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Abstract

Background: Preliminary work has demonstrated that background parenchymal enhancement 

(BPE) assessed by radiologists is predictive of future breast cancer in women undergoing high-risk 

screening MRI. Algorithmically assessed measures of BPE offer a more precise and reproducible 

means of measuring BPE than human readers and thus might improve the predictive performance 

of future cancer development.

Purpose: To determine if algorithmically-extracted imaging features of background parenchymal 

enhancement (BPE) on screening breast MRI in high-risk women are associated with subsequent 

development of cancer.

Study Type: Case control study

Population: 133 women at high-risk for developing breast cancer. 46 of these patients developed 

breast cancer subsequently over a follow-up period of two years.

Field Strength/sequence: 1.5T or 3.0T T1-weighted pre-contrast fat saturated and non- fat 

saturated sequences and post contrast non-fat saturated sequences.

Assessment: Automatic features of BPE were extracted by computer algorithm. Subjective BPE 

scores from five breast radiologists (blinded to clinical outcomes) were also available.

Statistical Tests: Leave-one-out cross validation for a multivariate logistic regression model 

developed using the automatic features and receiver operating characteristic (ROC) analysis were 

performed to calculate the area-under-the-curve (AUC). Comparison of automatic features and 

subjective features was performed using a generalized regression model and p-value was obtained. 

Odds ratios for automatic and subjective features were compared.
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Results: The multivariate model discriminated patients that developed cancer from the patients 

that did not with an AUC of 0.70 (95% CI: 0.60–0.79, p <0.001). The imaging features remained 

independently predictive of subsequent development of cancer (p <0.003) when compared to the 

subjective BPE assessment of the readers.

Data Conclusion: Automatically extracted BPE measurements may potentially be used to 

further stratify risk in patients undergoing high-risk screening MRI.
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INTRODUCTION:

For women, breast cancer is the most common form of cancer and the second most common 

cause of breast cancer-related deaths (1). However, death rates in breast cancer have 

decreased by 36% over the past two decades, presumably due to early detection and 

treatment (1). For early detection, the American College of Radiology guidelines 

recommend screening mammography and MRI for high-risk patients (2). High-risk patients 

have more than 20% lifetime risk of developing breast cancer and breast cancer survival in 

these women is improved with combined MRI and mammography screening (3).

Though the aim of screening MRI is early detection of breast cancer, preliminary work has 

demonstrated that subjective radiologist measures of background parenchymal enhancement 

(BPE) can predict future cancer risk (4)(5). BPE is the enhancement of normal breast 

parenchyma which increases with hormonal activity and decreases with age(6). Increased 

BPE, measured as a qualitative variable, is associated with a 3–10% increased cancer risk 

(4)(5). Since BPE is a measurable variable on all breast MRIs, if it is shown to be predictive 

of future breast cancer risk, then BPE could be used to help stratify women to more or less 

frequent screening. Quantitative computer algorithm-based measurements of the 

enhancement of breast tissue could provide a more reproducible measure of BPE that is free 

of inter- and intra-reader variability which has been shown to be a notable limitation of the 

qualitative reader assessments (7). Such quantitative measures could potentially provide an 

even higher predictive accuracy of breast cancer risk. To date, no assessment of quantitative 

BPE features has been performed to determine their association with the risk of subsequent 

development of breast cancer in a high-risk population undergoing screening MRI. Some 

studies have examined automatic and semi-automatic measures of BPE in other contexts (8)

(9)(10) with conflicting results. Furthermore, a majority of the studies that extracted 

quantitative features require defining a region of interest by reader(s) for the computation of 

BPE (11), making these features susceptible to interobserver variability. Therefore, the goal 

of this study is to automatically quantify the BPE in women undergoing high-risk screening 

MRI and determine the ability of these measurements to predict future breast cancer. 

