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Abstract

Neurodegenerative diseases require an autopsy for confirmation of diagnosis. When death is the 

event of interest, studies based on autopsy-confirmed diagnoses result in right truncated survival 

times, since individuals who live past the end of study date do not receive a pathological diagnosis 

and are therefore not included in the sample. Furthermore, many studies of neurodegenerative 

diseases recruit subjects only after the onset of the disease, which may result in left truncated 

survival times. Therefore double truncation, the simultaneous presence of left and right truncation, 

is inherent in many autopsy-confirmed survival studies of neurodegenerative diseases. The main 

focus of this paper is to inform about the inherent double truncation in these studies and 

demonstrate how to properly estimate and compare survival distribution functions in this setting. 

We do so by conducting a case study of subjects with autopsy-confirmed Alzheimer’s disease and 

frontotemporal lobar degeneration. This case study is supported by extensive simulation studies, 

which provide several new contributions to the literature on survival distribution estimation in the 

context of double truncation.
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1. Introduction

Neurodegenerative diseases, such as Alzheimer’s disease (AD) and frontotemporal lobar 

degeneration (FTLD), require an autopsy for a definitive diagnosis.1 Without an autopsy-

confirmed diagnosis, it is uncertain which disease a given individual may have. Hence this 

individual cannot be included in an autopsy-confirmed study sample pertaining to a 

particular disease. Therefore when the event of interest is death, studies which include only 

autopsy-confirmed subjects result in pure right truncation, since individuals who have the 

disease of interest and live past the end of study date do not receive a pathological diagnosis. 
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Because these individuals cannot be included in the autopsy-confirmed study sample, they 

are treated as unobserved. Furthermore, studies that recruit individuals after the onset of the 

disease has occurred may result in left truncation, since individuals who succumb to the 

disease before they enter the study are unobserved. This simultaneous presence of left and 

right truncation, also known as double truncation, is therefore inherent in autopsy-confirmed 

studies of neurodegenerative disease.

Double truncation occurs in these studies as follows: Subjects are only observed if their time 

of death, tdeath, occurs after the time of study entry, tentry, and before the study end time, tend. 

In other words, only subjects with tentry ≤ tdeath ≤ tend are observed. The survival time T in 

individuals with neurodegenerative diseases is typically measured as the time from disease 

symptom onset to death. That is, T = tdeath − tonset, where tonset is defined as the time in 

which disease symptom onset occurs. We therefore define the left truncation time, L = tentry 

− tonset, as the time from disease symptom onset to study entry, and the right truncation time, 

R = tend − tonset, as the time from disease symptom onset to study end. The truncation 

scheme tentry ≤ tdeath ≤ tend is therefore equivalent to L ≤ T ≤ R. This truncation scheme is 

illustrated in Figure 1.

Unlike a censored individual who provides partial information about their survival time, a 

truncated individual is completely unobserved and provides no information to the 

investigator, resulting in a biased sampling scheme. Right truncation in this setting yields an 

observed sample that is biased towards smaller survival times, since individuals with longer 

survival times are more likely to live past the end of the study. The left truncation 

simultaneously leads to an observed sample that is biased towards larger survival times, 

since individuals with shorter survival times are more likely to succumb to the disease before 

they enter the study. Therefore any estimation procedure of the survival time distribution 

which does not account for the double truncation will be biased. In this paper, we focus on 

autopsy-confirmed studies of neurodegenerative diseases, but note that double truncation can 

be present in other studies.2

The bias introduced in autopsy-confirmed survival studies is briefly discussed in the context 

of Cox regression models.3 One of the goals of our paper is to further emphasize and explore 

this important issue by examining the bias introduced in autopsy-confirmed survival studies 

in the context of survival distribution estimation, thus avoiding any assumptions about the 

survival time. Survival distribution estimation is useful in time to event analysis as it serves 

as the first step of evaluating the disease risk. It is a useful exploratory tool before any 

regression modeling. It is particularly suited for graphical display which is an essential part 

of disease risk modeling.

There are a few papers devoted to the estimation of the survival time distribution in the 

presence of double truncation. Bilker and Wang2 were one of the first to motivate the 

problem of double truncation by noticing that it was present in certain retrospective studies 

of survival from HIV infection to AIDS. Motivated by doubly truncated quasar data, Efron 

and Petrosian4 introduced a nonparametric maximum likelihood estimator (NPMLE) of the 

survival time distribution under double truncation. Shen5 established the asymptotic 

properties of the NPMLE, and introduced a nonparametric estimator of the truncation 
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distribution. Under the assumption that the joint distribution function of the truncation times 

comes from a parametric family, Shen6 and Moreira and de Ũna-Álvarez7 introduced a 

semiparametric maximum likelihood estimator (SPMLE) for the survival time distribution 

function under double truncation. The NPMLE and SPMLE both assume independence 

between survival and truncation times. A version of a conditional Kendall’s Tau was 

introduced by Martin and Betensky8 to test for dependence between survival and both left 

and right truncation times.

Despite the wide use of autopsy-confirmed studies of neurodegenerative diseases, 

practitioners continue to ignore the inherent selection bias due to double truncation. This 

may be due to either a lack of awareness of the problem or of existing methods to handle it. 

Our main objective is to inform the reader about the inherent double truncation in these 

studies and highlight the importance of accounting for it. We do so by conducting a case 

study of two neurodegenerative diseases, where we show how to properly estimate and 

compare the survival distributions in the presence of double truncation. This case study is 

supported by extensive simulation studies. Specifically, our simulation studies include an in-

depth comparison of the SPMLE, NPMLE, and the naïve empirical distribution function 

under a wide variety of double truncation schemes. These truncation schemes include cases 

when the assumptions of the SPMLE and NPMLE are violated. Through these simulation 

studies, we discover that the SPMLE and NPMLE are sensitive to the assumption of 

independence between the survival times and truncation times. We also discover that the 

SPMLE is robust to model misspecification when a gamma distribution with two unknown 

parameters is assumed for the truncation times. This discovery provides different insights in 

contrast to previous literature, which has concluded that the SPMLE can be heavily biased 

under misspecification of the truncation distribution.6,7

The outline of this paper is as follows. In Section 1.1, we briefly introduce the data example 

for autopsy-confirmed studies of neurodegenerative diseases. In Section 2, we introduce 

notation and the SPMLE and NPMLE of the survival distribution function, as well as formal 

tests to compare distribution functions in the presence of double truncation. The simulations 

to evaluate and compare the performance of these estimators are presented in Section 3. In 

Section 4 we conduct a case study in which we estimate and compare the survival curves for 

subjects with an autopsy-confirmed diagnosis of AD or FTLD. Concluding remarks and 

limitations of these methods are discussed in Section 5. Additional results and code are 

provided in the online supplementary materials.

