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Abstract

Background: Measurement reliability and biological stability need to be considered when 

developing sampling protocols for population-based fecal microbiome studies.

Methods: Stool samples were collected biannually over a two-year period and sequenced for the 

V1-V3 region of the 16S rRNA gene in 50 participants from the Multiethnic Cohort Study. We 

evaluated the temporal stability of the fecal microbiome on a community level with permutational 

multivariate analysis of variance (PERMANOVA), as well as on taxa and diversity measures with 

intraclass correlation coefficients.

Results: Inter-individual differences were the predominant source of fecal microbiome variation, 

and variation within individual was driven more by changing abundances than the complete loss or 

introduction of taxa. Phyla and diversity measures were reliable over the two years. Most genera 

were stable over time, although those with low abundances tended to be more dynamic. Reliability 

was lower among participants who used antibiotics, with the greatest difference seen in samples 

taken within one month of reported use.

Conclusions: The fecal microbiome as a whole is stable over a two-year period, although 

certain taxa may exhibit more temporal variability.

Impact: When designing large epidemiologic studies, a single sample is sufficient to capture the 

majority of the variation in the fecal microbiome from 16S rRNA gene sequencing, while multiple 

samples may be needed for rare or less abundant taxa.
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Introduction

In the past decade, the gut microbiome has been of great interest in health research, with 

diseases such as colon cancer (1), inflammatory bowel disease (2), and cardiovascular 

disease (3) already linked to both community-wide shifts and changes in specific bacterial 

taxa. Our ability to identify associations between gut microbes and diseases will be greatly 

improved with the continued establishment of well-powered population-based longitudinal 

studies coupled with the decreasing costs of DNA sequencing. In order to conduct these 

large-scale studies, standardized methods that provide reliable estimates need to be 

implemented. Several studies have already investigated technical sources of variability due 

to different aspects of sample collection (4,5), processing (6,7), and sequencing (8–10).

Having reliable estimates that sufficiently capture temporal variation of the gut microbiome 

is also crucial. Microbial communities are complex and constantly changing in response to 

their environment. Factors such as diet (11–14), use of antibiotics and other medications 

(15,16), and exposure to pathogens (17) can have a pronounced impact on bacteria residing 

in the gut and other anatomical sites. In the context of epidemiologic research, a microbiome 

with dramatic fluctuations over time could require multiple sample collections or increased 

sample sizes for longitudinal studies. Previous studies have evaluated variation of the fecal 

microbiome over time, but have involved small numbers of participants (18,19), variable 

sampling periods (20), or only Caucasian populations (21), which may limit generalizability. 

Here, we assessed the temporal variability of the fecal microbiome in 50 older adults from a 

multiethnic population with biannual sampling over a two-year period.

Materials and methods

Study participants

The Multiethnic Cohort study (MEC) is a prospective cohort study conducted in Hawaii and 

Los Angeles County that was designed to investigate the association of lifestyle and genetic 

factors with the incidence of cancer and other chronic diseases. The study design, 

recruitment, and baseline characteristics have been described previously (22). Briefly, 

215,251 men and women between the ages of 45-75 from primarily five racial/ethnic groups 

(African-American, Japanese-American, Latino, Native Hawaiian, and white) were enrolled 

into the study from 1993-1996 by completing a self-administered 26-page mailed 

questionnaire. Over 1800 of these participants (aged 60-77) were recruited in 2013-2017 as 

part of the MEC Adiposity Phenotype Study (APS) to investigate the relationships between 

the exposome, genome, microbiome, and metabolome with body fat distribution. Exclusion 

criteria for the MEC-APS included reported BMI outside the range of 18.5-40 kg/m2; oral or 

injection antibiotic use in the past 3 months; current or recent (<2 years) smoking; flu shot 

or other vaccinations in the past month; substantial weight change (>20 lbs) in the past 6 

months; soft or metal implants; ileostomy or colectomy; dialysis; insulin or thyroid 
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medication; and any of the following procedures or treatments in the past 6 months: 

chemotherapy, radiation therapy, corticosteroid hormones, prescription weight-loss drugs, 

endoscopy or irrigation of the large intestine. Percent body fat was measured by whole-body 

dual-energy X-ray absorptiometry (DXA) scans (23). Fifty individuals were randomly 

selected from the APS participants to have an equal distribution by sex (25 male and 25 

female), the five main ethnic groups within the MEC (10 African American, 10 Japanese 