Furthermore, the predictive power of these quantitative metrics will be compared to 

subjective BPE assessments made by multiple fellowship trained breast radiologists.
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MATERIALS AND METHODS:

Patient Population

For this retrospective study, local institutional review board approval was secured and a 

waiver for informed consent was obtained. We identified all high-risk women (n=1039) who 

underwent screening breast MRI at our institution between August 1, 2004 and July 30, 

2013. It is standard of practice at our institution for all pre-menopausal women to undergo 

high risk screening MRI during the second week of their menstrual cycle. Hormone 

replacement therapy was not an exclusion criterion as this is not always recorded in the MRI 

intake form, but anecdotally the use of hormone replacement therapy is extremely low (near 

0%) in our patient population. Only MRIs with axial and bilateral breast images were 

eligible for inclusion. For these patients, the imaging and pathology reports were queried 

through July 30, 2015 to identify subsequent cancer diagnoses. The high-risk screening 

indication was noted. For each of the identified cancer patients (n=61) in the cohort, two 

control patients from the same patient pool were added by matching age and high-risk 

indication. Each selected control had at least two years of negative imaging follow up. After 

identifying a cohort of 183 high-risk patients, 50 patients were excluded due to missing T1 

non-fat saturated sequences. The final cohort consisted of 133 high-risk patients including 

46 cancer and 87 control patients. Please note the cohort of 183 patients was used in a 

previous study (reference redacted to preserve anonymity) where we evaluated the subjective 

assessment of BPE. In the present work, we are evaluating automatic (and thus 100% 

reproducible) BPE measures.

Image Data

For all patients, the following MR sequences (pulse sequence type: gradient echo) were used 

for data pre-processing and feature extraction: (1) a T1-weighted fat saturated pre-contrast 

sequence, (2) T1-weighted fat saturated first post contrast sequence, and (3) T1-weighted 

non-fat-saturated pre-contrast sequence. The MRI scanner details, image acquisition 

parameters, and contrast agents for these patients are shown in Table 1. . Images for the 

majority of patients in the cancer (48%) and control (58%) cohorts were acquired using 3T 

scanner from GE Healthcare (Little Chalfont, UK). For the majority of patients in both the 

cancer (85%) and control cohorts (92%), Magnevist (Bayer Healthcare, Berlin, Germany) 

was used as the contrast agent. All contrast agents were gadolinium-based and a weight-

based (0.2 mL/kg) dosing protocol was used. The number of slices varied from (128–200), 

slice thickness varied from (1–1.3)mm, FOV values were within (26–40) cm, and spatial 

resolution were as follows: 512 × 512 (92/133), 448 × 448 (37/133), 384 × 384 (1/133), 320 

×320 (3/133).

Image Preprocessing

For each study, the pre-contrast fat saturated sequence was registered to the first post-

contrast fat saturated sequence for further processing. This registered pre-contrast sequence 

and the first post-contrast sequence was used to calculate the subtracted sequence and the 

maximum intensity projection (MIP) image.
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Mask Generation

To calculate BPE features, we first divided the breast MRI into different regions of interest. 

The regions included: (1) the breast region, (2) the fibroglandular tissue region, and (3) the 

heart region on the MIP. These regions were automatically segmented to obtain:

(a) a breast mask from the T1 non-fat saturated sequence

(b) a fibroglandular tissue (FGT) mask extracted from the T1 non-fat saturated sequence

(c) an FGT mask extracted from the fat saturated sequence

(d) a heart mask extracted from the MIP

The extraction processes of these masks are discussed next.

All image data pre-processing and mask extraction related tasks were conducted in 

MATLAB 2016b (The Mathworks, Natick, MA). The masks were extracted as follows:

(a) Breast mask generation: The breast mask segmentation using T1 fat saturated 

sequence was carried out as described in (12). This mask was registered to the first post 

contrast sequence. Both unregistered and registered breast masks were used to segment FGT 

as described below. The registered breast mask was used for feature extraction.

(b) FGT mask extraction from the T1 non-fat saturated sequence: The registered 

breast mask was overlapped with the first post contrast sequence and a fuzzy C-means 

clustering method (13) was applied to segment the fibroglandular tissue (FGT) mask. This 

FGT mask was used for feature extraction.

