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Abstract

Oxidative decomposition of several biomolecules produces reactive aldehydes. Monoamine 

neurotransmitters are enzymatically converted to aldehydes via monoamine oxidase followed by 

further metabolism such as carbonyl oxidation/reduction. Elevated levels of aldehyde 

intermediates are implicated as factors in several pathological conditions, including Parkinson’s 

disease. The biogenic aldehydes produced from dopamine, norepinephrine and serotonin are 

known to be toxic, generate reactive oxygen species and/or cause aggregation of proteins such as 

α-synuclein. Polyunsaturated lipids undergo oxidative decomposition to produce biogenic 

aldehydes, including 4-hydroxy-2-nonenal and malondialdehyde. These lipid aldehydes, some 

including an α,β-unsaturated carbonyl, target important proteins such as α-synuclein, proteasome 

degradation and G-protein-coupled signaling. Overproduction of biogenic aldehydes is a 

hypothesized factor in neurodegeneration; preventing their formation or scavenging may provide 

means for neuroprotection.
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1. Introduction

Spontaneous or enzymatic oxidation of various biomolecules produces aldehydes in the 

human body. Enzymatic oxidation of monoamine and indoleamine neurotransmitters yields 

reactive biogenic aldehydes. The oxidative decomposition of lipids (i.e., lipid peroxidation) 

likewise produces reactive biogenic aldehydes, some with α,β-unsaturated carbonyls. 

Cellular defenses of carbonyl metabolism include redundant enzymes, specifically, isoforms 

of aldehyde dehydrogenases, and compensatory systems, namely, aldehyde reductases. 

Overwhelming or impairing aldehyde metabolism yields aberrant levels of such reactive 

species and is predicted to contribute to or exacerbate human disorders/degenerative 

conditions [1–4]. Given this, targeting the production or mitigating levels via scavengers of 

such biogenic aldehydes is predicted to be a therapeutic means to disease.

2. Oxidation of monoamine and indoleamine neurotransmitters

2.1 Monoamine oxidase metabolism can produce reactive aldehydes

Monoamine oxidase (MAO) metabolizes primary amines, such as the neurotransmitters 

norepinephrine (NE), epinephrine (EPI), serotonin (5-HT), and dopamine (DA), to produce a 

reactive biogenic aldehyde. MAO has two isoforms: MAO-A and MAO-B. Both isoforms 

can metabolize all four neurotransmitters and are located throughout the body, though MAO-

A is present in the main production sites of NE, EPI, and DA: the locus coeruleus (LC), the 

rostral ventral lateral medulla (RVLM), and substantia nigra (SN), respectively [5]. MAO-B 

is present mostly in glia and significantly contributes to monoamine metabolism of DA [6, 

7]. A 1952 review by Blaschko proposed that the aldehydes produced from the metabolism 

of indoleamines and catecholamines by amine oxidases were toxic to the cells they were 

produced in [8]. This suggestion has evolved into the “catecholaldehyde hypothesis” which 

proposes that the buildup of toxic aldehyde metabolites of neurotransmitters is a significant 

contributor to the pathogenesis of Parkinson’s disease (PD) and potentially other 

neurodegenerative diseases that involve the loss of catecholamine neurons [9–12].

The aldehyde product of DA, 3,4-dihydroxyphenylacetaldehyde (DOPAL), is especially 

implicated in this toxicity. Other reactive aldehyde products include 

3,4dihydroxyphenylglycoaldehyde (DOPEGAL) from NE and EPI, and 5-

hydroxyindoleacetaldehyde (5-HIAL) from 5-HT [5, 13]. Though there is much less known 

about DOPEGAL and 5-HIAL compared to DOPAL, it has been reported that both 

DOPEGAL and 5-HIAL are more reactive and toxic [5, 14]. The loss of NE, EPI, 5-HT, and 

DA neurons have all been implicated in PD-related pathology [5]. Loss of DA neurons in the 

SN and NE neurons in the LC is linked to both motor and non-motor symptoms in PD [5].
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2.2 DOPEGAL, the aldehyde product of norepinephrine and epinephrine

NE is synthesized in the LC and is used as a neurotransmitter that promotes alertness in the 

central nervous system (CNS) [15]. In the sympathetic nervous system, it is used as a 

hormone in the blood stream [15]. EPI is formed in the RVLM and is used as a 

neurotransmitter in the CNS and as the primary hormone secreted by the adrenal medulla 

[5]. In the sympathetic nervous system, EPI is used as an excitatory modulator that increases 

blood flow, heart rate, and blood sugar.

The aldehyde product of both NE and EPI, DOPEGAL, is toxic to the cells it is produced in. 