1.1. Case Study: Autopsy-confirmed studies of neurodegenerative diseases

In our case study in Section 4, we focus on autopsy-confirmed AD and FTLD. While both 

neurodegenerative diseases lead to dementia and loss of the basic activities of daily living, 

their underlying disease pathologies differ. The pathology of AD is characterized by 

accumulations of neurofibrillary tangles and senile plaques in the brain. AD is the leading 

cause of dementia, and symptoms typically become present in later ages. Frontotemporal 

degeneration (FTD) is a common form of young-onset dementia and is typically caused by a 

spectrum of pathologies known as FTLD,9 which are different than the pathologies 

underlying AD.
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The study and comparisons of survival times of patients with neurodegenerative diseases are 

important for planning the resources needed to care for patients during a period of decreased 

ability, allocating public resources for disease prevention and care, giving insight towards 

developing disease modifying therapies, and predicting the future prevalence of the disease. 

Previous studies of subjects with autopsy-confirmed FTLD have concluded that survival 

from symptom onset ranges from 6 years to 10.5 years.10–12 Studies based on clinical 

diagnoses of FTLD have concluded that survival from symptom onset ranges from 7 to 13 

years, and that this range is comparable to that in AD.13 However the studies which 

consisted of autopsy-confirmed subjects did not adjust for double truncation, and were 

therefore subject to selection bias. The remaining studies consisted of clinically diagnosed 

subjects. Clinical diagnoses are not always accurate in diagnosing a particular 

neurodegenerative disease,14 and therefore the conclusions of these studies may not be 

accurate.

In our data example, we aim to study and compare autopsy-confirmed samples using 

methods which account for double truncation, thereby eliminating the issues described in the 

previous studies above. Our observed sample contains all subjects who entered the 

neurodegenerative disease autopsy program at the University of Pennsylvania after 1995, 

and had an autopsy-confirmed diagnosis of AD (n=47) or FTLD (n=31) before 2012. Here 

we let tonset denote the time of AD or FTLD symptom onset. The survival time T is the time 

from tonset to death. The left truncation time L is the time from tonset to the time at which the 

subject first entered the program. The right truncation time R is the time from tonset to July 

1,2012.

In addition to estimating the survival curves for each group, we aim to formally compare the 

survival probabilities at different time points. These analyses are performed in our case study 

in Section 4. The methods used in these analyses are supported by the simulation studies 

conducted in Section 3.

2. Existing methods to adjust for double truncation

We state the problem in statistical terms as follows. Let T denote the survival time of interest 

(e.g. survival time from disease symptom onset), L denote the left truncation time (e.g. time 

from disease symptom onset to entry into the study), and R denote the right truncation time 

(e.g. time from disease symptom onset to the end of study date). Let N denote the size of the 

target sample - the sample that would have been observed had there been no truncation 

present in the study. We denote the observed data as (Tj, Li, Ri) for i = 1,…, n. Due to double 

truncation, we only observe (Ti, Li, Rj) for n ≤ N individuals who live long enough to enter 

the study (i.e. T ≥ L) and do not live past the end of the study (i.e. T ≥ R). Here we have 

denoted the population random variables from the target population without subscripts, and 

the sampling random variables from the observed sample with subscripts.

We are interested in estimating the cumulative distribution function F of T, where F(t) = P(T 
≤ t) for a given time t. The survival distribution function is given by S(t) = 1 − F(t). We note 

that right censoring is not present in autopsy-confirmed studies of neurodegenerative 

diseases. This is because individuals who live past the end of the study are undiagnosed 
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(since an autopsy is never performed) and not included in the study sample. Therefore no 

information is available on the survival time of these individuals. With no censoring, the 

standard estimator of the cumulative distribution function of the survival times is just the 

empirical cumulative distribution function (eCDF) Femp(t) = 1
n Σi = 1

n I[Ti ≤ t] for a given time 

t, where I is the indicator function. We show through simulations in the next section that this 

estimator, which does not take into account that the data are doubly truncated, is biased. 

Throughout the paper, we refer to the eCDF as the naïve estimator and denote it by Femp. We 

note that the eCDF is equivalent to the Kaplan-Meier estimator when neither censoring nor 

truncation is present.

The methods to estimate F, described below, assume that the survival times are independent 

of the left and right truncation times. That is, (L, R) is independent of T. It is also assumed 

that no censoring is present, and that (Li, Ti, Ri) are independent and identically distributed 

for i = 1,…, n. For any cumulative distribution function Q, we define the left endpoint of its 

support by aQ = in f{x : Q(x) > 0} and the right endpoint of its support by bQ = in f{x : Q(x) 

= 1}. Let K denote the joint cumulative distribution function of the left and right truncation 

times. Let HL(l) = K(l, ∞) and HR(r) = K(∞, r) denote the marginal cumulative distribution 

functions of L and R, respectively. The methods described below assume that aHL < aF ≤ 

aHR and bHL ≤ bF < bHR. These conditions are needed for identifiability of the cumulative 

distribution function estimators.15

The two existing methods for estimating the cumulative distribution function under double 

truncation are the SPMLE and the NPMLE. Both make no assumptions about the 

distribution of the survival times, but the SPMLE assumes that the truncation times L and R 
have a joint cumulative distribution function, Kθ, which depends on a parameter θ. An 

estimate θ  of θ can be obtained and then used to compute W
θ

(T i),
6,7 the estimated likelihood 

of observing a subject with survival time Ti in the sampled population relative to the target 

population. Specifically, W
θ

(T i) = P
θ

(L ≤ T ≤ R ∣ T = T i)
−1, the inverse of the estimated 

probability (under parametric assumptions) of observing a subject in the study sample with 

survival time T = Ti.

