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Therapeutic efficacy of dimethyl fumarate in
relapsing-remitting multiple sclerosis associates
with ROS pathway in monocytes
Karl E. Carlström1, Ewoud Ewing 1, Mathias Granqvist1,8, Alexandra Gyllenberg1,8, Shahin Aeinehband1,

Sara Lind Enoksson2, Antonio Checa3, Tejaswi V.S. Badam4,5, Jesse Huang1, David Gomez-Cabrero6,

Mika Gustafsson 7, Faiez Al Nimer1, Craig E. Wheelock 3, Ingrid Kockum1, Tomas Olsson1, Maja Jagodic1 &

Fredrik Piehl 1

Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis

(RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but

its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF

on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF

increases the level of oxidized isoprostanes in peripheral blood. Other observed changes,

including methylome and transcriptome profiles, occur in monocytes prior to T cells.

Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish

patients with beneficial treatment-response from non-responders. A single nucleotide poly-

morphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-

response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases

and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as

parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.
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An increasing body of evidence suggests that redox reac-
tions are important for the regulation of immune
responses during infection, malignancies and auto-

immunity1. Relapsing-remitting multiple sclerosis (RRMS) is an
autoimmune disease associated with dysregulation of adaptive
immunity, leading to the periodic entry of immune cells into the
central nervous system (CNS) and subsequent tissue damage with
symptoms of neurological dysfunction. Among a number of
different pathological disease mechanisms, an imbalance in the
oxidative environment has also been described2,3.

Dimethyl fumarate (DMF; Tecfidera®) is a oral disease mod-
ulating treatment (DMT) and the most prescribed drug for RRMS
in the U.S. It’s suggested to act by activating the transcription
factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)4,5, which
is a transcript of the NFE2L2 gene. Nrf2 is essential in redox
homeostasis and responses to reactive oxygen species (ROS)1 but
may in addition also engage additional transcription factors,
including NFκB6. The net activity of DMF has been described to
be mainly anti-oxidative5,7,8. So far targeting of redox regulation
has not been a generally accepted therapeutic strategy in auto-
immune diseases. However, older drugs including gold salts used
for rheumatoid arthritis have been shown to possess redox reg-
ulatory properties9–11. DMF has been ascribed cyto-protective
effects of potential relevance for CNS cells during inflammation,
but conclusive data on degree of CNS penetration in humans is
still lacking12,13 and modulation of disease relevant T cell sub-
sets14–19, therefore remains the most likely mechanism for
reducing clinical and neuroradiological disease activity in
RRMS5,20,21. Hence, we here chose to assess the effects of DMF in
peripheral blood.

Experimental evidence establish ROS as potent immune reg-
ulators, suggesting that dampening of oxidative reactions para-
doxically may increase susceptibility to autoimmune diseases22–24.
Thus, a naturally occurring genetic variant in the rat Ncf1 gene,
encoding a ROS-generating NADPH oxidase subunit, leading to
lowered ROS generation is associated with increased susceptibility
to both experimental autoimmune arthritis25 and encephalo-
myelitis (EAE)22,26, the animal model for MS. Experiments in
genetically modified mice have pin-pointed this effect to incapa-
city of myeloid cells to limit T cell proliferation and to induce
regulatory T cell (Treg) activation via superoxide generation27–29.
ROS has also been shown to mediate a range of immune reg-
ulatory effects including; T cell hyporesponsiveness30,31, dimin-
ished T cell receptor signaling22,32–34, cytokine production35 and
T helper cell (TH17) development36–38. In addition, memory
T cells are more susceptible to ROS compared to naïve T cells and
Treg

39. Collectively, these observations suggest that ROS can
modulate multiple immune responses of importance in auto-
immunity. Monocytes are potent producers of ROS primarily via
NADPH oxidases40,41. In mice monocytes have been shown to
regulate disease models of autoimmunity31,38,42, and ROS defi-
ciency causes failure of this regulation43,44. Still, the existing lit-
erature mostly consists of experimental animal or in vitro studies,
and studies performed ex vivo in man during drug interventions
are rare. Regulation of redox reactions and oxidative damage
within the CNS is relevant in a range of conditions, including MS,
where signs of oxidative damage and expression of anti-oxidative
proteins are found in active MS lesions45,46. This study, however,
was restricted to a detailed characterization of the initial monocyte
response and subsequent immunomodulation occurring in per-
ipheral blood of RRMS patients starting therapy with DMF. In
addition, DNA methylation changes in sorted cells were used to
verify changes in transcription and immunoprofiling as well as to
provide additional relevant mechanistic informaton given the
emerging role of DNA methylation in regulating immune
response and inflammatory diseases47,48.

