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Abstract

Next-generation sequencing (NGS) hereditary pan-cancer panel testing can identify somatic 

variants, which exhibit lower allele frequencies than do germline variants and may confound 

hereditary cancer predisposition testing. This analysis examined the prevalence and characteristics 

of likely-somatic variants among 348,543 individuals tested using a clinical NGS hereditary pan-

cancer panel. Variants showing allele frequencies between 10–30% were interpreted as likely 

somatic and identified in 753 (0.22%) individuals. They were most frequent in TP53, CHEK2 and 

ATM, commonly as C-to-T transitions. Among individuals who carried a likely-somatic variant 

and reported no personal cancer history, 54.2% (78/144) carried a variant in TP53, CHEK2 or 

ATM. With a reported cancer history, this percentage increased to 81.1% (494/609), 

predominantly in CHEK2 and TP53. Their presence was associated with age (OR=3.1, 95% CI 

2.5, 3.7; p<0.001) and personal history of cancer (OR=3.3, 95% CI 2.7, 4.0; p<0.001), particularly 

ovarian cancer. Germline ATM pathogenic variant carriers showed significant enrichment of 

likely-somatic variants (OR=2.8, 95% CI 1.6, 4.9; p=0.005), regardless of cancer status. The 

appearance of likely-somatic variants is consistent with clonal hematopoiesis, possibly influenced 

by cancer treatment. These findings highlight the precision required of diagnostic laboratories to 

deliver accurate germline testing results.
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INTRODUCTION

Mosaicism is defined as the presence of two or more cell populations with unique genotypes 

in one individual. Low-level mosaicism is seen frequently in normal tissues, and particularly 

in those with higher turnover rates.[1] One such tissue is bone marrow, which produces the 

peripheral white blood cells that comprise a common source of genomic DNA used in next-

generation sequencing (NGS) hereditary pan-cancer panel testing.

NGS methods enable precise assessment of variant allele proportions and thus can reveal 

low-level mosaicism in an individual’s test sample.[1, 2] Many likely-mosaic variants 

identified in this manner reflect amplification of mutations acquired somatically in blood via 

clonal hematopoiesis of indeterminate potential (CHIP), which involves the expansion of 

clonal blood cell subpopulations without other hematologic disease.[3] Variants derived 

through CHIP are not thought to represent the germline genetic profile, hematologic 

malignancy, post-zygotic mosaicism, circulating tumor burden, or sequencing error. Previous 

studies have shown that CHIP rates increase with age and with exposure to cancer treatments 

such as chemotherapy and radiation (cytotoxic) therapy.[4–6] Several studies have 

associated CHIP with increased cardiovascular disease, all-cause mortality, and 

susceptibility to primary and secondary leukemias (i.e., therapy related leukemia).[3, 4, 7–9] 

Therefore, putative CHIP-derived somatic variants hold potential as independent clinical 

biomarkers, following clinical validation of methods for CHIP confirmation and variant 

classification.

Recent work demonstrated the identification of likely-somatic variants through NGS 

hereditary pan-cancer panel testing in a large clinical testing population.[10] The findings 

were consistent with previous CHIP studies, which showed likely-somatic variants occurring 

commonly in TP53 (MIM: 191170) and ATM (MIM: 607585) and having a higher 

prevalence among older individuals.[4, 7]

Having a large NGS hereditary pan-cancer testing population presented the unique 

opportunity to investigate the prevalence and characteristics of likely-somatic variants in 

cancer susceptibility genes. A better understanding of the etiology of putative CHIP-derived 

somatic variants is essential to improve test reporting, patient counseling, preventive 

screening and medical management. We hypothesized that cancer status (as a marker for 

likely cancer treatment) and/or germline mutation carrier status would contribute to the 

presence of likely-somatic variants. This is the first report to evaluate these factors from a 

hereditary cancer predisposition cohort. The analysis also examined the molecular 

characteristics of likely-somatic variants across the full testing population to identify trends 

that might provide further insight into their origins.
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METHODS

Testing population

The full analysis set included 348,543 individuals who had NGS hereditary pan-cancer panel 

testing and results reported sequentially between September 2013 and July 2017. Testing 

was performed by Myriad Genetics Laboratories, Inc. (Salt Lake City, UT), a national 

Clinical Laboratory Improvement Amendments and College of American Pathology-

certified facility. All individuals provided consent for clinical testing, and testing data were 

de-identified for analysis. The analysis set did not include individuals who met the following 

criteria: cancer history listed as unspecified or colorectal polyps only on the test request 

form; missing age at testing; and individuals from states with laws that prevent the use of de-

identified genetic data. Individuals with known leukemias are not accepted for hereditary 

pan-cancer panel testing by the laboratory and therefore would not have been included in the 

analysis set.