The SPMLE is then a weighted sum of the elements I(Ti < t) of the eCDF and is given by

FSP(t) = 1
n ∑

i = 1

n
W

θ
(T i) × I(T i ≤ t) . (1)

Under the regularity conditions given by Shen,6 namely that Kθ (l, r) is continuous in (l, r) 
for each θ in a compact set ϴ, and Kθ(l, r) is continuously differentiable in θ for each fixed 

(l, r), we have that n(FSP(t) − F(t)) N(0, σ2(t)). A consistent estimator of the asymptotic 

variance σ2(t), which we denote by σSP
2 (t), is provided in Moreira and de Ũna-Álvarez7 

(Section 2, p. 1350). This result also rests on the assumption that the truncation distribution 
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is correctly specified. The distributional assumptions for the truncation times can be checked 

using the test statistics introduced in Moreira et al.16

The NPMLE makes no distributional assumptions about the truncation times. Similar to the 

SPMLE, the NPMLE is weighted by W(T i), the nonparametric estimate of the likelihood of 

observing a subject with survival time T in the sampled population relative to the target 

population. Here W(T i) = P(L ≤ T ≤ R ∣ T = T i)
−1, the inverse of the estimated probability 

(under no parametric assumptions) of observing a subject in the study sample with survival 

time T = Ti. The NPMLE is then given by

FNP(t) = 1
n Σ

i = 1
n

W(T i) × I(T i ≤ t) . (2)

Details of this estimation procedure, along with proofs for the consistency and asymptotic 

normality of FNP(t), are given in Shen.5 Due to the complicated nature of FNP(t), we apply 

the simple bootstrap method to obtain a variance estimator,17 which we denote by σNP
2 (t). 

The simple bootstrap has been shown to provide a good approximation to the variance of 

FNP(t).17

Often we would like to test whether two survival distributions are equal. Under double 

truncation, this can be done using the semiparametric extension of the Mann-Whitney test.2 

This estimator also makes use of the parametric distribution of the truncation times. Let (L1i, 

T1i, R1i), 1 ≤ i ≤ ni be the observed data from group 1 and (L2j, T2j, R2j), 1 ≤ j ≤ n2 be the 

observed data from group 2. Here it is assumed that (L1, R1) have a parametric joint 

cumulative distribution function Kθ and (L2, R2) have a parametric joint cumulative 

distribution function Hγ, which depend on the parameters θ and γ, respectively. Estimators 

of θ and γ, denoted by θ  and γ , can be obtained using the estimation procedure for the 

SPMLE.6,7 The two-sample U-statistic is of the form

U(θ , γ ) = 1
n1n2

Σ
i = 1

n1
Σ

j = 1

n2
sign(T1i

− T2 j
) × W1θ

(T1i
) × W2γ (T2 j

) .

Similar to the definition of W
θ

(T i), W1θ
(T1i

) is the inverse of the estimated probability of 

observing a subject from group 1 in our study sample with survival time T1i, and W2γ(T2 j
) is 

the inverse of the estimated probability of observing a subject from group 2 in our study 

sample with survival time T2j.

Bilker and Wang’s U-statistic tests whether two survival distributions are equal across all 

time points.2 We test whether the probability of survival between two independent groups 

are equal at a single time point t as follows. Let Fj (t) denote the true distribution function at 

time t for group j = 1,2, and let F1(t) and F2(t) be any independent estimators of F1 (t) and 
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F2(t) which are consistent and asymptotically normal, with asymptotic variances σ1
2(t) and 

σ2
2(t), respectively. Then the statistic W t =

[F1(t) − F2(t)]2

σ1
2(t) + σ2

2(t)
 has an asymptotic χ1

2 distribution18 

(see Section 7.8 of reference 18 for justifications). Here σ j
2(t) is any consistent estimator of 

σ j
2(t) (e.g., σSP

2  (t)) for j = 1,2.

3. Simulation study

We conducted a simulation study to further investigate the impact of ignoring double 

truncation in autopsy-confirmed survival studies of neurodegenerative disease and to assess 

the performance of the SPMLE and NPMLE under different truncation schemes. 

Specifically, we compared the SPMLE (FSP) and NPMLE (FNP) to the eCDF (Femp) on bias 

(F − F0), where F0 is the true distribution function, observed sample standard deviations 

(SD), estimated standard errors (SE), mean squared errors (MSE), and the average empirical 

coverage probability of the 95% confidence intervals (Cov). The standard errors for FSP and 

FNP are estimated by σSP and σNP, respectively. We also compared the bias and observed 

sample standard deviation of the estimated median survival time t 0.5 across these estimators. 

We conducted 1000 simulation repetitions with a target sample size of n=50 and n=250. In 

order to get to the desired sample size n, we simulated n/p0 observations to account for 

truncation, where p0 is the true probability of observing a randomly selected subject from 

the target sample.

For these simulations, we generated the survival time from disease symptom onset, T, as 

gamma(10,1). The time from disease symptom onset to study entry, L, was generated as 

gamma(α1, β1), and the time from disease symptom onset to the end of study, R, was 

generated as gamma(α2, β2). In the following models, we changed the values of (αi, β1) and 

(α2, β2) to adjust the percentage of truncated observations. In model 1, we set (α1, β1) = 

(4.5,1.5) and (α2, β2) = (8,2.5), which resulted in moderate left truncation (22%) and mild 

right truncation (8%), with a total of 30% of the observations truncated. In model 2, we 

reduced the left truncation and increased the right truncation by setting (α1, β1) = (3,1) and 

(α2, β2) = (5, 2), which resulted in 55% of truncated observations (2% on the left and 53% 

on the right). In model 3, we set (α1, β1) = (5,2) and kept (α2, β2) = (5,2). This resulted in 

heavy left and right truncation and a total of 80% of the observations truncated (48% on the 

left and 53% on the right).

Figure 2 displays the bias of FSP, FNP, and Femp across the 1st through 9th deciles of F0 for 

the three models. Here FSP has little bias regardless of sample size or truncation proportion, 

and FNP is slightly biased in the right tail of the distribution under smaller sample sizes and 

heavy right truncation, and has little bias otherwise. The naïve estimator, Femp, is biased in 

all three models. The bias of Femp in model 1 is negative since the proportion of missing 

observations due to left truncation is slightly greater than the proportion missing due to right 
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truncation, and thus we are under sampling the smaller survival times. In model 2, this bias 

is both positive and larger in magnitude relative to model 1, since we are severely under 

sampling the larger survival times due to the heavy right truncation. In model 3, this bias is 

negative across the 1st through 4th deciles of F0, and positive across the 5th through 9th 

deciles of F0. The bias here is smaller in magnitude relative to model 2, since we are 

(almost) equally under sampling the smaller and larger survival times, and therefore the bias 

due to left truncation is canceling out some of the bias due to right truncation.