Herein, we identify DMF to increase monocyte ROS generation
and that epigenetic methylation changes in monocytes precede
those occurring in CD4+ T cells. Furthermore, a reduced capacity
to generate ROS and lower monocyte counts is associated with
reduced clinical efficacy of DMF. Lastly, we identify a single
nucleotide polymorphism (SNP) in the NOX3 gene to be asso-
ciated to a beneficial treatment response to DMF and suggestively
associated with increased ROS generation.

Results
Early monocyte response to DMF reveals therapy efficiency.
DMF has been included in the Swedish public reimbursement
program for treatment of RRMS since May 2014. We
included patients from May 2014 to March 2017 starting DMF in
clinical routine that volunteered for extra blood sampling, but
otherwise were not subject to any other selection criteria
(Fig. 1a–c, Supplementary Dataset 1). Peripheral blood was col-
lected at regular intervals before (baseline) and during the first
six months after starting DMF and patients were followed in
order to evaluate treatment efficacy according to clinical
routine. To address oxidative stress, we initially determined
plasma levels of free 8.12-iso-iPF2α-VI isoprostane generated
through non-enzymatic oxidation, considered as the most
acknowledged technique of quantifying oxidative stress49,50 and
superior to measurement of e.g., anti-oxidative enzymes since this
technique measure oxidation instead of secondary responses
to oxidation. Isoprostane 8.12-iso-iPF2α-VI was significantly
increased compared to baseline levels already three months
following DMF treatment, this effect was sustained after six
months, suggesting an increase in oxidative environment
(Fig. 1d). This could be observed at the transcriptional levels, as
Gene Set Enrichment Analysis (GSEA) on differentially
expressed mRNAs in CD14+ monocytes at baseline and after six
months showed an enrichment of upregulated genes involved in
response to oxidative stress as compared to baseline (including
TXN, SOD1/2, NFE2L2) (Fig. 1e, f). In addition, unbiased Inge-
nuity Pathway Analysis (IPA) demonstrated altenation of Nrf2,
NFκB, HIF1α and fatty acid oxidationpathways in response
to DMF (Fig. 1g, Supplementary Dataset 2 Supplementary
Table 1).

Depending on the treatment outcome, patients were either
categorized as DMF responders if they had continuous DMF
therapy for at least 24 months without signs of disease activity
(i.e., free of clinical relapses and newly appearing brain lesions on
magnetic resonance imaging (MRI), or DMF non-responders if
they displayed signs of continued clinical and/or neuroradiolo-
gical disease activity at any stage after the first three months
(Fig. 1b). At three months, responders had significantly higher
counts of CD14++CD16− cells, representing the main monocyte
population, compared to non-responders, while the remaining
monocyte subsets did not differ between the two groups or over
time (Fig. 2a–d). A difference in total monocyte counts between
responders and non-responders was subsequently replicated
using retrospective data for a larger cohort of RRMS patients
starting DMF (Fig. 2e, f). Subjects in Fig. 2e, f were not included
in other cellular immune profiling experiments. Detailed
description of all subject can be found in Fig. 1c and
Supplementary Dataset 1. Furthermore, early changes in mono-
cyte counts at three months were negatively associated with
changes in lymphocyte counts at 12 months. Hence, non-
responders displayed lower monocyte counts at the earlier time
point and higher lymphocyte counts at 12 months compared to
responders (Fig. 2f).

Next, we determined monocytic ROS generation in RRMS
patients and controls using dihydrorhodamine-123 (DHR-123).
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Fig. 1 DMF induce increased isoprostane oxidation and transcription in response to oxidative stress. a Scheme of the study design. Peripheral blood was
sampled at the clinic of patients fulfilling the criteria for RRMS and prescription of DMF. b Definition of RRMS patients as responders or non-responders to DMF
therapy. c Experimental overlap between different assessments in the study d 8.12-iso-iPF2α-VI-isoprostane in plasma from paired patients sampled at three
months (n= 9) and six months (n= 26) after DMF start compared to baseline (n= 26). e, f GSEA on mRNA from CD14+ sorted monocytes at baseline (n= 3)
and six months (n= 3) shows an enrichment of upregulated genes involved in GO_REGULATION_OF_RESPONSE_TO_OXIDATIVE_STRESS at six months. ES,
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Baseline levels of spontaneous ROS generation before starting
DMF, although very low, was higher in RRMS patients than
healthy controls, DMF treatment resulted in decreased sponta-
neous ROS generation independently of later being a responder
or non-responder (Fig. 2g). In contrast, responders displayed a
more vigorous increase in ROS generation upon ex vivo
stimulation with E. coli compared to non-responders at both
three and six months (Fig. 2h). ROS generation was not altered in
lymphocytes or granulocytes over time (Supplementary Fig. 1).
These findings, together with a correlation observed between
isoprostane levels at six months and degree of reduction in
lymphocyte counts from baseline to 12 months, suggest a link
between the ROS response and subsequent changes to the
peripheral lymphocyte compartment (Fig. 2i).