Sequencing and variant classification

The NGS pan-cancer panel included 28 genes commonly associated with hereditary cancer 

predisposition: APC (MIM: 611731); ATM; BARD1 (MIM: 601593); BMPR1A (MIM: 

602199); BRCA1 (MIM: 113705); BRCA2 (MIM: 600185); BRIP1 (MIM: 605882); CDH1 
(MIM: 192090); CDK4 (MIM: 123829); CDKN2A (p16INK4a)(MIM: 600160); CDKN2A 
(p14ARF)(MIM: 600160); CHEK2 (MIM: 604373); EPCAM (MIM: 185535); GREM1 
(MIM: 603054); MLH1 (MIM: 120436); MSH2 (MIM: 609309); MSH6 (MIM: 600678); 

MUTYH (MIM: 604933); NBN (MIM: 602667); PALB2 (MIM: 610355); PMS2 (MIM: 

600259); POLD1 (MIM: 174761); POLE (MIM: 267800); PTEN (MIM: 601728); RAD51C 
(MIM: 602774); RAD51D (MIM: 602954); SMAD4 (MIM: 600993); STK11 (MIM: 

602216); and TP53. All genes were available for the full time period except GREM1, 
POLD1, and POLE, which were added in July 2016. Testing was performed using blood or 

saliva samples. DNA extraction, testing methods, and variant identification have been 

described previously.[11, 12] The minimum depth of coverage for sequencing was 50X. For 

all tested genes except TP53, variants present with NGS allele frequencies of 30–70% were 

considered to be germline. Variants with allele frequencies between 10–30% were 

considered to be likely somatic. The laboratory does not maintain data on variants with 

allele frequencies lower than 10%. All somatic variants were confirmed, either by Sanger 

sequencing or by repeat NGS analysis, when the variant allele fraction was too low to be 

identified by Sanger sequencing (below approximately 20%).

Variant classification was consistent with guidelines from the American College of Medical 

Genetics and Genomics[13] and performed as described previously.[14] For the purposes of 

the analyses performed here, variants with a laboratory classification of Deleterious or 

Suspected Deleterious were considered to be Pathogenic Variants (PV). Variants with a 

laboratory classification of Polymorphism or Favor Polymorphism were considered to be 

Benign (clinically insignificant). Variants for which the clinical significance could not be 

determined were classified as Variants of Uncertain Significance (VUS).
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The analysis included individuals who were found to carry a likely-somatic PV or VUS in a 

tested cancer susceptibility gene. Individuals with an apparent germline PV in TP53 (allele 

frequencies between 30–70%) were excluded, as it is difficult to determine whether TP53 
variants are somatic or germline in origin without follow-up testing.[15] The analysis 

included somatic PV and VUS in order to examine both pathogenic and potentially-

pathogenic variants across the testing population. This approach provided the most complete 

analysis set to support the characterization of likely-somatic variants.

Statistical Analyses

Multivariable logistic regression analysis was used to determine the risk of carrying a likely-

somatic variant after adjusting for personal cancer history (affected or unaffected), age at 

testing (<50 versus ≥50 years), germline PV status (carrier or non-carrier), and clinical 

indication for testing. To determine the risk of carrying a likely-somatic variant, logistic 

regression analyses were performed for each tested gene separately in the subset of 

individuals who carried germline PVs, adjusting for personal cancer history, age at testing, 

and clinical indication for testing.

Chi-square tests were used to determine associations between affected status (breast/ovarian 

cancer vs unaffected) and type of likely-somatic variant (insertion/deletion, transversion, or 

transition). Odds ratios (OR), 95% confidence intervals (CI), and p-values are reported. 

Bonferroni multiple comparison p-value adjustments were made for the subset PV 

enrichment logistic regression analysis and for the breast or ovarian cancer versus variant 

type chi-square tests. All p-values of < 0.05 were considered statistically significant.