Table 1 compares (absolute) bias(F), SD(F), SE(F), MSE(F), cov(F), bias(t 0.5), and SD(t 0.5) 

for F = FSP, F = FNP, and F = Femp. With the exception of bias(t 0.5) and SD(t 0.5), these 

statistics were averaged across the 1st through 9th deciles of F0. For example, bias(F) in the 

first line of Table 1 represents the average absolute value of the bias corresponding to FSP in 

the top left panel of Figure 2. For F = FNP, SE(F) was based on 200 bootstrap resamples. 

The median survival time (t0.5) of the gamma(10, 1) distribution is 9.7. From Table 1, we see 

that FSP and FNP greatly outperform Femp in terms of bias. Furthermore, with the exception 

of model 3 for n=50, Femp has a greater MSE than FNP and FNP and is therefore less 

efficient. When the sample size is small, FSP has a slightly lower MSE than FNP. The 

average coverage probabilities of the 95% confidence intervals for FSP and FNP are close to 

the nominal level of 0.95 when the sample size is large. This is not the case for Femp, where 

the coverage probabilities are not even close to the nominal level, even under mild 

truncation. The bias of the survival distribution and median survival time based on Femp

were much greater in model 2, since the truncation scheme in models 1 and 3 resulted in a 

sampling scheme that (almost) equally under sampled the smaller and larger survival times, 

and therefore the bias due to left truncation canceled out a large amount of the bias due to 

right truncation.

The simulations above show that the SPMLE and NPMLE provide accurate estimates of the 

survival probabilities under double truncation. We now examine their performance in 

estimating the difference in survival probabilities between two groups, which is presented in 

Table 2. For group 1, we simulate n1 = 50 survival times from a gamma(5,2) distribution, the 

left truncation time from a gamma(3,1) distribution, and the right truncation time from a 

gamma(5,2) distribution, which led to 54% of the observations truncated. For group 2, we 

simulate n2 = 30 survival times from a gamma(1.5, 4) distribution, the left truncation time 

from a gamma(1.5,3) distribution, and the right truncation time from a gamma(12.5,1) 

distribution, which led to 53% of the observations truncated. These distributions were 

chosen to emulate the features of the AD and FTLD data in Section 4.

We compare the difference in estimated survival probabilities at time t = 3,6, 9, and 12 based 

on the SPMLE, NPMLE, and eCDF. Here the estimated survival probability at time t is 

S(t) = 1 − F(t). As shown in Table 2, the estimated difference in survival probabilities 

between groups 1 and 2 at time t, Δ12 = S1(t) − S2(t), is heavily biased when double 
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truncation is not accounted for. Applying the SPMLE and NPMLE yields estimates with 

little bias for the difference in survival probabilities between the two groups.

3.1. Robustness to misspecification of truncation distribution

Since FSP requires distributional assumptions on the truncation times, we examine the 

impact of misspecification of the truncation distribution. We again assume L ~ gamma(α1, 

β1), R ~ gamma(α2, β2), and T ~ gamma(10,1). However, we now incorrectly specify the 

right truncation distribution by simulating R ~ Unif[0,20], and correctly specify the left 

truncation distribution by simulating L ~ gamma(3,1) in model 4. In model 5, we correctly 

specify the right truncation distribution by simulating R ~ gamma(5,2), and incorrectly 

specify the left truncation distribution by simulating L ~ Weibull(1, 3). In model 6, we 

incorrectly specify both the left and right truncation distributions by simulating L ~ 

Weibull(1, 3) and R ~ Unif [0, 20]. In all models, the proportion of missing data due to left 

truncation ranged from 0.02 to 0.06, and the proportion of missing data due to right 

truncation ranged from 0.50 to 0.52. In Web Table 1, we increased the left truncation 

proportion to a range of 0.22 to 0.33.

Figure 3 displays the bias of FSP, FNP, and Femp across the 1st through 9th deciles of F0 for 

models 4, 5, and 6. The bias of FSP was still small in this setting. Table 3 shows that FSP still 

performed as well as FNP in terms bias and MSE. Furthermore, misspecification of the 

truncation distribution only resulted in a slight bias of the median survival time. However the 

standard error estimates for FSP were biased when the right truncation distribution was 

misspecified. As expected, Femp was heavily biased while FNP remained unbiased, since 

neither of these estimators make distributional assumptions about the truncation times. As 

shown in Web Table 1, the truncation rate does not play a role in the robustness to 

misspecification of the truncation distribution. We note that in previous literature, the bias of 

FSP was not robust to misspecification of the truncation distribution.6,7 However the 

simulations were based on an assumed beta distribution for the truncation times with only 

one parameter estimated. Here we assumed a gamma distribution with both parameters 

estimated, which allows more flexibility in estimating different distributions.

Sometimes the right truncation time can be written as a function of the left truncation time, 

as in the cancer data set described in Moreira and de Ũna-Álvarez.7 In the Web Appendix, 

we study the case R = L + d0, where d0 is a constant. As shown in Web Table 2, the SPMLE 

and NPMLE have little bias when the truncation distribution is correctly specified, while the 

eCDF is biased. Furthermore, the SPMLE is still robust to misspecification of the truncation 

distribution in this setting.

3.2. Robustness to independence violation between survival and truncation times

Both FSP and FNP assume the survival and truncation times are independent. However this 

may not always be the case in practice. We therefore examine the robustness of these 

estimators when this independence assumption is violated. We simulate the survival and 

truncation times from a normal copula. The marginal distributions for the survival, left, and 
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right truncation times are set to gamma(10,1), gamma(4,1.5), and gamma(8,1.5) 

distributions, respectively. Let ρXY denote the correlation between random variables X and 

Y. In model 7, we set ρLT = 0.5, ρLR = 0.1, and ρTR = 0.1. In model 8, we set ρLT = −0.5, 

ρLR = 0.1, and ρTR = −0.1. These correlations lead to strong positive dependence (model 7) 

and strong negative dependence (model 8) between the left truncation times and survival 

times. We set ρLT = −0.1, ρLR = 0.1, and ρTR = −0.5 in model 9, which leads to strong 

negative dependence between the survival times and right truncation times. In model 10, we 

set ρLT = −0.5, ρLR = 0.1, and ρTR = −0.5, which leads to strong negative dependence 

between both the survival times and left truncation times as well as the survival times and 

right truncation times.