(c) FGT mask extraction from the T1 fat saturated sequence: The unregistered 

breast mask was overlapped T1 fat saturated sequence and a fuzzy C-means clustering 

method (13) was applied to segment the fibroglandular tissue (FGT) mask. This mask was 

registered to the first postcontrast sequence for further usage. This FGT mask was used for 

feature extraction.

(d) Heart mask extracted from the MIP: The maximum intensity values of the 

subtracted sequence were projected in z-direction to form the maximum intensity projection 

(MIP) image. The vessels on the MIP were identified by the BCOSFIRE algorithm (14) and 

additional post-processing consisted of image erosion to remove isolated voxels. The 2D 

breast mask on the MIP was generated by projecting the registered 3D breast mask on the 

MIP. Since we have two types of volumetric FGT masks, the FGT on the MIP was identified 

with the help of each of these volumetric FGT masks. The FGT masks in the MIP were 

finalized by removing the vessels. The chest cavity on the MIP was identified as the region 

outside the air and the 2D breast mask (obtained by projecting 3D registered breast mask). 

Finally, the heart mask was generated on the MIP by running an active contour segmentation 

(15) technique in the chest cavity.
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Definition of Enhancement

Voxel enhancement is defined as a change in the intensity of the voxel in the first post-

contrast image compared to that in the pre-contrast image. In our work, enhancement in MR 

volumes is quantified in terms of the percentage change in the intensity of the voxel in the 

first post-contrast image compared to the pre-contrast image. On the MIP, the enhancement 

is the relative difference in the intensity of the voxels. Normalized enhancement is defined as 

the enhancement of a voxel divided by the enhancement of the heart. For specific 

mathematical definitions of enhancement used in each of the measures of BPE please see the 

supplementary material.

Features of BPE Extracted in this Study

Eight BPE features were extracted using each of the two FGT masks. Four of these features 

were extracted using 3D MR volumes (pre-contrast, first post-contrast, and FGT mask) and 

the remaining four features were calculated from the MIP. The short descriptions of these 

eight features are as follows:

a. Vol_f1: This feature quantifies what percentage of FGT voxels in the entire breast 

enhances more than 100% in the first post-contrast sequence compared to the pre-contrast 

sequence.

b. Vol_f2: This feature quantifies the average enhancement of FGT voxels.

c. Vol_f3: The normalized enhancement of FGT is calculated. Next, a curve is generated 

such that each point on it indicates what proportion of FGT voxels have enhanced more than 

a threshold corresponding to that point. For example, in Fig. 1, the point (10, 0.48) indicates 

that 48% of the FGT voxels has a normalized enhancement of 10% or more. Area under the 

curve as expressed in Fig. 1 is the value of this feature.

d. Vol_f4: This feature is similar to Vol_f3 but the proportion of FGT is calculated over the 

total breast volume.

e. MIP_f1: This feature quantifies what proportion of the parenchyma enhances on the MIP.

f. MIP_f2: This feature quantifies the average value of the normalized enhancement of FGT 

on the MIP.

g. MIP_f3: This feature takes into account the proportion and intensity of BPE on the MIP 

by calculating the product of MIP_f1 and MIP_f2.

h. MIP_f4: This feature quantifies the normalized enhancement of the MIP by estimating the 

area under the curve on which each point is the proportion of normalized enhancement (y 

axis) exceeding a given threshold (x axis).

Further details about the features extracted can be found in the supplementary material. An 

example of enhanced FGT in MIP is shown in Fig. 2.
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Subjective Assessment of BPE

Five breast radiologists (with 2, 10, 11, 17, and 24 years of post-fellowship experience) were 

included as readers in this study. The readers were blinded to the patient outcomes, the high-

risk indication, the scanner selections and the contrast agents used. The studies were 

independently reviewed by each reader and the BPE (minimal, mild, moderate and marked) 

according to the 5th edition BI-RADS Atlas (16) was recorded. To record the BPE, the 

readers followed the description in BI-RADS that states that BPE “refers to both the volume 

of enhancement as well as the intensity of the enhancement and that an evaluation of BPE 

should take both into consideration”. The BPE states of minimal, mild, moderate and 

marked were converted to ordinal variables by assigning 1, 2, 3 and 4. The primary measures 

evaluated in this study were mean and median BPE assessment across the five readers for 

each study. The inter-reader agreement was calculated using Fleiss Kappa.