RESULTS

Prevalence of Likely-somatic Variants

Demographic characteristics of the testing population, including age at testing, personal 

cancer history and ancestry, are shown in Table 1. From NGS analysis of the hereditary pan-

cancer gene panel, 0.22% of all tested individuals (753/348,853) were found to carry one or 

more likely-somatic PV or VUS. Most (97.2%; 732/753) carried only one. Among 

individuals with likely-somatic variants, 9.0% (68/753) also carried an apparent germline 

PV. A total of 775 likely-somatic variants (PV and VUS) were detected in these 753 

individuals. Variants were seen most commonly in TP53 (28.9%; 224/775), CHEK2 (28.8%; 

223/775), and ATM (20.9%; 162/775), with a steep drop-off in frequency of variants seen in 

all remaining panel genes (Table 2).

Among individuals who reported no personal cancer history, 54.2% (78/144) carried a 

likely-somatic variant in one of these three genes. The cumulative frequency of likely-

somatic variants increased to 81.1% (494/609) in individuals with a personal cancer history, 

most notably for CHEK2 and TP53. Likely-somatic variants in CHEK2 were seen in 16.7% 

(24/144) of individuals who had no cancer history and increased to 32.0% (195/609) among 

individuals with a cancer history. Similarly, the frequency of likely-somatic variants in TP53 
was 18.8% (27/144) in individuals who had no cancer history, increasing to 30.2% (184/609) 

in individuals with a cancer history. For ATM, the frequency remained static at 18.8% 
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(27/144) in individuals with no cancer history compared with 18.9% (115/609) in those who 

reported a personal cancer history.

Characteristics of Likely-somatic Variants and Association with Cancer

A total of 593 unique likely-somatic variants were identified. Substitutions comprised 85.2% 

(505/593) of unique variants, and insertions or deletions comprised 14.8% (88/593). C-to-T 

transition variants (C>T; reverse strand G>A) were the most common, accounting for 43.5% 

(337/775) of all variants identified (Figure 1). All likely-somatic variants identified in more 

than one individual (recurrent variants) are listed in Supplemental Table 1, with aggregate 

cancer type and age-at-diagnosis information for individuals with the variant who reported a 

personal history of cancer.

Nucleotide substitution profiles for likely-somatic variants were examined to identify 

potential associations with clinical factors. Similar profiles were observed for all likely-

somatic variants regardless of personal cancer history (Figure 1). Across all individuals, 

C>T/G>A transition variants were increased compared with all other variant types. There 

was no significant difference in the proportions of transition and transversion mutations 

based on reported breast and ovarian cancer histories. The numbers of individuals who had 

other types of cancers and carried likely-somatic variants were too small to analyze.

Of all unique variants identified, 11.5% (68/593) were observed in more than one individual. 

These variants were identified in TP53 (31), CHEK2 (24), ATM (11), CDKN2A (p14ARF) 

(1) and MLH1 (1) (Supplemental Table 1) and included five of the eight most common 

recurrent TP53 variants present in the International Agency for Research on Cancer (IARC) 

TP53 tumor database (c.524G>A [p.Arg175His]; c.742C>T [p.Arg248Trp]; c.743G>A 

[p.Arg248Gln]; c.818G>A [p.Arg273His]; and c.844C>T [p.Arg282Trp])(http://

p53.iarc.fr/). These “hotspot” recurrent variants were detected most commonly in CpG 

dinucleotides, where deamination of 5-methylcytosine is known to lead to C>T transitions.

[16] Recurrent variants accounted for 32.9% (241/732) of individuals carrying a single 

likely-somatic variant.

Age and Personal History of Cancer

Multivariable logistic regression analysis was performed to examine the relationships 

between carrying a likely-somatic variant and age or personal history of cancer (Table 3). 

Individuals who were 50 years of age or older at testing were found to be 3.1 times more 

likely to carry a likely-somatic variant compared with individuals under age 50 years 

(OR=3.1, 95% CI 2.5, 3.7; p<0.001).

A personal history of cancer was reported for 42.1% (146,878/348,543) of individuals across 

the entire testing population. Among individuals with one or more likely-somatic variants, a 

personal cancer history was reported for 80.9% (609/753). Individuals who had a personal 

cancer history were 3.3 times more likely to have a likely-somatic variant compared to those 

with no personal cancer history (OR=3.3, 95% CI 2.7, 4.0; p<0.001) (Table 3). This trend 

was most prominent in individuals with a reported personal history of ovarian cancer (1.0%; 

135 with likely-somatic variants/13,777 total) as compared with individuals reporting no 

personal cancer history (0.1%; 144 with likely-somatic variants/201,665 total). These 
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individuals also showed the greatest increase in the frequency of likely-somatic variants at 

older ages (Figure 2). The frequency of likely-somatic variants in individuals with a reported 

personal history of ovarian cancer increased from 1.0% overall to 1.8% (61/3330) among 

individuals who were older than 71 years when tested.