DNA methylome changes occur early in monocytes. To provide
more insight into the molecular mechanisms involved in DMF
effect, we profiled DNA methylation, a stable epigenetic mark
able to influence transcriptional activity, immune functions
and disease47,48 using Illumina EPIC arrays in sorted CD14+

monocytes from RRMS patients sampled at baseline and after
three and six months. Assessment of other types of epigenetic
changes, such histone modifications and non-coding RNAs
was not performed due to limitations in input material.
Monocytes displayed numerous methylation changes, but
none reaching false discovery rate (FDR) significance, possibly
due to the low number of analyzed samples (Fig. 3a, Supple-
mentary Dataset 3). The most pronounced methylation
changes occurred between baseline and three months which
then reverted back to baseline levels after six months of
treatment (Fig. 3b). Thus, methylation patterns revealed three
month as a critical time window, with most changes being
identified in baseline vs. three months and three months vs.
six months, while very little change has been observed between
baseline and six months. Pathways associated with differen-
tially methylated genes implicate functions related to regula-
tion of apoptosis (PRKCZ/B, INPP5D), metabolism (IRS2
NR1H3), cell communication (IL6, STAT3) and migration
(NFAT, IL6), (Fig. 3c, Supplementary Table 2). A substantial
number of the pathways also contained genes known to
respond to ROS as defined by GO_RESPONSE_TO_OX-
IDATIVE_STRESS, depicted in the Fig. 3c by increasing blue
color. Further, we tested whether methylation levels in
monocytes at baseline correlated with the response to DMF in
11 responders and three non-responders. We found three
highly suggestive proximal CpGs mapping to a locus on
chromosome 16, cg04536393 (adj.P-val < 0.090, 6.8% lower
methylation in responders), cg27075654 (adj.P val < 0.065,
23.6% higher methylation in responders) and cg07622957 (adj.
P val < 0.065, 30.1% higher methylation in responders) asso-
ciating to treatment response. While the latter two CpGs map
to a region in the CLCN7 gene predicted to be transcribed,
cg04536393 maps to an intergenic region annotated to be an
enhancer in monocytes51. Although of potential interest,
additional studies in larger cohorts will be needed to explore if
these locus harbors gene(s) which methylation status is of
relevance for the DMF treatment outcome.

NOX3 SNPs associates with DMF-therapy outcome. In order to
address any possible genetic contribution to ROS generation in
monocytes and response to DMF treatment, i.e., supporting a
causative role, we analyzed a set of SNPs in genes encoding some
of the components of the NADPH oxidase 1–4 complexes.
One SNP in NOX3 (rs6919626) displayed suggestive association

(β=−0.28; P= 0.057), with the minor G allele contributing to
reduced ROS generation in monocytes after ex vivo stimulation
with E. coli (Fig. 4a, Supplementary Dataset 5). Notably, the same
allele was also significantly associated (OR= 1.57; P= 0.036)
with likelihood of displaying an insufficient response to DMF
(Fig. 4a, Supplementary Dataset 5). Several additional SNPs
within NOX3, NOXO1 and CYBA showed significant association
with response to DMF treatment (Supplementary Dataset 5),
however, in no case the same marker displayed association both
to ROS generation and DMF treatment response. NOX3 is not
solely expressed in monocytes. To further propose a mechanistic
rational for genetic variations in rs6919626 in association to ROS
and therapy outcome, we assessed methylation in the NOX3
promoter region and expression of NOX3 in sorted CD14+

monocytes (Fig. 4b, c). The A allele that associated with the
response to DMF exhibited consistent tendency for association
with lower methylation at several CpGs in the promoter of NOX3,
already at baseline (Fig. 4b, c). Reduced CpG methylation in DMF
responders carrying the A allele could be further linked to higher
NOX3 transcription in CD14+ monocytes at six months (Fig. 4d).
Together, this finding suggests that genetic variation and CpG
methylation in monocytic NOX3 might influence the NOX3 gene
transcription and thus monocyte function, particularly ROS
production.

Delayed changes in CD4+ T cells after DMF intervention. We
next investigated DNA methylation in CD4+ T cells and identi-
fied numerous significant methylation changes following treat-
ment with DMF (Fig. 5a). In contrast to monocytes, methylation
changes in CD4+ T cell mostly occurred between three and six
months after DMF start, compared to baseline versus three
months (Fig. 5a, b, Supplementary Dataset 6). Altered CpGs
displayed predominant hyper-methylation at genes involved
canonical pathways related to T cell differentiation (especially
TH17 and TH17/Treg balance), migration, development and
apoptosis (Fig. 5c, Supplementary Table 3). In addition, these
clusters were also affected by ROS based on GO_R-
ESPONSE_TO_OXIDATIVE_STRESS. Pathway analyses per-
formed on genes associated to methylation changes in CD4+