Machine Learning-based Models using Computer-Extracted Features

Two multivariate logistic regression models (each using 8 computer-extracted BPE features) 

were constructed to predict the occurrence of cancer in the study population over a follow-

up period of two years: (a) Machine learning model 1: BPE features were based on the FGT 

mask on the fat saturated sequence and (b) Machine learning model 2: BPE features were 

based on the FGT segmentation using the non-fat-saturated sequence.

Statistical Analysis

AUC and Confidence Interval—To evaluate the prognostic value (in terms of predicting 

the occurrence of cancer over a follow-up period of two years) of the breast parenchyma 

assessment conducted by readers as well as the machine learning models, we calculated the 

area under the receiver operating characteristics curve (AUC) using the proc package (17) in 

R (http://www.r-project.org/) using leave-one-out cross validation. The pooled AUCs from 

predicted scores of the trained models were calculated. The confidence intervals of the 

AUCs were estimated using the Delong’s method (18).

Comparison of Subjective BPE and Predicted BPE—To compare the BPE features 

and readers’ mean BPE values, we calculated the correlation between the individual feature 

values and readers’ mean BPE values. To verify if the computer-extracted features were 

independently predictive of the development of breast cancer over a follow-up period of two 

years, we calculated the p-values from a bivariate logistic regression model (function glm in 

R) at 5% significance level. The dependent variable was the occurrence of cancer and for the 

independent variables, the predicted scores from the machine learning models as the first 

covariate and a measure of the subjective score (any of the individual reader’s score, mean 

score, or median score) as the second covariate.

Computation of Odds Ratio: When calculating the odds ratio, we split the patients into 

two groups (one for low-risk of subsequent cancer and one for high-risk of subsequent 

cancer) in two different ways: (a) by discriminating minimal versus mild, moderate and 

marked patients using the median score of the readers and (b) by discriminating minimal and 

mild versus moderate and marked patients using the median score of the readers. We noted 

the proportion of patients present in each group for each split. For the average reader score 
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and the scores from the machine learning models, the patients were split according to the 

score predicted by the variable/model using a cut-off value that helps maintaining the 

relative proportions of the low-risk of subsequent cancer and high-risk of subsequent cancer 

groups the same as obtained using the median readers’ score.

RESULTS

Characteristics of Study Population

The characteristics of the study population are shown in Table 2. Most subsequent cancers 

were invasive ductal carcinoma which were ER positive (61%), PR negative (53%), and 

HER2 negative (97%).

Performance of Imaging Features for Assessing Subsequent Development of Breast 
Cancer

The AUC of each feature to predict the occurrence of cancer is presented in Table 3. In 

general, the MIP based features have better individual AUCs than the volumetric features. 

One volumetric feature and two MIP based features have AUCs more than 0.62 using both 

types of FGT masks.

Comparison of Mean BPE from Readers and Imaging Features

The readers had fair average pairwise agreement (Fleiss Kappa ĸ=0.38, 95% CI: 0.34 – 

0.42). The mean readers’ score had a moderate average agreement (ĸ=0.57, 95% CI: 0.51 – 

0.63) with all readers. All the quantitative features extracted from the images were positively 

correlated (Pearson’s linear correlated coefficient ρ =0.27–0.67) with the mean readers’ 

score. The highest correlation (ρ = 0.67) was demonstrated by MIP_f1, which is the 

proportion of parenchymal enhancement on the MIP, extracted using the first post-contrast 

sequence. The lowest correlation (ρ = 0.27) was found with MIP_f2, which is the mean 

value of the normalized enhanced FGT. The average values of correlation for volumetric 

features (0.52) and MIP based features (0.53) were similar.

The performances of the readers as well as computer models are shown in Table 4. Both of 

the models based on the automatically extracted features had better AUCs than mean and 

median subjective scores.

