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Abstract

The phase diagram of molecular or colloidal systems depends strongly on the range and angular 

dependence of the interactions between the constituent particles. For instance, it is well known that 

the critical density of particles with “patchy” interactions shifts to lower values as the number of 

patches is decreased [see Bianchi et al. Phys. Rev. Lett. 97, 168301 (2006)]. Here, we present 

simulations that show that the phase behavior of patchy particles is even more interesting than had 

been appreciated. In particular, we find that, upon cooling below the critical point, the width of the 

liquid-vapor coexistence region of a system of particles with tetrahedrally arranged patches first 

increases, then decreases, and finally increases again. In other words, this system exhibits a doubly 

re-entrant liquid-vapor transition. As a consequence, the system exhibits a very large deviation 

from the law of rectilinear diameter, which assumes that the critical density can be obtained by 

linear extrapolation of the averages of the densities of the coexisting liquid and vapor phases. We 

argue that the unusual behavior of this system has the same origin as the density maximum in 

liquid water and is not captured by the Wertheim theory. The Wertheim theory also cannot account 

for our observation that the phase diagram of particles with three patches depends strongly on the 

geometrical distribution of the patches and on the degree to which their position on the particle 

surface is rigidly constrained. However, the phase diagram is less sensitive to small angular 

spreads in the patch locations. We argue that the phase behavior reported in this paper should be 

Jorge R. Espinosa: http://orcid.org/0000-0001-9530-2658

Adiran Garaizar: http://orcid.org/0000-0002-9320-2984

Carlos Vega: http://orcid.org/0000-0002-2417-9645

Daan Frenkel: http://orcid.org/0000-0002-6362-2021

Rosana Collepardo-Guevara: http://orcid.org/0000-0003-1781-7351

Published under license by AIP Publishing
aAuthor to whom correspondence should be addressed: jr752@cam.ac.uk and rc597@cam.ac.uk. 

Europe PMC Funders Group
Author Manuscript
J Chem Phys. Author manuscript; available in PMC 2020 June 14.

Published in final edited form as:
J Chem Phys. 2019 June 14; 150(22): 224510. doi:10.1063/1.5098551.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://orcid.org/0000-0001-9530-2658
http://orcid.org/0000-0002-9320-2984
http://orcid.org/0000-0002-2417-9645
http://orcid.org/0000-0002-6362-2021
http://orcid.org/0000-0003-1781-7351


observable in experiments on patchy colloids and may be relevant for the liquid-liquid equilibrium 

in solutions of properly functionalized dendrimers.

I Introduction

Colloids can be used as building blocks for self-assembling materials.1–4 The nature of the 

phases that can be formed depends on the interactions between the colloids, which in some 

cases can lead to anomalous phase diagrams.5–7 Hence, the range of colloidal materials that 

can be made depends on our ability to manufacture colloids with tailor-made interactions. 

We can tune colloidal interactions by changing the range of the colloidal interactions, the 

shape of the colloids, and the angular distribution of attractive interactions. Also, exploring 

the behavior of mixtures of different types of colloidal patchy particles is gaining relevance.
8–11 Here, we focus on the latter aspect: “patchiness,” i.e., the degree to which colloidal 

interactions can reproduce a predetermined “valency” by changing the number, strength, and 

location of attractive patches on their surface.1,12

In recent years, there has been considerable progress toward the synthesis of patchy colloids 

(see, e.g., Ref. 13), but the geometry of synthetic patchy colloidal particles cannot yet be 

controlled to a degree that allows unambiguous comparison with simulations.14–23 It is fair 

to ask if there are convincing reasons to improve the geometry control of synthetic colloids. 

Below, we argue that the answer to this question is “yes:” the properties of patchy colloids 

are highly nontrivial and, moreover, depend on the distribution of the attractive patches on 

their surface.24 In particular, we will show that ideal tetrahedral patchy colloids show 

unexpected re-entrant condensation and that the phase behavior of colloids with three 

patches depends sensitively on the distribution of the patches, showing that control over 

geometry is important. However, a small spread in the location of the patches around their 

average position has limited effect on the predicted phase behavior.

II Patchy Particle Model for MD Simulations

In this work, we use molecular dynamics (MD) simulations to study the phase behavior of 

patchy colloids. For MD simulations, it is convenient (although not essential25,26) to use a 

continuous potential to describe the interaction between patches.