T cells between three and six months of DMF treatment implicate
regulation of proliferation and apoptosis, migration, differentia-
tion of TH17 and Treg (Supplementary Table 4). Significant
upstream regulators predicted to explain the DNA methylation
changes include transcriptional regulators important in T cell
activation and Treg function (EP300/CREBBP) as well as TH17/
Treg balance (IL17A, RORC, STAT5B) (Supplementary Table 5).
To further explore T cells response to DMF, we conducted
longitudinal characterization of T cell subsets and plasma cyto-
kine levels using multicolor flow cytometry and Olink platform,
respectively, at baseline and at six months following DMF treat-
ment start. We found a significant increase in proportions of
naïve T cells in responders over time, compared to baseline as
well as, compared to non-responders at six months (Fig. 6a),
while total naïve T cell numbers decreased in both groups over
time (Fig. 6b). Proportions and absolute numbers of central
memory T cell (TCM) and effector memory T cells (TEM) were
significantly lower in responders over time (Fig. 6c–f) and
unchanged in non-responders. Unlike naïve T cell subset, changes
in absolute numbers of TCM and TEM also followed the same
direction as relative cell counts (Fig. 6d, f). Difference in cell
proportions between responders and non-responders was
accompanied by more pronounced changes in cytokine
profiles over time in responders compared to non-responders
(Fig. 6g, h). For example levels of IL-17C, IL-12B and CXCL9
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were significantly lower in responders over time but not in
non-responders over time (Supplementary Table 6). Altogether,
several pathways in CD4+ T cells are being epigenetically chan-
ged and contains genes being affected by ROS. Lowering of TCM

and TEM is more pronounced in responders compared to non-
responders to DMF. While the largest difference in cytokine
profile is present over time but less evident between responders
and non-responders.

Discussion
Experimental and clinical data suggest redox reactions to be
involved in regulation of immune reactions in autoimmune
conditions24,52,53. For example, non-phagocytic ROS has been
shown to regulate autoreactive T cells both in models of arthri-
tis25 and MS-like disease22. However, evidence supporting a
disease regulatory role of ROS generation in human studies
including therapeutic intervention is overall rare and so far
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lacking in MS. The way by which DMF is beneficial to RRMS
patients stands out from other currently used DMTs, since its
mode of action cannot readily be explained by a direct effect on
the lymphocyte compartment and may include effects on multiple
cell types and signaling pathways54, notably through its action on
Nrf2, and to some degree other transcription factors. Never-
theless, a substantial body of evidence shows that T cell functions,
believed to be important for MS disease pathogenesis, are indeed
modulated by DMF14,18. In addition, clinical effects are slow and
become noticeable after the first three months of treatment, as
observed already in the early trial program20,21. We herein pro-
vide insights into early effects of DMF on monocytes that could
be of importance for subsequent modulation of adaptive immune
responses. So far myeloid cell-derived ROS generation as an
immune regulator has received little attention during DMT
intervention in RRMS, including DMF. This is despite extensive
experimental data supporting a role for ROS in the regulation of
adaptive immune responses in autoimmune conditions28,36. In

light of the anti-oxidative features ascribed to DMF-mediated-
Nrf2-activation1,4, we herein found DMF to contribute to an net
increase of the oxidative environment, as shown by increased free
isoprostane level produced by non-enzymatic oxidation (Fig. 1).
Previous studies have indicated similar changes based on less
reliable indirect measurements, such as increased transcription or
anti-oxidative protein depletion5,17,19.

Importantly, monocytes from patients without signs of clinical
or neuroradiological disease breakthrough had an increased
capacity to produce ROS compared to patients that had such
signs. Monocytes are potent producers of ROS through their
NADPH oxidase complexes, but in contrast to other ROS pro-
ducing cells, they are generally not considered to play a major role
in e.g., microbial defense. They have thus been suggested to have
other functions, including immune regulation. While alterations
in monocyte subsets between healthy individuals and auto-
immune patients, including MS, have been observed previously,
longitudinal studies during immune intervention are scarce.
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Non-classical CD14−CD16+ monocytes have been shown to be
the subset most vulnerable to ROS-induced apoptosis55. Herein
we only detected a change in numbers classical inflammatory
monocytes (CD14++CD16−), which were reduced in DMF non-
responders (Fig. 2). Since classical CD14++CD16− monocytes
are also positive for CCR2, which is used to recruit myeloid cells
into the CNS, it cannot be excluded that differences in cell
numbers can be explained by differences in migration rather than

increased apoptosis. DMF-dependent CNS migration of myeloid
cells has been described56 and is further supported by our long-
itudinal DNA methylation changes in relevant pathways involved
in migration and communication (Fig. 3). However, given the
complex interaction between several epigenetic modalities in the
regulation of transcription and cellular functions, addressing
histone modifications and non-coding RNAs might provide
additional insight into DMF-mediated effect at the molecular
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level57,58. The functional evaluation showed that DMF increased
the inducible ROS generation more in responders than non-
responders, which is interesting in light of the observation that
NADPH oxidases have been found in active MS lesions and are
believed to contribute to tissue injury46. However, it is likely that
the consequences of ROS generation are different depending on
whether it triggers redox regulation or oxidative damage. Also,
the site of ROS generation is likely a crucial factor since the
consequences of ROS generation in the CNS parenchyma likely
differ compared to secondary lymphoid organs.