American, 10 Native Hawaiian, 10 Latino, and 10 whites), and BMI categories (within each 

sex-ethnic group, one from each of 22-24.9, 25-26.9, 27-29.9, 30-34.9 kg/m2 and one either 

from 18.5-21.9 or 35-40 kg/m2) in which to conduct our longitudinal fecal microbiome 

study. Institutional Review Board approval was obtained from all participating institutions 

and informed written consent was obtained from the study participants.

Sample collection

Over a two-year period, each participant was asked to collect a stool sample once every six 

months for a total of five samples. Stool samples were collected at home using a collection 

tube containing 5 mL RNAlater (Fisher Scientific) and sterile 5 mm glass beads (Ambion) to 

facilitate sample dispersion in RNAlater. Samples were then frozen overnight and either 

brought in or mailed to the study clinic the following morning. Collection materials and 

procedures have been described in detail previously (24). Along with each sample, 

participants were asked to fill out a stool collection questionnaire that included items on 

collection time, special diets, and consumption of probiotic foods in the past six months. The 

questionnaire also asked whether participants were treated with an oral, injection, or IV form 

of antibiotics in the past six months, and the most recent month antibiotics were taken. If, at 

baseline, the participants reported to have received antibiotic therapy during the past six 

months, collection was deferred by six months and the baseline eligibility questionnaire was 

re-administered.

Sample processing

Stool samples were shipped on dry ice from study centers in Honolulu, HI and Los Angeles, 

CA to the Fred Hutchinson Cancer Research Center (FHCRC) in Seattle, WA. Stool samples 

collected in RNAlater were thawed and homogenized at 10,000 RPM on ice for 30 seconds 

(Omni Tissue Homogenizer, Omni International, Kennesaw, GA). Homogenized sample 

(300 μL) was transferred into four FastPrep tubes (MP Biomedical, Santa Ana CA) along 

with 0.3 g zirconium beads (Biospec Products, Bartleville OK) which were previously 

sterilized in an oven (180°C for >2 hours), and stored at −80 °C. For DNA extraction, two 

FastPrep tubes from each sample were thawed on ice. Sterile phosphate buffered saline (300 

μL) was added to each of the tubes, which were then centrifuged at 14,000 RPM for 10 

minutes. The supernatant was removed and discarded. Preheated ASL buffer (50 °C; 700 μL; 

QIAGEN, Germantown MD) was added to the pellet in each sample tube. FastPrep tubes 

were placed in a FastPrep bead beater 24-5G (MP Biomedical) at 5.5 m/s for 45 seconds, 

followed by 95°C (Thermomixer, Eppendorf, Hauppauge NY) for 15 minutes at 15,000 

RPM, and centrifuged for 3 minutes at 15,000 RPM. 520 μL of the supernatant was placed 

in a 1.5 mL tube containing an InhibitEX tablet (QIAGEN). Eppendorf tubes were 

centrifuged for 3 minutes at 15,000 RPM. The remaining DNA extraction procedures 

followed the standard QIAcube protocol for human stool (QIAGEN). Final elution of DNA 
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was performed with 200 μL elution buffer (AE buffer; QIAGEN). DNA concentrations and 

purity were determined using the NanoDrop 8000 Spectrophotometer (ThermoFisher 

Scientific, Waltham, MA) and gel electrophoresis. Working stocks were diluted in AE buffer 

(QIAGEN) from genomic DNA and samples were stored at −20°C until shipped for 

sequencing.