The model that we have used (henceforth referred to as MD-Patchy) can be easily 

implemented in well parallelized open-source MD packages. MD-Patchy is sufficiently 

efficient to allow us to run large numbers of long simulations on large systems, within a 

reasonable amount of time. Using MD is important, as we shall be studying direct 

coexistence (DC): NVT Monte Carlo (MC) simulations are notoriously slow in equilibrating 

such systems, but the grand-canonical MC simulations of Ref. 27 should not suffer from this 

problem.

We have used the MD-Patchy model to evaluate Liquid-Vapor (L-V) diagrams of colloidal 

patchy particles with different numbers of patches or valencies (M), patch geometries, and 

specificity. We start by validating the model against the results previously reported by 

Bianchi et al.27 and discussing how the results of our model contrast with the predictions of 
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Wertheim’s perturbation theory.28–32 To that end, we calculated the L-V equilibrium for 

colloidal particles with four patches (M = 4). We use the shorthand notation p-p (i.e., M = 4 

p-p) to describe a model for which all four patches are equivalent (any patch can attract any 

other patch). In contrast, p-ap means that there are two patches of type A and two patches of 

type B such that attraction is only possible between A and B. The M = 4 p-ap case will be 

considered in Sec. IV D. In addition, we have considered particles with three patches of the 

p-p type, M = 3°–120° (where 120° indicates that the angles between the vectors from the 

center of the patchy particle to each patchy site are 120°). We then demonstrate that the 

location of the L-V binodal depends not only on the number of patches but also on their 

angular distribution and their specificity.

In what follows, we model patchy particles as (almost) hard-spheres (HS) with diameter σ, 

decorated with M attractive sites (“patches”) on their surface (see Fig. 1). Each patch 

represents a particle-particle binding site. For the model of the almost hard spheres, we use a 

potential υHS
CO  of the form proposed in Ref. 33,

υHS
CO =

λr
λr
λa

λa
εR

σ
r

λr
− σ

r

λa
+ εR, if r <

λr
λa

σ

0, if r ≥
λr
λa

σ,

(1)

where λa = 49 and λr = 50 are the exponents of the attractive and repulsive terms chosen for 

computational convenience. The interaction strength εR accounts for the energy of the 

pseudohard-sphere interaction (PHS) and σ is our unit of length. r denotes the center-to-

center distance between hard-sphere particles. For the associative sites or patches, we use a 

continuous attractive square-well (CSW) interaction proposed in Ref. 34,

υCSW r = − 1
2εCSW 1 − tanh

r − rw
α , (2)

where r is the distance between the centers of two attractive patches, rw is the radius of the 

attractive well, while α controls the steepness of the well. εCSW is the unit of energy in our 

simulations. In Fig. 2, we show a comparison of the CSW potential and the more 

conventional discontinuous square-well potential.

Given that all potentials used are continuous and differentiable, they can be employed in 

conventional Molecular Dynamics simulations. Each colloidal patchy particle is 

characterized by M + 1 interaction sites: one central site accounts for the hard-spherelike 

interaction and M sites located on a spherical surface with radius σ/2 representing the 

attractive sites. In our colloidal patchy particles, both the hard-sphere plus attractive sites are 

defined as a multicenter rigid body.
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The choice of the mass is irrelevant for equilibrium simulations. We chose the masses of the 

interaction sites to be equal to 5% of the mass of the central particle (with the latter equal to 

3.32 × 10−26 kg). This ratio fixes the moment of inertia of the patchy particles, but again this 

choice has no effect on the equilibrium properties. In what follows, we chose α = 0.005 σ 
and rw = 0.12 σ. For this small value of rw, the valency of each individual patch is one (i.e., 

each attractive site can interact with at most one other patch at a time). Our model is 

essentially identical to the one used by Bianchi et al.27

In what follows, we use reduced units: T* = kBT/εCSW, ρ * = N/V σ3,ϕ = π
6 ρ * ,

p* = pσ3/kBT , and time as σ2m/ kBT . In order to keep the isotropic HS-like interaction in 

our simulations as similar as possible to a pure HS interaction, we follow Ref. 33 and fix 

kBT/εR at a value 1.5.33,35 We then control the effective strength of the attraction by varying 

εCSW such that the reduced temperature T* = kBT/εCSW is of order (0.1).