Additional evidence for an active role of monocytes in trans-
lating the effect of DMF into clinical benefit comes from the
genetic association study, which identified a SNP (rs6919626)
located in the NOX3 gene. This SNP was associated both with
ROS generation in monocytes and the likelihood of having an
adequate treatment response with DMF, in particular since the
minor allele was linked with reduced ROS generation and higher
risk of breakthrough disease (Fig. 4). NOX3 does not associate
with MS incidence59 (P= 0.527, OR= 1.01) and to the best of
our knowledge this is the first such association between a func-
tional effect on ROS generation and the clinical response to
therapeutic intervention in any autoimmune disease. This
observation also lends support to the substantial amount of pre-
clinical studies showing a regulatory role of myeloid derived ROS

on adaptive immunity22,27,28,31. Evaluation of the association of
rs6919626 with methylation and expression suggested a potential
genetically driven influence of the promotor methylation on
subsequent transcription of NOX3 in monocytes. Molecular
connection between DMF, NOX3, and DNA methylation is
relevant, however, also very complex as existing data on the direct
influence of fumarates on DNA methylation is still scarce. Con-
versely, some studies have indicated that both DNA methylation
and histone acetylation can influence Nrf2 and its inhibitor
Keap1, at least in non-immune cells. Future studies have to verify
the role of these changes in an inflammatory context. At this stage
a conservative interpretation of our findings in the context of
existing knowledge is that DMF increases oxidative functions in
monocytes, which are known to modulate T cell functioning,
leading to changes in methylation patterns in both cell types.
However, our findings need to be verified in additional cohorts in
order to fully understand the role of monocytic NOX3 during
DMF intervention.

Our hypothesis of monocytes being primarily affected by DMF
is also supported by the temporal profile of methylation changes
in a smaller sample set, where changes in CD14+ monocytes
occurred prior to changes in CD4+ T cells. Moreover, changes in
monocyte numbers occurring prior to changes in lymphocyte
numbers in the larger clinical cohort further support monocytes
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being targeted by DMF prior to CD4+ T cells. Myeloid derived
ROS has been shown to limit T cell activity27,28 in vitro. This is a
plausible underlying mechanism in our study but cannot con-
firmed or ruled out herein. However, T cells have recently been
described to be under increased oxidative pressure early after
DMF intervention5,17, at a time point which coincides with the
peak in monocyte ROS generation found here.

In the CD4+ T cells we predicted upstream regulators sug-
gesting relevant factors for activation and function of TH17 and
Treg (Supplementary Table 5). This was in line with functional
implications of wide spread methylation changes validating pre-
vious published data on longitudinal changes in TH17 and Treg

frequencies in man18. Herein IL-6, IL-17A and IL-22, all of which
contribute to T-cell subset regulation and MS pathology, were
differentially methylated over time in CD4+ T cells (Fig. 5), all of
which contribute to T cell subset regulation and MS pathology.

Changes in the adaptive immune cell profile were further
verified with a standardized flow cytometry approach. DMF
responders significantly increased their proportion of naïve
T cells compared to non-responders. The absolute numbers of
naïve T cells did decrease in both groups, suggesting that absolute
number of naïve T cells is insufficient to predict beneficial
treatment outcome. Lowering of TCM and TEM in RRMS patients
with ongoing disease has been described before18. Our data fur-
ther impliy that reduction of TCM could be relevant for beneficial
DMF response. The significant difference in TCM numbers
between responders and non-responders could further be sup-
ported by the differentially methylated genes involved in T cell
differentiation, clonal expansion (Hippo) and T cell apoptosis
(Fig. 5c). Interestingly, these pathways were also highly influenced
by oxidative stress. Pathways involved in lymphocyte trafficking
and migration are also changed over time and between respon-
ders and non-responders (Figs. 5c, 6g). These pathways could be
of importance in e.g., TH17 and Treg migrating to the CNS,
leaving the blood. Since also TCM and TEM in the CNS are
associated with disease progression, and are decreasing in blood
of responders, CNS migratory pathways are likely not of rele-
vance in TCM and TEM in our cohort. Decreased migration would
more likely cause an accumulation in the blood18.