Samples for sequencing were prepared using a working stock at final concentration of 20 ng/

μL. Samples from the same participant were processed together in the same batch. FHC 

samples were used to assess variation in library preparation and sequencing batches. FHC 

samples were prepared by pooling stool from 6 participants outside the time-series study 

who had not used antibiotic in the past three months. From each participant, we collected 

five tubes of stool, with each tube containing 5 mL RNAlater and two scoops of stool that 

were stored at −80°C. All five tubes from each participant were thawed on ice, briefly 

homogenized individually, and then all combined into one container. Homogenized stools 

(400-500 μL) were distributed into multiple aliquots in FastPrep tubes and stored at −80°C. 

To assess DNA extraction, we used duplicate stool samples from three individuals outside of 

the time-series study who had not used antibiotics in the past three months. Two stool 

samples per individual were collected in RNAlater and frozen at −80 °C for one week. 

Samples were thawed on ice, homogenized and extracted using the protocol outlined above. 

Intraclass correlation coefficients (ICCs) for extraction duplicates were ≥0.93 for alpha 

diversity measures, ≥0.99 for the first PCoA axis for unweighted and weighted UniFrac, and 

≥0.97 for the four most abundant phyla.

For paired-end sequencing of the V1-V3 region, the 27F mod forward PCR primer sequence 

was 5’-AGRGTTNGATCMTGGCTYAG-3’. The 519R reverse PCR primer sequence was 

5’- GTNTTACNGCGGCKGCTG-3’. A 25-cycle PCR was performed using the HotStarTaq 

Plus Master Mix Kit (QIAGEN, USA) under the following conditions: 94°C for 3 minutes, 

followed by 28 cycles of 94°C for 30 seconds, 53°C for 40 seconds, and 72°C for 1 minute, 

after which a final elongation step at 72°C for 5 minutes was performed. After amplification, 

PCR products were checked in 2% agarose gel to determine the success of amplification and 

the relative intensity of bands. Multiple PCR products were pooled together in equal 

proportions based on their molecular weight and DNA concentrations. Pooled samples were 

purified using calibrated Ampure XP beads (Beckman Coulter, USA). The pooled and 

purified PCR products were used to prepare the Illumina DNA library using a ligation 

process (TruSeq Nano DNA LT, QIAGEN) which included Illumina adapters, pads, linkers 

and an 8 base pair (bp) barcode index. Sequencing was performed on the MiSeq using 

MiSeq Reagent Kit v3 following the manufacturer’s guidelines to obtain 2×300 bp paired-

end reads (Illumina, San Diego, CA). FastQ files were exported and securely transferred 

(BaseSpace, Illumina) to FHCRC for bioinformatic analysis.

Microbiome bioinformatic data processing

To classify bacterial taxonomy, sequences were processed using QIIME v.1.8 (25). 

Sequences were joined with the fastq-join method, using min_overlap=15 and 

perc_max_diff=12. Sequences were filtered with split_libraries_fastq.py with q parameter 

set to 25, and defaults otherwise. The Nelson two-step method was used for operational 
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taxonomic unit (OTU) generation at 97% similarity using the SILVA database (release 111, 

clustered at the 97% similarity level) for closed reference OTU picking following the 

UCLUST algorithm (26). The OTU table was filtered using the QIIME script 

filter_otus_from_otu_table.py with --min_count_fraction set to 0.00005 as recommended in 

Navas-Molina et al (27). Additional OTU entries were filtered out if they were detected as 

chimeras using QIIME’s identify_chimeric_seqs.py script with the blast_fragments method 

(28). The sequences were classified using the matching SILVA taxonomy for OTUs found in 

the first step of the Nelson method, and MOTHUR’s naive Bayesian Classifier (29,30) 

trained against the SILVA database (release 111, clustered at the 97% similarity level) for 

OTUs found in the second step. Sequences were aligned to the SILVA 16S rRNA gene 

reference alignment (31) using the NAST algorithm (32). Sequences that did not align to the 

appropriate 16S rRNA gene region were removed. The phylogenetic tree was constructed 

following the FastTree method (33). Sequence counts for each sample ranging from phylum 

to genus level were generated without rarefaction. Alpha diversity measures [phylogenetic 

diversity (34), Shannon index (35), Chao1 index (36)] and beta diversity matrices 

[unweighted and weighted UniFrac (37,38)] were calculated in QIIME based on the average 

of 10 sub-samples with rarefaction to 10,000 sequences per sample.