III Methods and Simulation Details

To locate the boundaries between the various phases of our model systems, we used the 

Direct Coexistence (DC) simulation method.35–37 DC simulates coexistence by preparing 

periodically extended slabs of the two coexisting phases, e.g., the liquid and the vapor, in the 

same simulation box. For the liquid-vapor equilibrium DC simulations, we prepare the initial 

configurations by using the following procedure. We first equilibrate the liquid phase in an 

NPT simulation at p* = 0 and at low T* (where the equilibrium vapor pressure is negligible) 

using a cubic box. After the liquid has been properly equilibrated, we elongate the periodic 

box in one direction (say, x) by flanking the original simulation box by two empty cubic 

boxes. We then perform constant NVT MD simulations at different temperatures. Once the 

system has reached equilibrium, we estimate the equilibrium densities of each phase by 

computing a density profile along the long side of the box. By calculating the pressure tensor 

during the simulation, the L-V interfacial free energy (γ) can be evaluated using the 

following expression:

γ =
LN
2 pN − pT , (3)

where LN denotes the length of the long edge of the simulation box, pN denotes the normal 

component of the pressure tensor perpendicular to the interface, and pT denotes the average 

of the tangential components of the pressure tensor.

We estimate the critical temperature in L-V diagrams, Tc*, by fitting the density difference 

between the coexisting low-density and high-density fluid phases of the upper points of the 

phase diagram to the expression

ϕl T* − ϕυ T* 3.06 = d 1 − T*
Tc*

, (4)
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where ϕl and ϕυ are the volume fractions of the coexisting phases and d is a fitting 

parameter. The critical packing fraction, ϕc, is estimated assuming that the law of rectilinear 

diameter holds close to Tc*,

ϕl + ϕυ /2 = ϕc + s2 Tc* − T* . (5)

We note that our estimate of the critical point is approximate and subject to finite size 

effects. We did not attempt to carry out a systematic finite-size scaling analysis38 because we 

are mainly interested in the qualitative features of the phase diagram. To compute the 

Liquid-Solid (L-S) coexistence lines, we also used the DC methodology. We start by 

preparing an initial configuration consisting of a half-liquid half-solid simulation box. We 

equilibrate a NPT simulation of the bulk solid phase and then melt it (NVT simulation at a 

high temperature). Once melted, we equilibrate the melted liquid phase in a NPxT 

simulation, keeping constant the cross section of the simulation box. Next, we “glue” the 

liquid and the solid box together, avoiding particle overlaps, and we equilibrate the liquid-

solid interface for a short time. To locate the coexistence pressure, we choose isotherms and 

perform NPxT simulations at different values of Px. Finally, our estimate for the coexistence 

point is half way between the lowest pressure for which the crystal slab grows and the 

highest one for which it melts.

We carry out all the simulations in LAMMPS.39 Our typical system sizes for evaluating the 

L-V diagram were 1200 patchy particles for the lowest temperatures and 2400 for the 

highest ones where finite size effects can be larger due to the proximity of a critical point. To 

reach the equilibrium in a typical simulation of a system of 2400 particles at moderate T*, it 

took around eight days of computation using 16 central processing units (CPUs) working in 

parallel. Regarding the simulations performed to evaluate freezing lines, systems sizes were 

of about 3000 patchy particles, with half of the system forming the crystalline slab and the 

other half belonging to the liquid phase. By using the same number of CPUs, these 

simulations usually took six days. With respect to the numerical details of our simulations, 

the timestep chosen for the Verlet integration of the equations of motion was Δt = 0.0004 in 

reduced units (that corresponds to 0.5 fs in the LAMMPS input file). The cutoff radius for 

both HS and CSW interactions is 1.175 σ. We use the Nosé-Hoover thermostat40,41 for NVT 

simulations with a typical relaxation time of 0.1 in reduced units. In the case of NPT 

simulations, the Nosé-Hoover barostat was used42 (in combination with the Nosé-Hoover 

thermostat) with a typical relaxation time of 0.5 in reduced units. To account for the 

rotational motion of the patchy particles, we described the colloidal particles as rigid bodies, 

using the method implemented in LAMMPS.43 The geometries of the various patch 

distributions are shown in Fig. 1. All the files needed for running an example simulation of 

the MD-Patchy model in LAMMPS can be downloaded from the webpage.44 Notice that the 

example is for the M = 4 p-p case, but the files can be easily modified to simulate any other 

type of colloidal patchy particles.
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IV Results

A Validation of the model against a discontinuous potential

To validate our MD-Patchy model, we compare our simulation results for the L-V 

equilibrium with the earlier simulations of Bianchi et al.,10,27 who used a discontinuous 

potential (i.e., with a HS potential and patchy sites interacting through short range square 

well potentials) that is very well approximated by our MD-Patchy model. In particular, we 

computed the L-V coexistence curves for particles with three and four patches. Notice that 

particles with only two patches do not have L-V equilibrium.45

In Fig. 3, we compare our estimates for the location of the critical point with those of 

Bianchi et al.10,27 As found in Refs. 10 and 27, Fig. 3 shows that increasing the valency 

expands the L-V equilibrium region shifting T* and ϕc* toward higher values. However, 

interestingly, we find that for the four-patch system, the liquid branch of the L-V coexistence 

curve shows a maximum and a minimum as the temperature is decreased below Tc* .

