimmune or autoinflammatory diseases not covered in this Review
(TABLE 2).

Clinical implications

Differences in type | interferon levels explain some of the heterogeneity in the clinical
phenotypes and treatment responses across various rheumatic diseases. Thus, it would be
reasonable to divide patients with a given disease (for example, Sjogren syndrome, SLE or
RA\) into subsets by their type | interferon pathway activity in clinical trials. Such a strategy
has already been tested in trials of therapies targeting type | interferons in SLE196:157 pyt
this same strategy might also yield informative results in the treatment of other rheumatic
diseases with either therapies that target the type | interferon pathway or other drugs.

Stratifying patients by type I interferon pathway activity might reveal important differences
in particular subgroups of patients that would otherwise be missed and might also enable the
prediction of a patient’s treatment response to particular therapies, such as that observed
with anti-TNF therapy38. Monitoring type | interferons during treatment might also be
desirable in some patients. For example, caspase inhibitors are an attractive therapy for use
in autoinflammatory disorders that result in increased inflammasome activation, such as
NLRC4-related macrophage activation syndrome (NLRC4-MAS, also known as syndrome
of enterocolitis and autoinflammation associated with mutation in NLRC4 (SCAN4)).
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However, blocking caspase-1 activity also pathologically increases type | interferon
production in some patients (particularly those who have relatively high levels of type |
interferon activity at baseline)!®. Regular assessment of type | interferon pathway activation
could enable better monitoring for possible unwanted consequences in this scenario.

Interestingly, many rheumatic diseases are more frequent in females than in males. In a 2017
transcriptome analysis of human skin samples, the genes that were overexpressed in female
healthy skin (compared with male healthy skin) were frequently genes that are associated
with autoimmune diseases such as SLE, SSc and Sjogren syndrome202, The presence of sex
hormones, such as oestradiol or testosterone, did not affect the expression of these genes in
cultured keratinocytes. Some of these overexpressed genes were regulated by the
transcription cofactor vestigial-like protein 3 (VGLL3), the expression of which also has a
strong female bias. 1ISGs (LY6E, OAS1, MX1and /FI44) were among the genes that were
targeted by VGLL3. In monocytes, maximal induction of the ISGs identified required the
expression of VGLLS3, suggesting that VGLL3 might promote inflammation by supporting
type | interferon responses202. Thus, as we move towards precision medicine, we will need
to carefully consider whether it is best to also subset patients with sex-discordant rheumatic
diseases by sex in clinical trials.

Conclusions

The type | interferon pathway is central in both immunity and tolerance, and alterations in
this pathway underlie the pathogenesis of different rheumatic conditions. Rheumatic
diseases such as SLE, SSc, myositis and RA are heterogeneous and some of the differences
observed between patients with rheumatic diseases could be explained by variations in the
expression of interferon-related genes or activation of the type | interferon pathway. Hence,
certain genetic factors and/or pathogenic pathways might explain particular disease
phenotypes, and these underlying factors and/or pathways will not be shared between all
patients who have the same rheumatic disease. We suspect variation in the type | interferon
pathway is a major factor in the currently unexplained heritability of rheumatic disease.

Studies that compare patient subgroups based on their type I interferon signature or type |
interferon activity have furthered our understanding of the molecular mechanisms
underpinning the heterogeneity of these diseases and treatment responses. Additional
molecular phenotyping should help to further advance our understanding of the pathogenesis
of disease subtypes, and help to guide therapy. For example, medications that have
seemingly failed in clinical trials of a complex rheumatic disease might still be helpful for
treating a subgroup of patients with this disease. Thus, the study of individual samples from
clinical trials is important, and insights gleaned from such studies should inform the next
steps in an iterative fashion, including the subgrouping of patients by molecular phenotype
in subsequent trials.

Functional studies of causal allelic variants should advance our ability to translate genetic
associations into clinical applications. A delicate balance exists between the autoimmune
and/or autoinflammatory effects and the antipathogen and anticancer effects of type |

interferon. Increasing our understanding of the regulation of this pathway in humans will
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have important therapeutic and safety implications. By understanding the genetic regulation
and molecular underpinnings of type I interferon in rheumatic diseases, we might be able to
intervene therapeutically in a more personalized fashion, on the basis of the molecular
dysregulation present in a given individual.
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Box 1 |
Functional assays of type | interferon activity

The most well-known functional assays for measuring type I interferon activity are the
luciferase203 and WISH cell*24 reporter assays. Both reporter assays rely on a cell line
bearing the receptor for type | interferon

Luciferase reporter assay

The luciferase assay uses a cell line that is transfected with a plasmid carrying the
luciferase gene under the control of a type | interferon inducible promoter. The cell line is
exposed to samples containing type | interferon, and type I interferon activity is
determined by measuring the luciferase expression203