Statistical analysis

Differences in fecal microbiota composition were assessed using two phylogenetic beta 

diversity metrics, unweighted UniFrac and weighted UniFrac. Unweighted UniFrac is a 

qualitative measure that captures differences in the presence and absence of OTUs, while 

weighted UniFrac is a quantitative measure that additionally incorporates information on the 

relative abundance of OTUs (38). Principal coordinate analysis (PCoA) plots using the first 

two PCoA axes were generated for both unweighted and weighted UniFrac distances using 

the ‘cmdscale’ function in R. The variation in microbial community structure explained by 

individual, time point, sample receipt time, and antibiotic use was determined by 

PERMANOVA (999 permutations) for both unweighted and weighted UniFrac distances 

using the ‘adonis’ function from the R package ‘vegan’ (39). Due to the prevalence of use 

and impact of antibiotics, we stratified our analyses based on whether participants reported 

any antibiotic use during the 2-year study period.

To determine whether samples more closely resembled other samples from the same 

individual or samples from different individuals, we matched each non-baseline sample with 

the baseline sample it was most similar to as defined by the shortest distance using 

unweighted and weighted UniFrac metrics. We determined whether each pair of samples 

belonged to the same individual and then calculated the proportion of pairs that both 

belonged to the same person.

Taxon abundances are often normalized by converting raw counts into relative abundances 

per sample. Although this addresses the issue of varying sequencing depth, the subsequent 

data are constrained to a simplex due to the unit-sum constraint and, while useful for 

characterization, may not be appropriate for use with standard statistical approaches. Here, 

we applied the interquartile log-ratio transformation (IQLR) for all taxa abundances, which 
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allows for analysis of compositional data by calculating log-ratios of abundances and has 

been shown to be effective in producing approximately multivariate normal data (40,41).

We used ICCs to assess the reliability of several commonly used microbiome measures, 

including the four most abundant phyla (Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria), the three alpha diversity measures described above, and three beta diversity 

measures (first PCoA axis for unweighted UniFrac, weighted UniFrac, Bray-Curtis, and 

Jaccard). ICCs were calculated by first fitting a linear mixed effects model with a random 

effect for participant using the ‘lmer’ function in the R package lme4 (42), and then dividing 

the between-individual variation by the total variation from the model using the ‘icc’ 

function in the R package sjstats. To assess the reliability of genera, we computed ICCs for 

abundances as well as presence/absence. ICCs for abundances were calculated using the 

approach described above. ICCs for presence/absence were calculated by first converting the 

genus abundance table to a presence/absence table by replacing all counts greater than 0 

with 1. Any genus that was present in every sample was excluded as the ICC would be 

undefined due to no variation. Then, a generalized linear mixed effects model with a 

binomial distribution and a random effect for participant was fitted using the ‘glmer’ 

function in lme4 (43). ICCs were then computed using the ‘icc’ function in sjstats. For all 

ICC measures, reliability was considered excellent for ICC≥0.75, good for 0.74≥ICC≥0.60, 

fair for 0.59≥ICC≥0.40, and poor for ICC≤0.39 (44).

Next, we assessed whether one sample is sufficient or multiple samples over time are 

necessary when using the fecal microbiome in an association analysis with a health-related 

outcome. Since multiple studies have aimed to link the fecal microbiome with obesity (45–

47), we selected baseline percent body fat as a benchmark for assessing stability of the 

association over time. The variation in fecal microbiome composition explained by baseline 

percent body fat was calculated using PERMANOVA R2 at baseline, as well as with the 

addition of subsequent samples (e.g. including baseline and the 6-month sample) using 

unweighted and weighted UniFrac to examine differences in the association when 

incorporating multiple time points.