Figure 4 displays the bias of FSP, FNP, and Femp across the 1st through 9th deciles of F0 for 

models 7 through 10. All three estimators are biased. Under weaker dependence between the 

survival time and right truncation time (i.e. models 7 and 8), the bias of FSP and FNP are 

smaller compared to models 9 and 10, where there is a strong dependence between the 

survival time and right truncation time. As Table 4 shows, the coverage probabilities in all 

models are extremely poor.

In Web Table 3, we reexamine this situation under very mild left truncation and severe right 

truncation. In models C.1 and C.2, the bias of FSP and FNP is minimal because of the 

following: Despite a strong dependence between the left truncation time and survival time, 

the left truncation rate is minimal. In addition, the dependence between the right truncation 

time and survival time is minimal. When the dependence between the right truncation time 

and survival time is stronger (models C.3 and C.4), these estimators are heavily biased. In 

Web Table 4, we study the case R = L + d0 when L and T are dependent. All estimators are 

heavily biased with poor coverage probabilities in this setting.

4. Case study: Autopsy-confirmed Alzheimer’s disease and 

frontotemporal lobar degeneration

Our motivating example comes from autopsy-confirmed data on individuals with either AD 

or FTLD retrieved from the neurodegenerative disease autopsy program at the University of 

Pennsylvania between 1995 and 2012. The target sample for the research purposes of the 

study consists of all individuals with either AD or FTLD onset before 2012, who either 

entered the program between 1995 and 2012, or would have entered the program between 

1995 and 2012, had they not succumbed to the disease beforehand. Our observed sample 

contains all individuals who entered the program between 1995 and 2012, and had an 

autopsy-confirmed diagnosis of AD or FTLD before 2012. Individuals with AD or FTLD 

who met the study criteria but died before entering the program were not observed, yielding 

left truncated data. Furthermore, observations were only obtained from individuals who had 

an autopsy-confirmed diagnosis of AD or FTLD. Individuals who lived past the end of study 

date were not diagnosed, and therefore not included in our sample. Thus our data is also 

right truncated. Our data consists of 47 autopsy-confirmed AD subjects and 31 autopsy-

confirmed FTLD subjects. The survival time of interest (T) is the time between disease 

symptom onset and death. The left truncation time (L) is the time between disease symptom 

Rennert and Xie Page 10

Stat Med. Author manuscript; available in PMC 2019 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



onset and entry into the study (i.e. initial clinic visit). The right truncation time (R) is the 

time between disease symptom onset and the end of the study, which is taken to be July 1, 

2012. Due to double truncation, we only observe individuals with L ≤ T ≤ R.

Our goal is to estimate and compare the survival distributions for these two groups. Before 

we apply the SPMLE or NPMLE to estimate the survival distributions for AD and FTLD, 

we must test whether the survival times are independent of the truncation times for each 

group. We test this assumption using the test statistic introduced in Martin and Betensky.8 

The resulting tests did not reject the null hypothesis of independence at the α = 0.05 level 

for either the AD or FTLD group. We justify the identifiability constraints, aHL < aF < aHR 
and bHL < bF < bHR, in Web Appendix A. We can therefore proceed to apply the methods 

described in Section 2 to our data.

The NPMLE and eCDF were computed without any parametric assumptions on the survival 

or truncation times. For the AD group, the SPMLE was computed by assuming that the left 

truncation time has a gamma(α1, β1) distribution and the right truncation time has a 

gamma(α2, β2) distribution. The SPMLE for the FTLD group was estimated independently 

of the AD group, and assumed that the left truncation time has a gamma(θ1, γ1) distribution 

and the right truncation time has a gamma(θ2, γ2). The distribution of the truncation times 

was chosen by examining an external data set of individuals with clinically diagnosed AD 

and FTLD. As shown by the simulation studies in Section 3 and the Web Appendix, the 

choice of the two parameter gamma distribution leads to more robust estimators. Under 

these parametric assumptions, we have (α1 = 2.9, β1 = 1.1), (α2 = 5.2, β2 = 1.9), (θ1 = 1.7, 

γ1 = 3.1), and (θ2 = 12.7, γ2 = 1.1). Based on these results, the probability of truncation for 

an individual with AD and FTLD was estimated to be 0.58 and 0.54, respectively.

To check whether the choice of the gamma distribution is appropriate, we test the null 

hypothesis H0 : K = Kθ, independently for the AD and FTLD group, using a Kolmogorov-

Smirnov type test statistic.16 The resulting test did not reject H0 at the α = 0.05 level for 

either AD or FTLD, and therefore we do not have enough evidence against the gamma 

distribution assumptions for the truncation times in either group.

The estimated survival curves S(t) = 1 − F(t) based on the SPMLE, NPMLE, and eCDF are 

plotted in Figure 5. In the top left panel, we compare these three estimators for the AD 

group. The estimated survival probabilities based on the SPMLE and NPMLE are similar, 

and are greater than those based on the eCDF. This implies that right truncation had a greater 

impact than left truncation in the AD group. In other words, a greater proportion of subjects 

survived past the end of the study date compared to surviving past their study entry date. The 

top right panel compares these estimators for the FTLD group. Here the estimated survival 

probabilities based on the SPMLE and NPMLE are also similar, but are less than those 

based on the eCDF. This implies that left truncation had a greater impact than right 

truncation in the FTLD group. In other words, a smaller proportion of subjects survived past 

the end of the study date compared to surviving past their study entry date.

The bottom row of Figure 5 compares the AD and FTLD survival probabilities based on the 

SPMLE (left) and the eCDF (right). When we do not adjust for double truncation, the eCDF 
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concludes that the survival curves of AD and FTLD are nearly identical, with median 

survival times less than 1 year apart (AD = 7.3 years, FTLD = 6.7 years). When we adjust 

for the double truncation, the survival probabilities for AD are greater than those of FTLD. 

Furthermore, the difference in median survival time is now greater than 5 years (AD = 9.9 

years, FTLD = 4.3 years).

We test for equality of the distribution functions of AD and FTLD using Bilker and Wang’s 

semiparametric extension of the Mann-Whitney test.2 The resulting U-statistic is U = 2.62
with variance V

U
= 2.81 . U > 0 gives evidence that the survival curve for AD is greater than 

that for FTLD. However this result is not statistically significant (p-value = 0.12). We note 

that the standard log-rank test (ignoring truncation) resulted in a p-value of 0.46.