As obtained from the bivariate logistic regression models, the computer models (Machine 

learning model 1 and model 2) were predictive of subsequent cancer independently of the 

median score of readers (p<0.025 and p<0.003 respectively), mean score from readers 

(p<0.025 and p<0.002 respectively), and the scores from each individual reader (maximum 

of 5 p-values for model 1 <0.025 and maximum of 5 p-values for model 2 p<0.0021 

respectively).

The odds ratio obtained using the subjective scores and the automatically extracted scores 

are shown in Table 5 based on two thresholds. The automatic imaging features performed 

better than the subjective features for all thresholds, having an odds ratio greater or equal to 

the mean and median reader scores.
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DISCUSSION:

In this study of high-risk breast cancer patients undergoing screening MRI, we extracted 

automatic features of BPE. We found a statistically significant association between the risk 

of subsequent breast cancer and quantitative BPE features derived from three-dimensional 

images and two-dimensional projection images. Furthermore, the predictive performance of 

these quantitative BPE features was overall better than that achieved by the subjective BPE 

measurements from the human readers.

Out of the 8 features extracted, 3 features had AUC values higher than that obtained by the 

subjective scores for predicting cancer risk: Vol_f4, MIP_f2, and MIP_f4. For the volumetric 

features used in our study, Vol_f3 and Vol_f4 performed better than the other two volumetric 

features. Vol_f3 and Vol_f4 worked in a broader spectrum by considering multiple threshold 

levels (10 % to 100%) of enhancement with equal importance in their calculations, whereas 

Vol_f1 considered a single level (10%) of enhancement. Vol_f2 is the mean level of 

enhancement of the FGT voxels, and thus represented a single dominant level of 

enhancement despite considering all enhancement levels. The mean AUC of risk prediction 

using these individual volumetric features for the high-risk screening patients was 0.55 in 

our study, whereas using the MIP based features the mean individual AUC was 0.6. While 

MIP_f1 quantified the proportion of enhancement in the BPE on the MIP, it did not take into 

account the heart intensity on the MIP. However, the three remaining MIP based features 

used the heart intensity in their calculations. This indicates that while quantifying the MIP 

based BPE, the enhancement of the FGT relative to the heart is important.

Presently, BPE is defined by the subjective assessment of readers which is based on both the 

volume and intensity of enhancement(19). Among the features quantified in our study, 

MIP_f1 had the best correlation with the mean readers’ BPE assessment. This feature is 

based on the proportion of parenchymal enhancement on the MIP images which suggests 

that readers are relying heavily on MIP images when determining BPE, despite no guidance 

from the BI-RADS Atlas. Interestingly, the MIP_f1 was one of the least predictive features 

for future breast cancer. This may also explain the limited predictive power of prior work 

that has utilized qualitative assessments of BPE, but which did not derive how readers made 

these assessments [4] [5] (20). In contrast, MIP_f2 had the worst correlation with the mean 

readers’ BPE assessments, but it had the best performance for predicting future cancer. The 

MIP_f2 feature utilizes the mean value of the normalized enhanced FGT on the MIP images. 

If BPE measurements assessed by human readers are going to be of value in predicting 

future breast cancer, then the definition of BPE in the BI-RADS Atlas might need to be 

adjusted and readers should focus on the mean normalized enhancement rather than the 

proportion of enhancement in MIP. As normalized enhancement is not an intuitive 

measurement for radiologists, training will need to be developed to determine if radiologists 

can accurately reproduce this metric. Alternatively, since quantitative BPE features can be 

more precise and reproducible it may be best to move away from BPE assessments by 

human readers.