We also explored recovery of the fecal microbiome from antibiotics among participants who 

reported antibiotic use during the two-year study period. Participants were excluded from 

this analysis if they did not provide the last date of antibiotic use, or had a baseline sample 

that failed laboratory quality control. We assessed recovery in samples that were taken after 

the first reported use of antibiotics only (i.e. samples were not included if they were 

collected after two or more courses of antibiotics), and categorized them based on time 

between last antibiotic use and date of sample collection (0-1 months, 1-3 months, 3-6 

months, 6-12 months, 12-24 months). Percent change in alpha diversity (Shannon index and 

phylogenetic diversity) was calculated by dividing the difference in diversity between a 

sample and the baseline sample by the diversity of the baseline sample, and multiplying by 

100. We also assessed changes in beta diversity by using unweighted and weighted UniFrac 

distances between each sample and the baseline sample corresponding to the same 

individual. Differences between the six-month and baseline samples for those not reporting 

antibiotic use were also included as a comparison. Changes in alpha diversity for each time 

Fu et al. Page 6

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interval was assessed using a one-sample t-test for a mean of zero. All analyses were 

conducted in R version 3.4.3.

Results

Participant characteristics

Participants (n=50) had a mean ± SD age of 68.6 ± 2.7 years, and were equally distributed 

by sex and the five race-ethnic groups of the MEC (Table 1) in accordance with our 

recruitment strategy. 23 (46%) participants reported using antibiotics at least once during the 

study period. Those who took antibiotics were more likely to be male and Latino. Samples 

were collected 186.8 ± 36.0 (mean ± SD) days apart. Alpha diversity and phyla abundances 

were comparable between antibiotics use group (Supplemental Table 1). The sequence data 

is available https://www.ncbi.nlm.nih.gov/sra under the accession number SRP153929.

Temporal variation of the fecal microbiome

In our samples, we identified 10 phyla, 20 classes, 26 orders, 46 families, 93 genera, and 

1220 OTUs. Three genera were present in every sample (Bacteroides and two belonging to 

Lachnospiraceae). There was 38,768 ± 11,596 (mean ± SD) sequences per sample and an 

average sequence length of 493 bp. ± 5 bp (mean ± SD). From the PCoA plots based on 

unweighted UniFrac, samples from the same individual generally clustered together (Figure 

1A–C), particularly among those who did not take antibiotics (Figure 1A). There was greater 

overlap of samples between individuals when using weighted UniFrac (Figure 1D–F). The 

majority of microbiome variation was due to inter-individual differences (Table 2), 

accounting for 70% and 78% of the total unweighted UniFrac variation for those on and not 

on antibiotics, respectively. Inter-individual variation explained slightly less but remained 

the largest source of variation when using weighted UniFrac, accounting for 66% and 70% 

of the variation for those on and not on antibiotics, respectively. Variation was explained 

minimally by sample time point and days to receipt at study center (<1%). Inter-individual 

differences and antibiotic use were significant sources of microbiome variation while sample 

time point and days to receipt at study center were not.

To assess whether a single sample was representative of an individual’s microbiome over 

time, we matched each non-baseline sample to the baseline sample with the shortest UniFrac 

distance. The majority of non-baseline samples matched to the baseline sample of the same 

individual when using unweighted UniFrac distances (no antibiotics: 83%; antibiotics: 

72%). Fewer samples matched correctly for weighted UniFrac, with about one-third of 

samples being most similar to the same person’s baseline sample (no antibiotics: 34%; 

antibiotics: 30%).

Reliability of microbiome measures

We next assessed fecal microbiome variability over time using ICCs of taxa and diversity 

measures. Among all participants, the four phyla had fair reliability, with ICCs between 

0.56-0.59 (Table 3). Differences were seen when stratifying by antibiotic use, as ICCs were 

consistently higher among those not taking antibiotics compared to those who did. The 

majority of genera had at least fair reliability. For abundance measures, 79% of genera in the 
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no-antibiotics group and 74% in the antibiotics group had ICC>0.40 (Figure 2A–C). For 

presence/absence, 86% in the no-antibiotics group and 84% in the antibiotics group had 

ICC>0.40 (Figure 2D–F). Genera with poor reliability were typically those with low 

abundance or low prevalence (Supplemental Table 2).