Germline PV Carrier Status

The testing population included 22,962 individuals who carried a germline PV in a cancer 

susceptibility gene. Logistic regression analysis showed no significant relationship between 

germline PV carrier status and increased likelihood of carrying a concomitant likely-somatic 

variant (OR=1.2, 95% CI 0.9, 1.5; p=0.203) (Table 3).

To examine the relationship between germline PV carrier status and risk of carrying a likely-

somatic variant in any one gene in the panel, subset analyses were performed for each gene 

separately. After adjusting for age at testing, personal cancer history, and clinical indication 

for testing, there were no significant findings associated with germline PVs in individual 

genes, with the exception of ATM. For individuals who had a single germline PV in ATM 
(211), analysis showed enrichment of likely-somatic variants compared with single non-

ATM PV carriers (521) (OR=2.8, 95% CI 1.6, 4.9, p=0.005). Interestingly, in 12 of 16 

individuals who carried an apparent germline PV in ATM, the identified somatic variant also 

occurred in ATM. The remaining four individuals carried a somatic variant in BRCA1 (1), 

BRCA2 (1), CHEK2 (1) and PALB2 (1). Most individuals (75.0%; 9/12) who had a 

germline PV and a somatic PV or VUS in ATM had a personal history of cancer.

DISCUSSION

These analyses detail the frequency and characteristics of likely-somatic variants identified 

within the largest hereditary pan-cancer panel testing population described to date. 

Collectively, likely-somatic variants were rare (0.22%). Their presence in this testing 

population is consistent with CHIP, given the significant associations with advanced age and 

with a personal history of cancer.[4, 7, 17] In addition, they were enriched in genes 

associated previously with CHIP (ATM, CHEK2, and TP53).[4, 7, 17] Furthermore, 

C>T/G>A transition variants were notably more frequent than were other variant types 

across the testing population, consistent with observations made in studies of somatic 

variants and age in human cancers.[6, 18] The ubiquitous nature of CHIP makes this a 

plausible mechanism for most likely-somatic variants.[4, 7] A circulating tumor burden with 

allele frequencies between 10–30% is a possible explanation; however, overt hematologic 

malignancies, when noted, were not accepted by the laboratory and therefore should not 

confound the analysis. As the likely-somatic variants increased with age, multi-germ layer 

mosaicism would be a less probable explanation for most observed variants.

The presence of likely-somatic variants was significantly associated with a personal history 

of cancer, possibly related to the effects of cytotoxic treatment.[5, 6] The most prominent 

trend was seen with ovarian cancer, possibly due to the duration, amount, and/or type of 

chemotherapy used to treat ovarian cancer. Most individuals who have ovarian cancer 

undergo chemotherapy treatment, which usually involves platinum-containing compounds.
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[19] Therefore, of all individuals who had a reported cancer history, those with ovarian 

cancer might be most representative of a chemotherapy-treated population.

In this testing population, the proportion of individuals with likely-somatic TP53 and 

CHEK2 variants, but not ATM variants, increased among individuals with a personal history 

of cancer. Hematopoietic cells with a single TP53 PV may selectively expand with exposure 

to cytotoxic therapy.[20] Recent analyses of somatic variants in individuals who had 

previous cancer treatment have produced varied results with regard to TP53. [5, 6] Coombs 

et al. (2017) observed significant association of CHIP-related somatic TP53 mutations with 

both chemotherapy and radiation treatment. While Swisher et al. (2016) identified somatic 

TP53 mutations in individuals who received chemotherapy treatment for ovarian cancer, the 

association was not significant. Comparison among the current work and these recent reports 

is limited by differences in analysis population, cohort size, and available clinical 

information. The observed increase in CHEK2 somatic variants among individuals with a 

personal history of cancer, similar to the increase observed for TP53, suggests that 

hematopoietic cell sub-clones harboring CHEK2 PVs also may expand preferentially 

following exposure to cytotoxic therapy. The lack of a similar increase in likely-somatic 

ATM variants among individuals with a personal history of cancer indicates that 

hematopoietic cell sub-clones with ATM variants do not expand after cytotoxic therapy. 