The Mann-Whitney test above tests whether two survival curves are equal. We now test for a 

difference in survival probabilities between AD and FTLD at specific time points. The 

results are provided in Table 5. When we adjust for double truncation, we conclude that the 

AD group has a greater survival probability than the FTLD group at years 3, 6 and 9. While 

the probability of survival at 12 years is also greater for the AD group, the resulting test is 

not statistically significant (p=0.221). When we do not account for double truncation, we 

find no significant difference in the survival probabilities. Note the results in Table 5 closely 

match the results from the simulation study displayed in Table 2.

5. Discussion and Recommendations

Due to the inaccuracy of clinical diagnoses and lack of available biomarkers, many studies 

of neurodegenerative diseases rely on autopsy-confirmed diagnoses. The aim of this paper 

was to raise awareness of the selection bias in these studies and highlight appropriate 

methods to account for it. We described how the selection bias arises due to the inherent 

double truncation in these studies and showed that ignoring it leads to biased estimators of 

the survival time distribution. To adjust for double truncation, we applied semiparametric 

and nonparametric maximum likelihood estimators of the survival time distribution. We 

conducted extensive simulation studies to evaluate the performance of these estimators in a 

variety of settings, and applied these estimators in a case study of autopsy-confirmed AD 

and FTLD individuals.

The simulation studies confirmed that the SPMLE and NPMLE had little bias in small 

samples, while the naïve empirical CDF which ignores double truncation was heavily 

biased. We also found that the empirical CDF had a much larger mean squared error relative 

to the SPMLE and NPMLE under moderate to severe truncation. Furthermore, the 95% 

confidence intervals of the empirical CDF were well below the nominal level, while those 

corresponding to the SPMLE and NPMLE were close to the nominal level under larger 

sample sizes.

When applied to our autopsy-confirmed data set, the survival probabilities based on the 

SPMLE and NPMLE were significantly greater for the AD group relative to the FTLD 

group at almost all time points. Furthermore, the difference in median survival time between 

AD and FTLD was over 5 years. Application of the empirical CDF (i.e. the standard method 
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ignoring double truncation) to the AD and FTLD groups found that the survival probabilities 

were similar between the two groups, with median survival time less than one year apart. 

These analysis findings were supported by simulations that emulate this case study data set, 

which validate the appropriateness of accounting for double truncation in the analysis.

We recommend the approach taken in our data example when estimating the survival time 

distribution of an autopsy-confirmed neurodegenerative disease, since this approach leads to 

consistent estimators with lower mean-squared errors than the standard methods. Our 

approach consisted of first testing for independence between the survival times and 

truncation times, as well as justifying identifiability constraints. We then applied the SPMLE 

and NPMLE of the survival distribution function to the data. Based on our simulations and 

previous simulations,6,7 the SPMLE has a lower standard error and MSE than the NPMLE, 

and is therefore a more efficient estimator. However the SPMLE requires the correct 

distribution of the truncation times. Although incorrectly specifying the truncation 

distribution did not result in biased estimators of the survival time distribution in our 

simulation study, this is not always the case.6,7 We therefore recommend testing the 

parametric assumptions of the SPMLE using the test statistics provided in Moreira et al.16

The main limitation with the methods described in this paper is that they require 

independence of the truncation and survival times. This is not always a realistic assumption 

in individuals with neurodegenerative diseases. Our simulation studies showed that the 

estimators which adjust for double truncation are sensitive to this independence assumption. 

Therefore these estimators must be used with caution. While methods exist to test this 

independence assumption,8 an extension of these methods is needed to adjust for dependent 

truncation times and survival times.

The double truncation inherent in autopsy-confirmed studies of neurodegenerative diseases 

and methods to correct for it have so far received little attention in the literature. In this 

paper, we showed that ignoring double truncation leads to biased estimators of the survival 

time distribution, and outlined methods to adjust for it. The effects of ignoring double 

truncation in these studies was highlighted in our data example. Given the devastating effects 

of neurodegenerative diseases on patients, their caregivers, and society, it is imperative to 

adjust for double truncation in order to have accurate knowledge of the survival time 

distribution.

6. Data Accessibility

Code associated with this paper will be available for archiving at the journal’s repository. 

Functions to compute the NPMLE of the survival time distribution and test for independence 

between the survival and truncation times are also provided in the ”SurvTrunc” package, 

which is available in the CRAN R library. The data are not publicly available due to privacy 

or ethical restrictions.
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7. Supporting Web Materials

Web appendices, including justification of the identifiability constraints for our case study 

(Web Appendix A), and additional results from simulation studies (Web Tables 1–4) 

referenced in Section 3, are available alongside the online version of this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic depiction of doubly truncated neurodegenerative disease data: Here L, T, and R 
denote the time from disease symptom onset to study entry, death, and the end of study, 

respectively. The solid circle (left) consists of all subjects who entered the study and are 

therefore not left truncated. The light grey region of the solid circle is right truncated, and 

consists of all subjects who entered but lived past the end of the study, i.e. {L ≤ T} ∩ {T > 

R}. The dotted circle (right) consists of all subjects who had an autopsy performed by the 

end of the study and are therefore not right truncated. The light grey region of the dotted 

circle is left truncated, and consists of all subjects who never entered the study but died 

before the end of study date, i.e. {T < L} ∩ {T ≤ R}. The observed sample is represented by 

the intersection of the two circles (dark grey region), and consists of all subjects who entered 

the study and had an autopsy performed {L ≤ T ≤ R}.
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Figure 2. 
Bias of FSP ( ), FNP ( ), and Femp ( ) at 

t0.1, …,t0.9, which are the deciles of the true survival time distribution F0. Here F0(t0.1.) = 

0.1, F0(t0.2) = 0.2, etc.
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Figure 3. 
Bias of FSP ( ), FNP ( ), and Femp ( ) at 

t0.1,…, t0.9, under misspecification of the truncation distribution. Here t0.1,…,t0.9 arethe 

deciles of the tru survival time distribution F0, where F0(t0.1) = 0.1, F0(t0.2) = 0.2, etc.
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Figure 4. 
Bias of FSP ( ), FNP ( ), and Femp ( ) at 

t0.1,…, t0.9, under violation of independence between the survival and truncation times. Here 

t0.1, …, t0.9 arethe deciles of the true survival time distribution F0, where F0(t0.1) = 0.1, 

F0(t0.2) = 0.2, etc.
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Figure 5. 
Top row: Estimated survival curves for AD (top left panel) and FTLD (top right panel) based 

on FSP ( ), FNP ( ), and Femp ( ). 

Bottomrow: Comparing AD ( ) and FTLD ( ) survival 

curves based on the SPMLE FSP (bottom left panel) and eCDF Femp (bottom right panel). 