Wish cell reporter assay

The WISH cell assay uses the WISH epithelial cell line to measure the ability of patient
sera to promote type | interferon-induced gene expression. WISH cells are exquisitely
sensitive to type | interferon, but do not produce type | interferons and lack other pattern
recognition receptors such as TLRs294.205, Expression of the interferon stimulated genes
(ISGs) MX1, IFIT1and EIFZAKZ2is measured using quantitative PCR (QPCR). The
relative expression of each of these three genes is standardized to that generated with
healthy donor sera and summed to generate a score reflecting the ability of sera to cause
interferon-induced gene expression, which is referred to as type | interferon activity. The
type | interferon activity is reflective of the amount of type | interferon protein present in
the sample to ligate the type I interferon receptor. Additional aliquots from the same
patients can be tested following pre-incubation with anti-IFNa or anti-IFN antibodies to
determine how much of the total type | interferon activity is due to IFNp activity, and
how much is due to IFNa activity. IFNy, TNF, IL-6, and IFNA do not induce substantial
expression of these three transcripts in the WISH cells (REF. 124 and unpublished data).
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Key points

. Type | interferon has a pathogenic role in many rheumatic conditions,
including systemic lupus erythematosus, Sjogren syndrome, myositis and
systemic sclerosis.

. Many genetic risk factors for rheumatic diseases lie within the type |
interferon pathway as gain-of-function polymorphisms, and both polygenic
and monogenic influences have been described.

. Stratifying patients by type I interferon activity levels will inform us about
both disease pathogenesis and treatment response in rheumatic diseases.

. A number of therapeutics that target type | interferons, the type | interferon
receptor, or the type | interferon pathway are currently in various stages of
development.
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Fig. 1 |. Major pathways of induction of type | interferon production in different cell lineages.
a | In phagocytes and dendritic cells, stimulation of surface Toll-likereceptor 4 (TLR4) by

lipopolysaccharide (LPS) or endosomal TLR3 by double-stranded RNA (dsRNA) results in
activation of interferon regulatory factor 3 (IRF3) via a TIR domain-containing adaptor
molecule 1 (TICAM-1, also known as TRIF)-dependent pathway, and nuclear factor-xB
(NF-xB) via myeloid differentiation primary response protein (MyD88). Activation of
cytosolic nucleic acid sensors (melanoma differentiation-associated protein 5 (MDAS) or
retinoic acid inducible gene 1(RIG-1) by RNA, or stimulator of interferon genes protein
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(STING) by DNA (via cyclic GMP-AMP synthase (CGAS)) also prompt activation of IRF3.
IRF3 translocates to the nucleus and induces transcription of IFNB. b | In plasmacytoid
dendritic cells (pDCs), activation of endosomal TLR7 or TLR8 by RNA results in activation
of IRF7 and/or IRF5. Activation of endosomal TLR9 by DNA or of cytosolic sensors MDA5S
or RIG-1 by RNA results in activation of IRF7. IRF7 translocates to the nucleus, where it
induces transcription of type I interferons. Translocation of IRF5 to the nucleus culminates
in transcription of type | interferons and pro-inflammatory cytokines. In pDCs, binding of
type | interferon to the type | interferon receptor (IFNAR) results in activation of the
canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT)
pathway that results in transcription of type | interferon stimulated genes (ISGs). 1ISGs
include IRF7, which provides a feed-forward mechanism for production of more type |
interferon. c | In macrophages and endothelial cells, TNF induces IFNB via IRF1 and can
induce an IFNP autocrine loop that acts in synergy with canonical TNF signals to induce
sustained expression of inflammatory genes and delayed expression of STAT1-dependent
ISGs that prime cells for enhanced responses to subsequent challenge. d | Receptor activator
of nuclear factor-xB (RANK)-RANK ligand (RANKL) interaction activates TNF receptor-
associated factor 6 (TRAF6) and c-Fos pathways. TRAF6 activation results in induction of
NF«xB. c-Fos, together with activator protein 1 (AP-1) leads to a cascade that promotes
osteoclastogenesis. NF-xB and c-Fos stimulate production of IFNB. IFNB promotes
transcription of genes that inhibit c-Fos activity and results in the induction of nitric oxide
(NO), which inhibits osteoclastogenesis. cGAMP, cyclic GMP-AMP; CXCL10, CXC-
chemokine 10; ER, endoplasmic reticulum; iNOS, inducible nitric oxide synthase; IRAK,
interleukin-1 receptor-associated kinase; ISGF3, interferon-stimulated gene factor 3; ISRE,
interferon-sensitive response element; MAVS, mitochondrial antiviral-signalling protein;
MD2, myeloid differentiation 2; MMP, matrix metalloproteinase; TNFR, TNF receptor;
TYK2, tyrosine kinase 2; TREX1, three-prime repair exonuclease 1.
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