In conclusion, we here demonstrate that monocytes undergo
functional, numeric and DNA methylation changes early after
initiation of DMF. This is, at least in part, related to their oxi-
dative capacity and occur prior to immunomodulatory changes to
pathways in CD4+ T cells associated with MS pathogenic
mechanisms. A direct link between DMF-mediated modulation of
monocytes and the clinical effect of DMF is suggested both by an
association between the early monocyte phenotype and clinical
outcomes, as well as by the identification of a genetic locus
influencing both oxidative capacity in monocytes and clinical
outcome of DMF treatment. Although the action of DMF on the
exceedingly complex regulation of redox state is likely to involve
both anti-oxidant and oxidant effects, the fact that patients
starting DMF display increased levels of non-enzymatically pro-
duced isoprostanes strongly supports a net increase in oxidative
state, at least in the peripheral blood. Collectively, these findings
challenge the widespread belief on oxidants and anti-oxidants as
categorically detrimental or beneficial in conditions of auto-
immunity. On the contrary, this discovery may pave the way for
work aiming to modulate and increase ROS generation in
monocytes as a therapeutic strategy to control dysregulated
autoimmune responses.

Methods
Study population. In total, 564 patients and healthy subjects were sampled during
May 2014 and March 2017. All patients had indication for start of DMF in clinical
routine and fulfilled diagnostic criteria of RRMS according to the 2010 revision of

the McDonald criteria60, but otherwise were not subject to any other selection
criteria. Patients were either categorized as DMF responders if they had continuous
DMF therapy for at least 24 months without signs of disease activity as defined by
being free of clinical relapses and newly appearing cerebral MRI lesions, or DMF
non-responders if they displayed signs of continued clinical and/or neuror-
adiological disease activity at any stage after the first three months. Patients having
disease activity within three months after starting DMF or lacking a baseline
sample before DMF start were excluded from the study. Baseline characteristics of
the cohorts, analysis inclusion and ethical permissions are summarized in Sup-
plementary Dataset 1. This study was a part of the Stockholm Prospective
Assessment of MS study (STOPMS II) (2009/2107–31/2) and IMSE
(2011/641-31/4), approved by the Regional Ethical Review Board of Stockholm, all
participants provided written consent.

Flow cytometric analyses and intracellular ROS generation. Peripheral blood
was sampled in EDTA tubes and analyzed within an hour of sampling. Monocyte
subsets were analyzed in responders (n= 10) and non-responders (n= 10). Ery-
throcytes were lysed using Isolyse C (Beckman Coulter, Brea, CA) and stained with
CD14-PE.Cy7 (A22331) and CD14-FITC (IM0814U) (Beckman Coulter, Brea, CA)
for 30 min at+4 °C in dark. For examination of intracellular ROS generation,
samples were prepared and analyzed with Phagoburst kit (BD Bioscience, Franklin
Lakes, NJ) according to the manufacturer′s standard protocol. In brief, whole blood
from healthy donors (n= 10), RRMS patients (n= 20) before and after DMF
therapy was either ex vivo stimulated with dilutions of E. coli or PBS before
measuring intracellular ROS generation with dihydrorhodamine-123 (DHR-123).
Supplementary Dataset 1 defines patients included for genetic association with ROS
generation. All samples were analyzed with a 3 laser Beckman Coulter Gallios using
Kaluza Software (Beckman Coulter, Brea, CA) and acquired by time. Numbers of
monocytes and lymphocytes in Fig. 2e, f were determined by differential blood
count performed according to clinical routine at the Karolinska University Hospital
Laboratory. Characterization of naive CD4+ T cells (CD45RA+CCR7+), TCM

(CD45RA−CCR7+) and TEM (CD45RA−CCR7−) subsets were performed at
Clinical Immunology/Transfusion medicine, Karolinska University Hospital
Laboratory, Huddinge, Sweden using a FITMaN/HIPC-based standardized phe-
notyping panel developed by the Human Immunophenotyping Consortium
(HIPC)61. In brief, frozen PBMC responders (n= 8) and non-responders (n= 4)
were stained with CD3-V450 (UCHT1), CD4-PerCP-Cy5.5 (RPA−TA), CD8-
APC-H7 (SK1), CD45RA−PE-Cy7 (HI100), CD45-AF700 (HI30) and CD197/
CCR7-PE (150503) (BD Bioscience, Franklin Lakes, NJ) and analyzed with a 3 laser
Beckman Coulter and Kaluza Software (Beckman Coulter, Brea, CA).