Vertical dotted lines represent median survival times for each group.
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Table 1

Simulation results: Survival times simulated from a gamma(10,1) distribution. Left and right truncation times 
correctly assumed to come from a gamma(α2, β2) and gamma(α2, β2) distribution, respectively. Model 1 

corresponds to (α1, β1) = (4.5, 1.5) and (α2, β2) = (8, 2.5). Model 2 corresponds to (α1, β1) = (3, 1) and (α2, 

β2) = (5, 2). Model 3 corresponds to (α1, β1) = (5, 2) and (α2, β2) = (5, 2). Here qL, qR, q are the proportion of 

observations missing due to left, right, and double (left and right) truncation, respectively, and n is the size of 
the observed sample. FSP denotes the SPMLE, FNP denotes the NPMLE, and Femp denotes the naïve empirical 

CDF which ignores double truncation. These estimators were all computed at t0.1, …, t0.9, the 1st through 9th 

deciles of the true survival distribution F0. For a given estimator F, Bias(F) is the (absolute) difference 

between F and F0, averaged across the 9 deciles. Here SD(F) is standard deviation of F across simulations, 

SE(F) is estimated standard error of F, MSE(F) is mean squared error of F, and Cov(F) is 95% coverage, all 

averaged across the 9 deciles. Here t 0.5 is the estimated median value based on F. The true median value based 

on F0 is t0.5 = 9:7. Here Bias(t 0.5) = t 0.5 - t0.5 and SD(t 0.5) is the standard deviation of t 0.5 across simulations.

Model qL, qR, q n Estimator Bias(F) SD(F) SE(F) MSE(F) Cov(F) Bias(t 0.5) SD(t 0.5)

FSP 0.005 0.069 0.075 0.005 0.927 −0.028 0.622

1 0.22,0.08,0.30 50 FNP 0.021 0.070 0.069 0.005 0.910 −0.050 0.664

Femp 0.039 0.057 0.045 0.005 0.453 0.339 0.485

FSP 0.005 0.031 0.031 0.001 0.941 −0.024 0.280

1 0.22,0.08,0.30 250 FNP 0.006 0.031 0.031 0.001 0.940 −0.021 0.284

Femp 0.040 0.025 0.020 0.003 0.326 0.382 0.230

FSP 0.010 0.088 0.101 0.008 0.880 0.042 0.977

2 0.02,0.53,0.55 50 FNP 0.028 0.091 0.077 0.010 0.818 0.070 0.984

Femp 0.151 0.054 0.042 0.028 0.438 −1.364 0.431

FSP 0.005 0.039 0.038 0.002 0.935 −0.017 0.345

2 0.02,0.53,0.55 250 FNP 0.007 0.041 0.039 0.002 0.930 −0.003 0.404

Femp 0.149 0.024 0.019 0.025 0.332 −1.338 0.196

FSP 0.005 0.092 0.118 0.009 0.900 0.034 1.055

3 0.48,0.53,0.80 50 FNP 0.017 0.098 0.088 0.010 0.871 0.062 1.138

Femp 0.043 0.055 0.043 0.006 0.426 −0.175 0.424

FSP 0.006 0.040 0.036 0.002 0.897 −0.030 0.348

3 0.48,0.53,0.80 250 FNP 0.007 0.042 0.041 0.002 0.924 −0.024 0.377
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Model qL, qR, q n Estimator Bias(F) SD(F) SE(F) MSE(F) Cov(F) Bias(t 0.5) SD(t 0.5)

Femp 0.044 0.024 0.020 0.003 0.327 −0.161 0.184
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Table 2

Survival timesfor groups 1 and 2 simulated from gamma(5, 2) and gamma(1.5, 4) distributions, respectively. 
For group 1, left and right truncation times correctly assumed to come from a gamma(3,1) and gamma(5, 2) 

distribution, respectively, resulting in 54% of the observations truncated. For group 2, left and right truncation 
times correctly assumed to come from a gamma(1.5, 3) and gamma(12.5, 1) distribution, respectively, 
resulting in 53% of the observations truncated. The sample sizes are 50 and 30 for groups 1 and 2, 
respectively. For t = 3, 6, 9,12, we compute the bias, standard deviation (SD), and estimated standard error 
(SE) of Δ12 = S1(t) − S2(t), which is the difference in survival probabilities between group 1 and group 2 at 

time t. The true differences between the survival probabilities at time t = 3, 6, 9, 12 are 0.30, 0.42, 0.32, 0.17, 

respectively.

SPMLE NPMLE eCDF

t bias(Δ12) SD(Δ12) SE( Δ12 ) bias(Δ12) SD(Δ12) SE( Δ12 ) bias(Δ12) SD(Δ12) SE( Δ12 )

3 −0.01 0.14 0.14 0.01 0.15 0.13 −0.16 0.07 0.04

6 −0.01 0.13 0.13 0.00 0.13 0.13 −0.20 0.11 0.10

9 −0.01 0.15 0.14 0.00 0.15 0.14 −0.21 0.10 0.09

12 0.00 0.16 0.15 0.00 0.17 0.13 −0.14 0.06 0.05
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Table 3

Simulation results under misspecification of the truncation distribution: Survival times simulated from a 
gamma(10, 1) distribution. Left and right truncation times assumed to come from a gamma(α1, β1) and 

gamma(α2, β2) distribution, respectively. Model 4 corresponds to misspecification of the right truncation time 

by simulating it as Unif(0, 20), and the left truncation time as gamma(3,1). Model 5 corresponds to 
misspecification of the left truncation time by simulating it as Weibull(1, 3), and the right truncation time as 
gamma(5, 2). Model 6 corresponds to misspecification both truncation times by simulating the left truncation 
time as Weibull(1, 3) and the right truncation time as Unif (0, 20). Here qL, qR, q are the proportion of 

observations missing due to left, right, and double (left and right) truncation, respectively, and n is the size of 
the observed sample. FSP denotes the SPMLE, FNP denotes the NPMLE, and Femp denotes the naïve empirical 

CDF which ignores double truncation. These estimators were all computed at t0.1,…, t0.9, the 1st through 9th 

deciles of the true survival distribution F0. For a given estimator F, Bias(F) is the (absolute) difference 

between F and F0, averaged across the 9 deciles. Here SD(F) is standard deviation of F across simulations, 

SE(F) is estimated standard error of F, MSE(F, MSE(F)) is mean squared error of F, and Cov(F) is 95% 

coverage, all averaged across the 9 deciles. Here t 0.5 is the estimated median value based on F. The true 

median value based on F0 is t0.5 = 9.7. Here Bias(t 0.5) = t 0.5 - t0.5 and SD(t 0.5) is the standard deviation of t 0.5
across simulations.