These observations are consistent with the idea that haploinsufficiency of CHEK2 and TP53, 

but not of ATM, drives amplification of hematopoietic cell sub-clones in individuals who 

have had cancer.

Unlike other studies to date, this analysis specifically examined germline hereditary cancer 

gene mutation status relative to the appearance of likely-somatic variants. While germline 

PV carrier status overall showed no significantly increased risk of carrying a likely-somatic 

variant, subset analysis revealed a significant association for ATM heterozygous germline 

PV carriers, independent of personal cancer history. It has been hypothesized that ATM 
germline PV carriers are more susceptible to developing clonal hematopoiesis.[21] ATM 

regulates the DNA damage response to double-strand DNA breaks through its kinase 

activity, in a pathway that also involves TP53 and CHEK2.[22] Heterozygous germline ATM 
variants are enriched in women with breast cancer (1–2%)[12, 23–25] as well as in 

pancreatic cancer cohorts (1.2–4.1%).[26–29] As ATM germline PV carriers appear 

common in the population (~0.4% of non-Finnish Europeans) [23] a better understanding of 

the link between clonal hematopoiesis and ATM germline PV carrier status is warranted. 

Notably, ATM germline PV carriers frequently had a likely-somatic variant in ATM. A 

recent report showed similar association of inherited ATM variants with acquired loss of 

heterozygosity at the same locus in individuals found to have mosaic chromosomal 

alterations presumed to arise from clonal hematopoiesis.[30] Disruption of both ATM alleles 

in some portion of an individual’s blood might underpin development of chronic 

lymphocytic leukemia (CLL), as bi-allelic ATM inactivation is frequent in CLL.[28]

The strength of this study is the large, clinical-grade data set, which provides a rare 

opportunity to power statistical analyses of factors associated with likely-somatic variants. 

At the same time, analysis of de-identified NGS clinical testing population comes with 

inherent limitations. First, NGS allele frequencies suggest, but cannot confirm, CHIP as the 
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mechanistic origin of most likely-somatic variants observed in this population. Ruling out 

constitutional or multi-germ layer mosaicism would require follow-up testing with 

additional tissues and/or family members [15], which was not possible. Second, clinical 

treatment details for individuals with a reported personal cancer history were unavailable, 

limiting the evaluation of relationships between cytotoxic therapy and the appearance of 

likely-somatic variants. Third, as the test was optimized to detect germline PVs, variants 

present at allele frequencies below 10% were not evaluated and thus were absent from 

reported totals. While germline testing is not optimized for somatic variant analysis, this 

testing pipeline provided a large and well-powered cohort in which to analyze prevalence 

and characteristics of likely-somatic variants, though with a variant allele frequency 

threshold greater than that used in other studies. Examining variants present at allele 

frequencies below 10% will bring needed dimension to future analyses. Finally, the analysis 

did not include common CHIP-associated genes, such as DNMT3A, TET2, and ASXL1, as 

they were not part of the clinical testing panel used here.[4, 7, 17] Even with these 

limitations, this analysis depicts a uniquely well-powered, real-world hereditary cancer risk 

testing scenario, further underscoring the value of laboratory precision and accurate result 

interpretation and reporting. Follow-up studies that include detailed cancer treatment history, 

variants with lower allele frequencies, and additional CHIP-associated genes will add 

needed dimension to the exploration of somatic variant origins.

In summary, NGS-based panel testing for hereditary cancer predisposition can identify and 

characterize somatic variants more readily than could previous testing methods. This work 

helps to highlight how frequently somatic variants can arise, likely from CHIP, with normal 

aging and with cancer. Several identified likely-somatic hotspot variants, particularly in 

ATM, CHEK2, and TP53, represent excellent candidates for future CHIP study. Somatic 

variant findings can meaningfully impact test result interpretation, as they may put patients 

at risk for CHIP-related morbidities such as primary and secondary leukemias, 

cardiovascular disease, and decreased overall survival.[4, 7, 17] Large, long-term follow-up 

studies are needed to better understand how somatic variants affect this spectrum of 

outcomes. Further, differentiating between germline and somatic acquisition of PVs in 

cancer-risk genes can have profound medical management implications for patients and their 

family members. Assay and data analysis customization, combined with follow-up 

confirmation using additional tissues and family member testing, is required to accurately 

interpret hereditary cancer predisposition test results. These findings highlight the 

investment that diagnostic laboratories must make to deliver a clinically accurate result.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• NGS hereditary cancer genetic testing also detects somatic variants, which 

can arise via clonal hematopoiesis, and which impact cancer risk differently 

than do inherited variants.