8.12-iPF2α-VI isoprostane and cytokine analysis in plasma. The plasma levels
of free 8.12-iPF2α-VI isoprostane were extracted and quantified in plasma as
previously published with minor modifications62,63. The extraction of free 8.12-
iPF2α-VI was performed on an Extrahera automated extraction system from
Biotage (Uppsala, Sweden) as previously described with minor modifications.
Briefly, 10 µl of an antioxidant solution mix [0.2 mg/mL BHT and EDTA in
MeOH:Water (1:1)] and 10 µl of the internal standard solution were added to a
12 × 75 mm Pyrex tubes on kept on ice. Then, 400 µl of plasma thawed at 4 °C was
added to the tubes and samples were vortexed. Afterwards, 600 µl of the extraction
buffer (0.2 M Na2HPO4:0.1 M citric acid, in water, pH 5.6) was added and samples
were vortexed. Samples were immediately extracted using 3cc/60 mg HLB Oasis
SPE cartridges (Milford, MA) previously conditioned with 2 mL of methanol fol-
lowed by 2 mL of water. Samples were then loaded into the cartridges, washed with
3 mL of water/methanol 90:10 and eluted with 2.5 mL of methanol. The solvent was
then evaporated using a N2 Turbovap LV system (Biotage, Uppsala, Sweden).
Samples were finally reconstituted in 80 µl of methanol:water (50:50, v/v), filtered
using Amicon Ultrafree-MC, PVDF 0.1 µm filters (Millipore, US) centrifuged at
4000 × g for 5 min and transferred to LC-MS vials with 150 µl inserts for analysis.
The isoprostane analyses were performed on an ACQUITY UPLC System from
Waters Corporation (Milford, MA) coupled to a Waters Xevo® TQ-S triple
quadrupole system equipped with an electrospray ion source operating in the
negative mode. Separation was adapted from a previously published method and
carried out on a Zorbax RRHD Eclipse Plus C18 (100 × 2.1 mm, 1.8 µm, 100 Å)
column equipped with a guard column (5 × 2 mm), both from Agilent Technolo-
gies (Santa Clara, CA). Mobile phases consisted of 0.01% acetic acid in water
(aqueous) and 0.01% acetic acid in methanol (organic). The elution gradient used
was as follows: 0.0 min, 40.0% B; time range 0.0 to 8.9 mins, 50.0→ 58.5% B; time
range 8.9–9.1 mins, 58.5% B; time range 9.1–9.6 mins, 58.5→ 100% B; time range
9.6 to 11.5 min, 100% B; time range 11.5–13.3 min,100→ 50% B and 13.2. The flow
was maintained at 50% B until 14 min. The flow rate was set at 250 µl min−1, the
injection volume was 7.5 µL and the column oven was maintained at 35 °C. SRM
transitions 353→ 115 and 357→ 115 were monitored for 8,12-iso-iPF2α-VI and
8,12-iso-iPF2α-VI-d4 obtained from Cayman Chemicals (Ann Arbor, MI) and used
for their quantification. Samples were extracted in three different batches and
injected in one LC-MS/MS batch. In order to minimize sample manipulation
effects on the quantification, paired samples were extracted and injected con-
secutively in a randomized order (Baseline-6 months/6 months-Baseline). In order
to control for reproducibility within the same batch, pooled plasma QC mixtures
were prepared using 60 µl for each sample (whenever enough volume was left). A
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triplicate of the QC was extracted and injected for each batch. The %CV of 8,12-
iso-iPF2α-VI for each batch were 5.6, 10.2 and 11.2%, so the data can be considered
as reproducible. For cytokine analysis, samples were analyzed with the Immune
Response Panel by Olink Proteomics, Uppsala, Sweden using the proximity
extension assay for quantifying relative cytokine levels.

Cell sorting and transcriptomics analysis. CD4+ and CD14+ cells where pre-
pared within an hour after sampling using AutoMACS (Milteny Biotec, Bergisch,
Germany) according to the manufactures standard protocol and stored at −70 °C.
DNA and RNA was extracted simultaneously using Qiagen Allprep DNA/RNA kit
(Qiagen, Venlo, Netherlands) according to the manufactures standard protocol and
stored at −70 °C. This kit does not allow extraction of short RNAs. RNA was
analyzed on GeneChip Human Gene 2.1 ST Array from Affymetrix by NGI in
Uppsala, Sweden. DNA methylation was measured on the Illumina EPIC array by
BEA in Stockholm. Affymetrix data was loaded using the oligo and affy R-
packages. Data was RMA normalized and batch effects were determined using
PCA. Differential expression was determined using the same linear model used for
methylation. GSEA was performed using GenePattern (https://genepattern.
broadinstitute.org) and GO_REGULATION_OF_RESPONSE_ TO_OX-
IDATIVE_STRESS on expression in paired CD14+ monocytes before and after
DMF (n= 7). CD14+ Affymetrix data was loaded using the oligo and affy R-
packages. Data was RMA normalized and batch effects were determined using
PCA. Differential expression was determined using the same linear model used for
methylation.