Model qL, qR, q n Estimator Bias(F) SD(F) SE(F) MSE(F) Cov(F) Bias(t 0.5) SD(t 0.5)

FSP 0.008 0.074 0.160 0.006 0.968 0.091 0.725

4 0.02,0.50,0.51 50 FNP 0.023 0.075 0.068 0.006 0.878 0.017 0.734

Femp 0.092 0.056 0.044 0.013 0.455 −0.848 0.461

FSP 0.009 0.033 0.062 0.001 0.995 0.062 0.310

4 0.02,0.50,0.51 250 FNP 0.007 0.033 0.033 0.001 0.932 −0.014 0.299

Femp 0.091 0.025 0.020 0.010 0.301 −0.816 0.207

FSP 0.011 0.084 0.098 0.008 0.886 0.032 0.841

5 0.06,0.52,0.56 50 FNP 0.029 0.087 0.077 0.009 0.834 0.073 0.954

Femp 0.144 0.054 0.042 0.026 0.441 −1.297 0.423

FSP 0.007 0.038 0.037 0.002 0.921 −0.032 0.339

5 0.06,0.52,0.56 250 FNP 0.008 0.040 0.039 0.002 0.921 −0.021 0.353

Femp 0.144 0.024 0.019 0.024 0.331 −1.288 0.201

FSP 0.009 0.073 0.168 0.006 0.961 0.047 0.698

6 0.06,0.50,0.53 50 FNP 0.027 0.073 0.068 0.006 0.873 −0.030 0.659
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Model qL, qR, q n Estimator Bias(F) SD(F) SE(F) MSE(F) Cov(F) Bias(t 0.5) SD(t 0.5)

Femp 0.088 0.056 0.044 0.012 0.455 −0.826 0.476

FSP 0.010 0.034 0.062 0.001 0.992 0.035 0.320

6 0.06,0.50,0.53 250 FNP 0.009 0.035 0.032 0.001 0.924 −0.039 0.365

Femp 0.086 0.025 0.020 0.009 0.301 −0.771 0.210
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Table 4

Simulation results under violation of the independence assumption: Survival and truncation times simulated 
from a normal copula with correlations ρLT , ρLR, and ρTR, where ρXY denotes the correlation between 

random variables X and Y. The marginal distributions for the survival, left, and right truncation times are set to 
gamma(10, 1), gamma(3, 1), and gamma(5, 2) distributions, respectively. Here qL,qR, q are the proportion of 

observations missing due to left, right, and double (left and right) truncation, respectively. The average 
observed sample size is n = 250 for all models. FSP denotes the SPMLE, FNP denotes the NPMLE, and Femp

denotes the naïve empirical CDF which ignores double truncation. These estimators were all computed at t0.1, 

…, t0.9, the 1st through 9th deciles of the true survival distribution F0. For a given estimator F, Bias(F) is the 

(absolute) difference between F and F0, averaged across the 9 deciles. Here SD(F) is standard deviation of F

across simulations, SE(F) is estimated standard error of F, MSE(F) is mean squared error of F, and Cov(F) is 

95% coverage, all averaged across the 9 deciles. Here t 0.5 is the estimated median value based on F. The true 

median value based on F0 is t0.5 = 9:7. Here Bias(t 0.5) = t 0.5 - t0.5 and SD(t 0.5) is the standard deviation of t 0.5
across simulations.

Model ρLT, ρLR, ρRT qL, qR, q Estimator Bias(F) SD(F) SE(F) MSE(F) Cov(F) Bias(t 0.5) SD(t 0.5)

FSP 0.049 0.038 0.046 0.005 0.744 −0.458 0.343

7 0.5,0.1,0.1 0.09,0.35,0.43 FNP 0.055 0.038 0.024 0.005 0.380 −0.507 0.332

Femp 0.102 0.025 0.020 0.012 0.315 −0.896 0.202

FSP 0.042 0.033 0.046 0.004 0.701 0.336 0.268

8 −0.5,0.1,−0.1 0.22,0.37,0.56 FNP 0.044 0.034 0.022 0.004 0.447 0.374 0.276

Femp 0.068 0.023 0.018 0.006 0.293 −0.285 0.171

FSP 0.119 0.029 0.058 0.018 0.478 −0.968 0.218

9 −0.1,0.1,−0.5 0.18,0.39,0.55 FNP 0.121 0.029 0.026 0.018 0.101 −0.982 0.223

Femp 0.124 0.022 0.017 0.021 0.262 −0.942 0.156

FSP 0.083 0.027 0.055 0.010 0.579 −0.503 0.189

10 −0.5,0.1,−0.5 0.22,0.39,0.58 FNP 0.079 0.028 0.025 0.009 0.279 −0.488 0.195

Femp 0.106 0.021 0.017 0.016 0.223 −0.638 0.146
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Table 5

Case study results: Testing equality of survival probabilities between AD and FTLD at year t =3, 6, 9, and 12. 

S(t) = 1 − F(t) is survival probability at t, SEt is the estimated standard error at time t, Wt is the Wald statistic 

comparing the survival probability between AD and FTLD at time t.

AD FTLD

t Estimator S(t)(SEt) S(t)(SEt) Wt p-value

3
SPMLE 0.94 (0.04) 0.64(0.11) 6.80 0.009

NPMLE 0.93 (0.03) 0.62(0.12) 6.45 0.011

eCDF 0.94 (0.04) 0.81 (0.07) 2.67 0.102

6
SPMLE 0.81 (0.06) 0.45 (0.10) 9.58 0.002

NPMLE 0.79 (0.06) 0.43 (0.12) 7.05 0.008

eCDF 0.70 (0.07) 0.61 (0.09) 0.66 0.417

9
SPMLE 0.62 (0.09) 0.26 (0.08) 8.56 0.003

NPMLE 0.60 (0.08) 0.25 (0.09) 7.50 0.006

eCDF 0.40 (0.07) 0.32 (0.08) 0.55 0.459

12
SPMLE 0.33 (0.11) 0.17 (0.07) 1.50 0.221

NPMLE 0.30 (0.08) 0.15 (0.07) 1.28 0.258

eCDF 0.13 (0.05) 0.19 (0.07) 0.59 0.444
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