Our methodology of using quantitative features to predict future cancer builds upon the work 

of prior investigators who have applied similar methodologies but to different tasks. 
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Identifying quantitative features that correlate with reader BPE assessments has been 

evaluated by several authors (21) (22) (19). While Kajihara et al. (23) recorded the 

association of the menstrual cycle and semi-automatically extracted BPE feature that 

quantified the percentage enhancement of the most enhanced FGT region in the early and 

delayed phases of enhancement, we used the FGT from the entire breast to quantify the 

BPE. Response to both neoadjuvant chemotherapy therapy (24) and risk-reducing salpingo-

oopherectomy surgery (10) have also been studied using BPE and our proportional FGT 

enhancement curves using multiple thresholds were formed based on the features they 

proposed. However, the areas (Vol_f3 and Vol_f4) under these curves were used as features 

instead of the individual points on these curves. A fully automated feature extraction 

technique (8) was used to quantify early, mid, and late BPE from the MRI volumes 

containing benign or cancerous lesions and shown to predict cancer risk in premenopausal 

and post-menopausal patients groups separately. In contrast, we specifically used a high-risk 

screening cohort with normal MRIs and extracted all the features using the early 

enhancement.

We used FGT masks from two different sequences: T1 non-fat saturated sequences and first 

post-contrast sequence. Features derived from the FGT mask using T1 non-fat saturated 

sequences, including most individual features and machine learning model 2, performed 

better than features based on FGT from the first post-contrast sequence as well as subjective 

scores which had access to all sequences. The FGT segmentation from the first post-contrast 

sequence can be influenced by the enhancement of the tissue as normal parenchyma 

enhances in early contrast enhanced MRI (25). However, FGT masks from T1-non-fat 

saturated sequences remain unaffected by enhancement which might explain in part the 

better performance of the features based on T1-non-fat saturated sequence-based masks. We 

found that the effect of mask was (a) more prominent in the multivariate model compared to 

the univariate models and (b) more prominent in volumetric features (9% variation) and MIP 

based features (3% variation).

The MRI sequences included in our study were from multiple scanners, and different 

magnetic field strengths were used for their acquisition. The range of the data acquired spans 

a decade. Different contrast agents were used to acquire the images, though one of the 

contrast agents was used for the majority of the scans. Thus, our results were robust to the 

variability in the dataset. However, future studies can be conducted on datasets having 

uniform protocols to find if better performance of the algorithm can be obtained as several 

FGT enhancement features were found to be stable (26) under varying scanning protocols.

Our study has limitations. The extracted imaging features used the first post contrast image 

of the screening MRI as the only post-contrast sequence. In the future, more features can be 

extracted from the delayed sequences to study their effect on the prediction of future breast 

cancer risk. However, our features showed associations with the subsequent development of 

breast cancer. Moreover, our study is single institutional and retrospective in nature. A multi-

institutional study needs to be done to assess the association of automatic features with the 

subsequent development of cancer, followed by the evaluation of these features in an 

independent test set. However, our preliminary results are based on a dataset that has patient 

data spanning over a decade with considerable variability. Finally, for extensive validation to 
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determine if this study can have a broad clinical appeal, further investigation needs to be 

conducted in a prospective setting.

In conclusion, we demonstrated that a multivariate model comprising automatically 

extracted features of BPE from volumetric and two-dimensional projection images from 

screening MRI in high-risk patients can be associated with future breast cancer risk. Further 

validation needs to be conducted in a multi-institutional large-scale setting to assess the 

robustness and translational value of these features in a clinical setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations:

MRI Magnetic resonance imaging

BPE Background parenchymal enhancement

FGT Fibroglandular tissue

MIP Maximum intensity projection

AUC Area under receiver operating characteristics curve
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Figure 1. 
A curve showing the proportion of FGT voxels (over the total FGT volume) that has a 

normalized enhancement of T% or more. T ranges from 10 to 100 with intervals of 10.
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Figure 2. 
Images from a patient that subsequently developed cancer (a) and the two matched controls 

(b and c respectively). The MIPs are presented in the first column and the breast masks are 

shown in the second column. The third column represented enhanced FGT on the MIP in 

green, vessels in red and remaining breast mask in blue. The FGT for these images was 

extracted from the corresponding T1 non-fat saturated sequence.
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Table 1:

MRI protocols in Cancer and Control Patients

Scanner
Parameter

Details Model TR
(ms)

TE(m
s)

Contrast
Agent Type

(Count)