Alpha diversity measures tended to have better reproducibility than individual phyla 

measures in the no-antibiotics group. Phylogenetic diversity had the highest reproducibility, 

followed by Shannon diversity and the Chao1 estimator. The ICCs of all three alpha 

diversity measures were greater in the no-antibiotics group than in the antibiotics group. We 

also assessed beta diversity reproducibility, finding unweighted UniFrac PC1, Bray-Curtis 

PC1, and Jaccard PC1 to have excellent stability over time regardless of antibiotic use, and 

weighted UniFrac PC1 to have good stability over time in both groups (Table 3).

Microbiome-body fat associations

To test the effect of variation in the microbiome over time on a relevant health outcome, we 

modeled the microbiome-body fat association starting with the baseline sample, followed by 

the addition of subsequent samples. Percent body fat had a wider range of values in the 

antibiotics group (11.9%-46.8%) than in the no-antibiotics group (21.4%-50.3%). The 

variation of the fecal microbiome explained by percent body fat did not fluctuate with the 

addition of subsequent samples, and remained relatively stable (Supplemental Table 3) 

whether using all participants (0.029-0.034), only participants not on antibiotics 

(0.035-0.056), or only participants on antibiotics (0.056-0.070) for unweighted UniFrac. 

Weighted UniFrac measures were slightly more variable but still consistent over time.

Recovery from antibiotics use

We also explored microbiome recovery from antibiotics by comparing post-antibiotic use 

samples to the pre-antibiotic baseline sample among participants who took antibiotics. 

Although none of the time intervals were significantly different from zero for Shannon index 

(Figure 3A), changes in the first month were the most variable. The percent change in 

phylogenetic diversity for samples taken in the first month were significant (Figure 3B). Box 

plots for beta diversity suggested little difference in unweighted UniFrac distance compared 

to baseline samples across time intervals, but differences were larger overall among 

antibiotic users than participants not taking antibiotics (Figure 3C). Recovery over time was 

more evident for weighted UniFrac, with distances from baseline after the first month post-

antibiotics closely resembling those not taking antibiotics (Figure 3D)

Discussion

Using several approaches, we showed the fecal microbiome as a whole to be relatively stable 

over a two-year period. Samples from the same participant clustered together and an 

association analysis between the overall community structure and baseline body fat showed 

consistent results throughout the study period. Much of the variation was due to changes in 

taxa abundances rather than the complete loss or gain of taxa. Although reliability among 

participants who reported antibiotic use tended to be lower than among those who did not, 

the largest differences appeared to be among samples taken within a month of antibiotic use.
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As with previous studies (18,19,21), inter-individual differences were the dominant source 

of variation, as evident in the wide phylum distribution of our samples, with relative 

abundances ranging from 15.8%-89.6% for Firmicutes and 6.7%-67.0% for Bacteroidetes. 

When matching non-baseline samples to the most similar baseline sample, we found that the 

majority matched to the same individual when using unweighted UniFrac, while fewer 

matched using weighted UniFrac, suggesting that changes over time were driven more by 

changing abundances of taxa rather than their presence or absence. Claesson et al. (21) 

conducted a similar analysis on stool samples collected 3 months apart. Although they found 

less discrepancy between weighted and unweighted UniFrac measures compared to our 

results, there was a similar pattern where fewer samples were matched when using weighted 

UniFrac.

There is also growing interest in studying the associations of specific taxa with disease, such 

as Fusobacterium and colon cancer (48,49) or Christensenellaceae and obesity (50). We 

found phyla measures, as well as the majority of genera, to be reliable. Temporal variation 

was more of a concern for genera with very low abundances or prevalence, some of which 

could be taxa that are transient and not representative of an individual’s microbiome over 

time or those that are near the detection limit and are thus not able to be consistently 

identified. Larger sample sizes may be necessary if these are of particular interest to a study. 

Less abundant taxa exhibited lower reproducibility in other methodologic studies as well (5).