Levels as low as 6μM have been shown to kill PC-12 cells, and sympathetic ganglion cells 

undergo apoptosis when exposed to DOPEGAL [5, 16]. It is possible that higher 

concentrations could induce necrosis [5, 17]. A proposed mechanism of toxicity to explain 

the apoptosis observed after DOPEGAL exposure involves the permeability transition (PT) 

pore on the inner mitochondrial membrane. Induction of the PT pore causes the release of 

factors such as cytochrome c, which activates a downstream caspase cascade that triggers 

apoptosis [5, 18–20]. When in the presence of Ca2+, concentrations of DOPEGAL as low as 

6μM have been found to induce the PT pore [5, 21]. The PT pore activation mechanism 

requires a reactive chemical species. When under oxidative stress, DOPEGAL produces a 

free radical, fulfilling this requirement [5, 21]. DOPEGAL also induces cytosolic Ca2+; 

apoptosis is associated with Ca2+ dysregulation [5, 22].

2.3 5-HIAL, the aldehyde product of 5HT

5-HT is synthesized in serotonergic terminals where it is used as a neurotransmitter in the 

CNS. 5-HT is implicated in many behaviors, such as feeding, affective disorders, sleep-wake 

cycles, motor system control, and reward [23]. 5-HT is enzymatically metabolized to the 

aldehyde 5-HIAL. A potential mechanism of toxicity of 5-HIAL is the oligomerization of α-

synuclein (aSyn), and these oligomers are hypothesized to be involved in PD pathogenesis 

[13]. 5-HIAL generated in situ via 5-HT oligomerized aSyn in vitro, in PC12 cells, which 

could be blocked via addition of an MAO inhibitor [13].

2.4 DOPAL, the aldehyde product of DA

2.4.1 DOPAL is toxic to dopaminergic cells—DA is synthesized in the SN, ventral 

tegmental area, and hypothalamus. It is used as a neurotransmitter in the CNS [24]. DArgic 

pathways include the nigrostriatal pathway, which is involved in motor control, and the 

mesolimbic pathway, which is involved in reinforcement and reward [24–26]. The aldehyde 

product of DA is DOPAL. DOPAL has been found to be toxic to DArgic cells at 7μM, which 

is not far from in vivo concentrations of about 2μM [27]. This could suggest that altering 

DOPAL metabolism even slightly can raise DOPAL to toxic levels [27].

2.4.2 DOPAL induces the PT pore in the presence of Ca2+—DOPAL, like 

DOPEGAL, has been found to induce the mitochondrial PT pore in the presence of Ca2+ in 

concentrations as low as 125 nM [5, 28]. The generation of a reactive chemical species is 

necessary for induction of the mitochondrial PT pore. It is claimed DOPAL generates a 

hydroxyl radical when under conditions of oxidative stress; however, the generation of this 

free hydroxyl radical does not occur for DOPEGAL [5, 29]. DOPAL and DOPEGAL could 
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trigger induction independent of the free radicals produced, although the mechanistic target 

is not known. The production of free radicals when under oxidative stress may exacerbate 

this issue, or could be the primary cause of induction, it is not known.

2.4.3 DOPAL oligomerizes α-synuclein—DOPAL, like 5-HIAL, oligomerizes aSyn 

[13, 30]. Werner-Allen et al. demonstrated a unique chemical mechanism for this 

oligomerization via isoindole cross-linking in vitro [31]. DOPAL binds covalently to the N-

terminal lysine residues, potentially by Schiff-base and Michaeladdition adducts, which 

stabilizes the oligomer [32–35]. A large or small oligomer can form from this DOPAL 

interaction. The oxidation of DOPAL forms reactive oxygen species (ROS) which 

subsequently leads to the oxidation of the methionine residues on aSyn [32]. When all four 

possible methionine residues are oxidized there is a reduction in the formation of large 

oligomers, which are more toxic than the small oligomers. This suggests that the methionine 

residues play a role in the neurotoxicity of DOPAL-aSyn interactions [32]. Furthermore, 

DOPAL has been shown to stimulate aSyn binding to tropomyosin receptor kinase B (TrkB), 

leading to interference with neurotrophic activities, thereby increasing the susceptibility of 

neurons to degeneration [36].

2.4.4 DOPAL produces reactive oxygen species and modifies proteins—The 

metabolism of DA by MAO generates DOPAL but also hydrogen peroxide, which can 

generate a toxic hydroxyl radical via Fenton chemistry to damage proteins, DNA and lipids 

[37]. In addition, DOPAL can auto-oxidize or be enzymatically oxidized to a reactive 

quinone, producing ROS such as superoxide anion [34, 38, 39]. It was proposed that DOPAL 

reacts with proteins through a Schiff base; however, recent evidence suggests a mechanism 

for protein modification involving Schiff base formation followed by oxidative 

rearrangement to an indoletype linkage [39–41]. Such a hypothesis may explain the 

following: 1) observed stability of the DOPAL adduct; 2) addition of sodium 

cyanoborohydride or antioxidants slows down or prevents protein modification by DOPAL; 

3) reaction of DOPAL with proteins produces ROS [41].