Subseque
nt Cancer

Count
N (%)

Control
Count

(%)

Manufacturer GE Healthcare, Little 
Chalfont, UK

Signa HDx 4.88–6.76 2.27–2.54 Magnevist (64) 21 (46) 43 (49)

Signa HDxt 4.88–6.10 2.28–2.74 Magnevist (26), Multihance 
(2) 5 (11) 23 (26)

Siemens, Munich, Germany MAGNETOM TrioTim 3.54– 4.09 1.36–1.58 Magnevist (14), Multihance 
(2), Unknown (5) 8 (17) 13 (15)

MAGNETOM Avanto 4.12–4.54 1.27–1.51 Magnevist (14), Multihance 
(3), Gadavist (1) 10 (22) 8 (9)

MAGNETOM Trio 3.54 1.4 Unknown(1) 1 (2) 0 (0)

MAGNETOM Espree 4 1.33 Magnevist (1) 1 (2) 0 (0)

Magnetic Field Strength 1.5T MAGNETOM Avanto 4.12–4.54 1.27–1.51 Magnevist (14), Multihance 
(3), Gadavist (1)

10 (22) 8 (9)

Signa HDxt 4.88–4.98 2.28–2.36 Magnevist (9) 3 (7) 6 (7)

Signa HDx 4.88–5.08 2.27–2.41 Magnevist (11) 1 (2) 10 (11)

MAGNETOM Espree, 4 1.33 Magnevist (1) 1 (2) 0 (0)

3.0T Signa HDx 5.11–6.76 2.35–2.54 Magnevist (53) 20 (43) 33 (38)

Signa HDxt 5.07–6.10 2.33–2.74 Magnevist (17), Multihance(2) 2 (4) 17 (20)

MAGNETOM Trio Tim 3.54– 4.09 1.36–1.58 Magnevist (14), Multihance 
(2), Unknown (5) 8 (17) 13 (15)

MAGNETOM Trio 3.54 1.4 Unknown(1) 1 (2) 0 (0)
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Table 2

Patient demographics in the cancer and control cohorts

Cancer cohort
N (%), mean

(range)

Control cohort
N (%), mean (range)

(n=46) (n=87)

Age at index MRI (years) 50.3 (27.4–73.9) 50.1 (28.4–75.9)

Race/ethnicity

White or Caucasian 37 (80) 71 (82)

Black or African American 7 (15) 10 (11)

Other or not reported 2 (5) 6 (7)

Follow up duration (years) 2 (0 –5.1) 4.5 (2.1 – 6.7)

Subsequent cancer diagnosis

DCIS 13 (28) NA

Invasive lobular carcinoma 3 (7) NA

Invasive ductal carcinoma 30 (65) NA
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Table 3

AUCs for individual features

FGT
mask
source

Vol_f1 Vol_f2 Vol_f3 Vol_f4 MIP_f1 MIP_f2 MIP_f3 MIP_f4

First post-contrast sequence 0.47 0.43 0.60 0.64 0.49 0.66 0.60 0.64

T1 non- fat -saturated sequence 0.48 0.46 0.66 0.63 0.50 0.66 0.60 0.66
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Table 4

AUC values from different variables for predicting risk of occurrence of cancer

Name of the variable AUC (95% confidence interval)

Mean reader scores 0.59 (0.49–0.70)

Median reader scores 0.60 (0.51–0.69)

Machine learning model 1 0.63 (0.52 – 0.73)

Machine learning model 2 0.70 (0.60 – 0.79)
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Table 5

Odds ratios for the subjective scores and automatic imaging features

Threshold used
according to
median score of
readers to
categorize
patients into
low and high
BPE

Odds Ratio for
mean reader
score

Odds Ratio for
median reader
score

Odds Ratio for
using features
from first-
postcontrast
Based FGT
mask

Odds Ratio for
using features
from first-T1
non-fat-
saturated
Based FGT
mask

minimal vs mild, moderate, and marked 2.44 2.66 2 4.21

minimal and mild vs moderate and marked 0.78 0.85 2.41 3.1
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