In a set of exploratory analyses, we were able to assess the ability of the fecal microbiome to 

recover from antibiotics. Antibiotic use explained a small but significant proportion of the 

overall fecal microbiome variation. The strongest and most variable effect on diversity 

generally occurred in the weeks following use, with samples more closely resembling pre-

antibiotic levels in the months that followed. Sampling the fecal microbiome one year (51), 

and even four weeks after antibiotics (52), has shown return in alpha diversity to pre-

treatment levels, although recovery varied for different taxa. Similarly, the ELDERMET 

study reported that alpha diversity among those who reported antibiotic use within the past 

month was not significantly different from those who did not (53). However, nine genera 

were found to be different when using 16S rRNA gene sequencing, as were Bifidobacterium 
levels when measured by culture. With frequent sampling, Dethlefsen et al. was able to show 

that adults undergoing courses of ciprofloxacin saw decreases in OTU richness, phylogenetic 

diversity, and Shannon index within 3-4 days of administration (15). Participants began to 

recover within a week after taking the antibiotic, although the time needed to reach a stable 

level varied among participants and alterations in the abundances of certain taxa were 

apparent. While the gut microbial community as a whole may be able to recover from 

antibiotics, lingering effects on specific taxa highlight the need for the development of 

antibiotics with more targeted effects as an alternative to those that act on a broad range of 

bacteria.

Antibiotic use has also been associated with disease risk factors, including body weight, in 

animal models and epidemiologic studies, (54). We found that the fecal microbiome 

explained more variation in body fat among individuals who used antibiotics. Assuming that 

antibiotic use captured in our study reflects use before baseline (when percent body fat was 

measured), this finding might suggest a greater contribution by the altered microbial 
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community structure to metabolic regulation and energy homeostasis. There is evidence that 

the type of antibiotic may have a different effect on overweight and obesity as well, since a 

longitudinal study by Bailey et al. (55) found an association between early-life exposure to 

broad-spectrum antibiotics with obesity, but not for narrow-spectrum antibiotics.

Our study design had several strengths. Among studies on temporal variation of the fecal 

microbiome, ours has one of the most ethnically diverse populations to date and one of few 

using elderly participants. We were able to collect samples on a consistent schedule over a 

longer period than other population-based studies, which typically collect samples for only a 

few months. The retention rate over the two years was also very high, with 49 participants 

sending all five samples and 1 participant only missing one.

A limitation of our study was that we were not able to assess other sources of microbiome 

variation, such as travel or recent health, as these were not included in the questionnaire that 

was filled out at each stool collection. Our study also used 16S rRNA gene data. Additional 

studies measuring temporal variation of other aspects of the gut microbiome, such as the 

metagenome and metatranscriptome (56), are crucial. Another limitation was that we did not 

have information on what types of antibiotics were used or reason for use. Antibiotics have 

varying mechanisms of action that include targeting bacterial cell walls or membranes, 

protein synthesis, and DNA or RNA synthesis (57). A two-center randomized controlled trial 

in the United Kingdom and Sweden reported different responses to the Shannon index from 

four different antibiotics, with effects on the gut microbiome ranging from no difference 

after one week to sustained reduction at one year (58). As antibiotics are frequently 

prescribed for treating a variety of infections, as well as for prophylaxis in preventing 

infections among high-risk patients, the disease state may also modify the effect of antibiotic 

treatment. However, the temporal trend we saw was comparable to studies conducted in 

participants who were healthy at the time of antibiotic administration (15,52).