• This report describes the prevalence of somatic variants in a large clinical 

hereditary cancer risk testing population and spotlights genes that were most 

prone to harboring somatic variants in individuals with or without a personal 

history of cancer.

• These findings highlight the importance of delivering clinically accurate NGS 

hereditary genetic testing results to healthcare providers and patients, along 

with the precision that is required to ensure accuracy.
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Figure 1. 
Types of variants identified in individuals with or without personal history of cancer and a 

single likely-somatic variant.
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Figure 2. 
Percentage of individuals with a likely-somatic variant as a function of age and personal 

cancer history.
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Table 1.

Demographic characteristics of the hereditary cancer genetic testing population.

Likely-Somatic Variant Carriers
(N = 753)

Non-Likely- Somatic Variant Carriers
(N = 347,790)

TOTAL
(N = 348,543)

Age at Testing

 Mean (SD) 62.6 (14.26) 48.0 (13.64) 48.0 (13.66)

 Median (IQR) 64 (54, 73) 47 (38, 57) 48 (38, 58)

 Min, Max 19, ≥90 11, ≥90 11, ≥90

Age at Testing Category

 <50 yrs. 141 (18.7%) 192604 (55.4%) 192745 (55.3%)

 ≥50 yrs. 612 (81.3%) 155186 (44.6%) 155798 (44.7%)

Affected Status

 Affected 609 (80.9%) 146269 (42.1%) 146878 (42.1%)

 Unaffected 144 (19.1%) 201521 (57.9%) 201665 (57.9%)

Ancestry

 White/Non-Hispanic 445 (59.1%) 169827 (48.8%) 170272 (48.9%)

 Black/African 31 (4.1%) 23695 (6.8%) 23726 (6.8%)

 Hispanic/Latino 26 (3.5%) 23336 (6.7%) 23362 (6.7%)

 Asian 8 (1.1%) 8349 (2.4%) 8357 (2.4%)

 Ashkenazi Jewish 12 (1.6%) 7256 (2.1%) 7268 (2.1%)

 Native American 10 (1.3%) 4571 (1.3%) 4581 (1.3%)

 Middle Eastern 2 (0.3%) 2378 (0.7%) 2380 (0.7%)

 Pacific Islander 0 15 (<0.1%) 15 (<0.1%)

 Other 8 (1.1%) 2334 (0.7%) 2342 (0.7%)

 Multiple Ancestries 47 (6.2%) 25044 (7.2%) 25091 (7.2%)

 None Specified 164 (21.8%) 80985 (23.3%) 81149 (23.3%)

SD, standard deviation; IQR, interquartile range.
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Table 2.

Gene distribution of likely-somatic variants (N=775).

Gene Frequency Percent

TP53 224 28.9

CHEK2 223 28.8

ATM 162 20.9

BRCA2 23 3.0

APC 21 2.7

BRCA1 12 1.5

NBN 11 1.4

MLH1 10 1.3

PMS2 10 1.3

CDH1 9 1.2

BRIP1 8 1.0

PALB2 8 1.0

MSH6 6 0.8

BARD1 5 0.6

PTEN 5 0.6

SMAD4 5 0.6

CDK4 4 0.5

RAD51D 4 0.5

STK11 4 0.5

BMPR1A 3 0.4

CDKN2A (p14ARF) 3 0.4

MUTYH 3 0.4

POLD1 3 0.4

RAD51C 3 0.4

CDKN2A (p16INK4a) 2 0.3

MSH2 2 0.3

POLE 2 0.3

TOTAL 775 -
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Table 3.

Logistic regression analysis of relationships between clinical factors and risk of carrying a likely-somatic 

variant, adjusting for personal cancer history, age at testing, germline pathogenic variant carrier status, and 

clinical indication for testing. (All tested individuals; N=348,543.)

Variable Odds ratio 95% confidence limits p-value

Personal Cancer History (affected versus unaffected) 3.3 (2.7, 4.0) <0.001

Age at Testing (≥50 years versus <50 years) 3.1 (2.5, 3.7) A <0.001

Germline PV Carrier Status (positive versus negative/VUS) 1.2 (0.9, 1.5) 0.203

PV, Pathogenic variant; VUS, Variant of uncertain significance.
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