DNA methylation analysis. DNA methylation data was loaded using the ChAMP
package64 https://github.com/TranslationalBioinformaticsUnit/GeneSetCluster.
Data were processed as previously described65, in brief, data was loaded with all
probes passing the detection P= <0.01 (Linear model testing), furthermore all
probes with known SNPs were removed. Notably because the study design is before
and after treatment, the X and Y chromosome probes were not filtered. After this
the betas were normalized using BMIQ, and afterwards the batch effects were
identified with PCA and removed using combat66. Differential methylation was
determined using a paired linear model, using the limma package67. The linear
model used age, sex and cell type deconvolution as covariates. Cell type deconvo-
lution was performed using RefFreeEWAS R-package. The optimal number of cell
types for deconvolution was determined by calculating the deviance-boots (epsilon
value) over 10000 iterations for the range of 1 to 10 cell types (https://CRAN.R-
project.org/ package= RefFreeEWAS). The cell proportions are obtained by solving
the model Y=M*Ω−T (where Y= original beta methylation matrix, M= cell type
specific beta methylation matrix, Ω= cell proportion matrix and T is number of cell
types to deconvolute) using nonnegative matrix factorization method68.

Pathway analysis. Differentially methylated genes were uploaded to Ingenuity
Pathway Analysis (IPA). Core expression was performed and canonical pathways
were grouped into clusters by calculating the similarity of pathways by calculating
the relative risk (RR) of each pathway appearing with each pathway based on the
molecules within the pathway. RR scores were clustered into groups using MClust.
ROS-score per clusters was calculated by calculating the number of genes that
match with the genes from GO_RESPONSE_TO_OXIDATIVE_STRESS. Differ-
entially expressed genes were also uploaded to IPA, including the direction of
change in the analysis.

Genetic association study. Genotyping was carried out using an Illumina custom
array as part of a larger study replicating genetic association to MS within the
international multiple sclerosis genetics consortium (IMSGC) (https://www.
biorxiv.org/content/early/2017/07/13/143933). A total of 7701 multiple sclerosis
patients and 6637 controls from Sweden were genotyped and passed quality con-
trol. Allele calling was carried out with an Illuminus caller. The quality control
analyses for markers included minor allele frequency (MAF) > 0.02, success rate
> 0.98, Hardy–Weinberg equilibrium among controls (P= <0.0001). For indivi-
duals, the quality control included success rate > 0.98, increased heterozygosity as
determined as F (inbred coefficient) smaller than mean value minus three standard
deviations. All these quality control steps were carried out using PLINK. We
identified population outliers using the SmartPCA program with standard settings
and removed those that were outliers. Eleven PCA vectors, those with P= <0.05,
were used for correcting for population stratification in the association analysis. We
estimated relatedness between individuals using PLINK and removed one indivi-
dual in reach pair with Pi_hat > 0.175.

Genes encoding some of the components of the NADPH oxidase 1–4
complexes had been tagged using HaploView and single nucleotide markers (SNPs)
added to the custom genotyping array, these were included in the association
analysis (Supplementary Dataset 4). Analysis for association (response to DMF)
were carried out with logistic regression in PLINK v1.07 including eleven PCA
vectors to correct for population stratification. 323 markers and 341 subjects were
included after QC (Supplementary Dataset 1).

Measurements of ROS production was performed as described in methods
section using the Phagoburst Kit (BD Bioscience, Franklin Lakes, NJ). 114 subjects
were included (Supplementary Dataset 1), and genotypes were available for 204 of

the selected SNPs. A quantitative trait analysis was performed in PLINK, including
eleven PCA vectors to correct for population stratification.

The Linkage Disequilibrium plot of the markers in NOX3 was made using
HaploView 4.2 using genotypes from 7701 MS patients and 6637 controls from the
Swedish population.

Statistics. General statistical analysis was performed in GraphPad Prism software.
Throughout the study n refers to the number of subject where every subject is one
data point. Two group comparisons were done with Student’s two-tailed unpaired t
test. Paired group comparisons were done with paired t test. Two group com-
parisons with a control group were done with one-way ANOVA. P < 0.05 was
throughout considered statistically significant. Additional statistical methods
applied for genetic association and transcriptional and epigenetic characterization
are described in each individual section. Group and cohort sizes are indicated in
figure legends and Supplementary Dataset 1. Violin plots were generated using R
software and Plotly package.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data on methylation and transcription used to generate graphs in Figs. 1, 3, 4, 5
have been deposited in GEO database under accession number GSE130494 (methylation
data) and GSE130478 (transcription data) Genetic data is stated to consist of personal
data in the GDPR law. The data protection officer at Karolinska Institute interpretation is
that genetic data if from more than 30 or so polymorphisms, could identify a person and
hence cannot be anonymized. Thus we herein provide genetic data from the two highest
associated SNPs in NOX3 in Supplementary Dataset 4, 5 and upon request we agree to
share additional data. The human genotypes herein is part of a larger MSchip study
(https://www.biorxiv.org/content/early/2017/07/13/143933), no authors from that study
claims co-authorship to this study.
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