2.5 Metabolism of biogenic aldehydes from monoamine and indoleamine 
neurotransmitters

2.5.1 Aldehydes are metabolized by aldehyde dehydrogenase—Typically, toxic 

aldehydes are metabolized by aldehyde dehydrogenase (ALDH). 5-HIAL is oxidized to 5-

hydroxyindole acetic acid (5-HIAA) by ALDH [42]. DOPAL can undergo carbonyl 

oxidation to 3,4-dihydroxyphenylacetic acid (DOPAC) by ALDH or reduction to the alcohol 

3,4-dihydroxyphenylethanol (DOPET) by aldose reductase (AR) [43]. DOPEGAL is 

typically metabolized by AR to 3,4-dihydroxyphenylglycol (DHPG) and ALDH to 3,4-

dihydroxymandelic acid (DHMA) [43]. A decrease in ALDH activity is linked to PD-like 

pathology and behavior [44–46].

2.5.2 Aldehyde scavengers and DOPAL—Carnosine, a β-alanyl-histidine dipeptide, 

is found in the brain and myocardium in millimolar concentrations and may represent a 

novel scavenger of biogenic aldehydes such as DOPAL and DOPEGAL. Recently, carnosine 

was shown block formation of catecholaldehyde protein adducts after NE exposure in 

Cagle et al. Page 4

Curr Opin Toxicol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



isolated human cardiac mitochondria, and unlike GSH, form stable conjugates with DOPAL 

[47]. In addition, hydralazine has been proposed as a means to capture and detoxify biogenic 

aldehydes [41]. N-acetyl cysteine has also been shown to prevent oxidation of DA as well as 

block DOPAL from reacting with proteins, perhaps via an antioxidant mechanism [12, 39].

3. Oxidative decomposition of lipids

3.1. Lipid peroxidation produces lipid aldehydes

Another type of biogenic aldehyde implicated in disease are lipid aldehydes formed via lipid 

peroxidation. This process is generally initiated by free radicals [48, 49]. These free radicals 

are increased in the presence of oxidative stress, which is thought to play a role in PD. 

Further mechanistic detail of lipid peroxidation and the formation of lipid aldehydes has 

been previously described [50, 51]. The products of lipid peroxidation are lipid aldehydes, 

including 4-hydroxy2-nonenal (4-HNE), malondialdehyde (MDA), and acrolein. Increases 

in lipid peroxidation products have been found in the brains of PD patients [52]. These lipid 

peroxidation products are often used as markers for oxidative stress, however the precise 

mechanism in which lipid aldehydes contribute to the disease etiology of PD is not well 

understood [53]. Lipid aldehydes have been implicated in a variety of other diseases. This 

includes other neurodegenerative disorders – Alzheimer’s disease, amyotrophic lateral 

sclerosis, and Huntington’s disease - as well as neuropsychiatric disorders, cancer, diabetic-

complications, and liver disease [48, 49, 54].

3.2 The brain is susceptible to lipid peroxidation

Increases in lipid peroxidation products are seen in models of PD including exposure to 

rotenone, 6-OHDA, and MPTP [55–57]. This can be likened to the increase of lipid 

peroxidation seen in PD brains post mortem. The brain and especially DArgic neurons are 

more susceptible to lipid peroxidation, which is due in part to the brain’s high energy 

demand requiring a large amount of oxygen and mitochondria [58]. Oxygen in the brain can 

then aid in the autoxidation of catecholamines and catecholaldehydes leading to produce 

superoxide [38]. Furthermore, areas of the brain have increased levels of iron.[59]. This iron 

can be used in the Fenton reaction to oxidize hydrogen peroxide to the hydroxyl radical and 

a hydroxyl anion. Both the hydroxyl radical and superoxide can lead to the initiation of lipid 

peroxidation. In healthy individuals the brain maintains homeostasis through antioxidant 

enzymes which work to prevent damage done by oxidative stress. Glutathione peroxidase 

(GPX) is one of these important detoxifying enzymes. Both GPX-1 and GPX-4 have been 

implicated in PD etiology. Whether this is due to a loss of enzyme activity or an 

upregulation of activity in response to oxidative stress is still unclear. GPX-4 expression has 

been found to be decreased in PD brains post mortem, yet found to be increased when 

normalized to cell-count [60]. More research is required, especially regarding GPX-4.

3.3 Lipid peroxidation is implicated in PD

Since most cases of PD are idiopathic, the exact cause for oxidative stress and increase in 

lipid peroxidation is not well understood. However, there has been progress in terms of how 

these lipid aldehydes contribute to the disease etiology of PD. 4-HNE has been shown to 

interact with aSyn as well as interfere with dopamine metabolism by inhibiting aldehyde 
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dehydrogenase [40, 61]. Furthermore, 4-HNE has been found to alter regulator of G-protein 

signaling 4 (RGS4) activity which is important for regulating G-protein coupled receptors, 

and is implicated as a potential therapeutic target for PD [62].