In summary, we showed that a single assessment sufficiently captures the majority of fecal 

microbiome measurements in a population-based study, but special consideration should be 

taken with very rare or low abundant taxa. The assessment of methodologic issues, such as 

our test of the reliability of measurements, is an important step in designing robust, effective 

population-based studies to evaluate the role of the fecal microbiome in disease risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Variability of the gut microbiome. Principal coordinate plots based on unweighted UniFrac 

for no antibiotic use (A), antibiotic use (B), all participants (C), and weighted UniFrac for no 

antibiotic use (D), antibiotic use (E), all participants (F). Smaller dots indicate samples and 

are connected to larger dots which represent the mean PC1 and PC2 values for each 

individual. Dashed lines are connected to samples with reported antibiotic use.
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Figure 2. 
Reliability of genera. Intraclass correlations (ICC) genera were calculated for IQLR-

transformed abundances for no antibiotic use (A), antibiotic use (B), all participants (C), and 

presence/absence for no antibiotic use (D), antibiotic use (E), all participants (F) and are 

plotted against mean abundance. Dotted line indicates ICC of 0.40.
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Figure 3. 
Microbiome recovery from antibiotics. Recovery was assessed among participants reporting 

use of antibiotics during the two years of collection. Percent change in Shannon index (A) 

and phylogenetic diversity (B) was calculated relative to the baseline sample and categorized 

on time since last reported antibiotic use. Changes in alpha diversity for each time interval 

were assessed using a one-sample t-test for a mean of zero (*p<0.05). Distances from 

baseline were computed for unweighted UniFrac (C) and weighted UniFrac (D) measures. 

Comparison of six-month to baseline samples among participants not taking antibiotics are 

also included.
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Table 1.

Characteristics of MEC study participants by any reported antibiotic use.

No antibiotic use (n=27) Antibiotic use (n=23) Total (n=50)

Age, years 68.2 ± 2.9 69.0 ± 2.3 68.6 ± 2.7

Female 15 (55.6) 10 (43.5) 25 (50)

Race/ethnicity

 African American 5 (18.5) 5 (21.7) 10 (20)

 Japanese American 6 (22.2) 4 (17.4) 10 (20)

 Native Hawaiian 7 (25.9) 3 (13.0) 10 (20)

 Latino 3 (11.1) 7 (30.5) 10 (20)

 White 6 (22.2) 4 (17.4) 10 (20)

Education, years 15.0 ± 2.5 13.8 ± 3.4 14.4 ± 3.0

Smoking status

 Never 19 (70.4) 17 (73.9) 36 (72.0)

 Former 8 (29.6) 6 (26.1) 14 (28.0)

Body fat % 33.2 ± 6.8 32.2 ± 9.2 32.8 ± 7.9

Mean ± SD for continuous variables and n (%) for categorical variables
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Table 2.

Microbiome variation explained by inter-individual differences, time point of sample, days to sample receipt at 

study clinic, and antibiotic use calculated using a distance-based analysis of variance.

No antibiotic use (n=27) Antibiotic use (n=23) Total (n=50)

R2 p R2 p R2 p

Unweighted UNIFRAC

 Individual 0.777 <0.001 0.696 <0.001 0.743 <0.001

 Time point 0.006 0.797 0.008 0.643 0.004 0.424

 Days to receipt 0.007 0.640 0.012 0.180 0.005 0.178

 Antibiotic use 0.017 0.001

Weighted UNIFRAC

 Individual 0.701 <0.001 0.655 <0.001 0.687 <0.001

 Time point 0.003 0.909 0.009 0.454 0.004 0.434

 Days to receipt 0.005 0.584 0.009 0.365 0.004 0.445

 Antibiotic use 0.018 0.003
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Table 3.

Temporal reliability of microbiome measures. Intraclass correlation coefficients for interquartile log-ratio 

transformed phyla, alpha diversity, and beta diversity measures.

No antibiotic use (n=27) Antibiotic use (n=23) Total (n=50)

Phylum

 Firmicutes 0.64 0.46 0.57

 Bacteroidetes 0.62 0.59 0.56

 Proteobacteria 0.65 0.44 0.56

 Actinobacteria 0.67 0.49 0.59

Alpha diversity

 Phylogenetic diversity 0.75 0.55 0.66

 Shannon index 0.67 0.46 0.58

 Chao1 0.56 0.45 0.52

Beta diversity

 Unweighted UniFrac PC1 0.93 0.83 0.89

 Weighted UniFrac PC1 0.65 0.66 0.64

 Bray-Curtis PC1 0.95 0.88 0.90

 Jaccard PC1 0.95 0.90 0.90
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