It has recently been found that 4-HNE not only reacts with aSyn but also leads to the release 

of pathogenic aSyn [63]. 4-HNE has been shown to interfere with proteasome degradation 

and lysosomal function and is able to trigger extracellular vesicle release with intact protein 

[63, 64]. Through treating primary neurons with 4-HNE and analyzing the extracellular 

vesicles secreted, an overall increase of aSyn and oligomeric aSyn in the 4-HNE-treated 

neurons was determined [63]. While aSyn is most likely a protein important for 

mitochondrial function, its accumulation is a pathogenic hallmark of PD [61]. This process 

is one way in which lipid peroxidation products contribute to the disease etiology of PD. In 

addition, there may be an interplay or toxic synergy between the lipid peroxidation 

aldehydes and catecholaldehydes. Work in previous years found that both 4-HNE and MDA 

potently inhibit ALDH and/or AR metabolism of DOPAL, contributing to increases in the 

level of this biogenic catecholaldehyde, as discussed in 2.5.1 [40, 65–67]. As a result, 

neurotoxicity via lipid aldehydes such as 4-HNE and MDA may be augmented as the result 

of their ability to impede the carbonyl oxidation/reduction step for the metabolism of DA 

and other monoamines.

4. Comparison of biogenic aldehyde reactivity

The various biogenic aldehydes formed can vary in terms of origin (e.g., lipid) and tissue/

cell type location as described above but also demonstrate diversity of reactivity for rate and 

target nucleophile. The monoamine-derived aldehydes may primarily target amines, such as 

Lys or Arg while the α,β-unsaturated aldehydes derived from lipids may primarily react 

with Cys/thiols. Although there may be several exceptions, under physiologic conditions, the 

reaction for monoamine-derived aldehydes such as DOPAL initially involve Schiff base 

chemistry followed by rearrangement or condensation while the α,β-unsaturated carbonyls 

(e.g., 4-HNE) modify Cys/thiols by Michael-type addition.[31, 33, 41, 68, 69] Reactivity 

rates may vary or be difficult to measure given instability of the intermediate, such as 

observed for DOPEGAL which appears to degrade spontaneously and quickly.[47] A rate 

constant was measured for DOPAL modification of Lys/primary amine (2 M−1 min−1) and 

found to be 20 to 30-fold greater than that for the reaction of 4-HNE with Lys/primary 

amine.[41, 70] However, 4-HNE and α,βunsaturated carbonyls rapidly react with Cys/thiols 

(>1 M−1 s−1) while DOPAL does not. [70]

5. Summary

The oxidative decomposition of biomolecules, such as neurotransmitters and lipids, 

produces a range of aldehyde-containing intermediates that vary in location (e.g., tissue/cell 

type, subcellular location) and reactivity. Normal, physiologic processes produce these 

species at levels controllable by carbonyl-metabolizing enzymes, and it is the aberrant and 

chronic overproduction of biogenic aldehydes that is hypothesized as an initiating factor for 

pathogenic events relevant to neurodegenerative disease. Mechanisms for cellular injury 

include formation of ROS, mitochondrial toxicity, modification of protein targets critical for 
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survival of neurons and aggregation/cross-linking of aSyn. Knowledge of such pathways for 

toxicity may yield biomarkers of early pathogenic events and therapeutic targets for 

neuroprotection.
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Abbreviations

4-HNE 4-hydroxynonenal

5-HIAA 5-hydroxyindole acetic acid

5-HIAL 5-hydroxyindoleacetaldehyde

5-HT serotonin

6-OHDA 6-hydroxydopamine

ALDH aldehyde dehydrogenase

AR aldose reductase

aSyn α-synuclein

CNS central nervous system

DA dopamine

DArgic dopaminergic

DHMA 3,4-dihydroxymandelic acid

DHPG 3,4-dihydroxyphenylglycol

DOPAC 3,4-dihydroxyphenylacetic acid

DOPAL 3,4-dihydroxyphenylacetaldehyde

DOPEGAL 3,4-dihydroxyphenylglycoaldehyde

DOPET 3,4-dihydroxyphenylethanol

EPI epinephrine

GPX glutathione peroxidase

LC locus coeruleus

MAO monoamine oxidase

MDA malondialdehyde

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
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NE norepinephrine

PD Parkinson’s Disease

PT permeability transition

PUFA polyunsaturated fatty acids

RGS4 regulator of G-protein signaling 4

ROS reactive oxygen species

RVLM rostral ventral lateral medulla

SN substantia nigra

TrkB tropomyosin receptor kinase B
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