To verify that the observed maximum and minimum in the density of the liquid coexisting 

with the vapor phase are not artefacts, we repeated the simulations starting from different 

initial conditions, one with a density higher than the computed liquid-phase coexistence 

density and the other with a lower one. Both simulations converged to similar values of 

density of the coexisting liquid.

As an additional check, we computed the volume fraction of the M = 4 p-p fluid for several 

temperatures along the p* = 0 isobar (Fig. 4), which also shows a nonmonotonic temperature 

variation of the liquid density. Earlier simulations had found evidence for the presence of a 

weak minimum in the pressure as a function of temperature at T* ≈ 0.105 for hard, 

tetrahedral patchy particles.26 In addition, in a study of a different but related model 

(tetrahedral patchy origami particles), Ciarella et al. presented evidence for a nonmonotonic 

density dependence of the internal energy of the system.46 In fact, direct inspection of the 

phase diagram reported in this paper suggests a nonmonotonic variation of the density of the 

coexisting fluid with temperature, but the corresponding density histograms do not show a 

clear trend, and the authors do not comment on this aspect of the phase diagram.46 A density 

maximum was not reported in the phase diagram of tetrahedral patchy particles in Ref. 47, 

but this may be due to the fact that the models studied in that paper had different patch-patch 

interactions. We note that a doubly re-entrant binodal is also predicted by Wertheim’s first 

order perturbation theory, but only for particles with two types of patches, for a range of 

interaction strength ratios48 that could be argued to be mimicking a tetrahedral arrangement 

(although strictly speaking, such geometrical information is absent from the Wertheim 

theory).

To estimate the critical points (empty square for M = 4 p-p and empty circle for M = 3°–

120°) of Fig. 3, we use Eqs. (4) and (5). As shown in Fig. 3, for M = 3°–120°, the law of 

rectilinear diameter works reasonably well, but for M = 4 p-p, it fails below temperatures of 

T* = 0.1. In both systems, only the 4 upper points (empty diamonds) have been used to 

estimate the critical packing fraction. As a comparison, we also determine the critical 
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temperature by fitting the liquid-vapor interfacial free energies as a function of temperature. 

Tc* can be extracted by assuming that just below Tc*,γ scales as (Tc* − T*)1.26 (see Fig. 5). 

The fact that γ is zero at Tc* is well known,49 and similar results as the ones shown in Fig. 5 

have been also previously reported for other types of colloidal patchy particles.50

B Comparison with Wertheim theory

In the work of Bianchi et al.,10,27 the simulations results are compared with the predictions 

of Wertheim’s first order thermodynamic perturbation theory (TPT1),27,30–32 for various 

patch geometries. We do the same because later we will compare simulations of systems 

with different patch arrangements that, at least within the Wertheim theory, should have the 

same phase diagram. Figure 6 shows our simulation results for the M = 3°–120° and M = 4 

p-p L-V phase diagrams, together with the theoretical predictions based on Wertheim’s 

theory from Ref. 27 (dashed red curve for M = 4 p-p and dashed black curve for M = 3°–

120°). The theoretical prediction for the L-V coexistence curve is reasonable for the three-

patch system and better than for the four-patch system. Crucially, in the case of the four-

patch system, the presence of a maximum and a minimum in density is not predicted by 

perturbation theory.10,27,51 This failure of TPT1 is not surprising as the limitations of this 

theory for the description of tetrahedral fluids (as in the case of water) are well known.52–54

The shape of the LV coexistence curve predicted by Wertheim’s perturbation theory depends 

on several factors such as the number of associative sites, the specificity of the interactions 

among the different sites, and the range of the interaction. However, the theory does not 

account for the effect of the geometrical distribution of the interaction sites on the surface of 

the particles and whether they are symmetrical or asymmetrical.10,55,56

In order to study whether the geometry of the patch arrangement has a pronounced effect on 

the L-V equilibrium, we designed a three-patch system with vectors from the HS particle to 

the interaction sites that are all mutually perpendicular (see Fig. 1). Figure 7 shows the L-V 

phase diagram for the M = 3°–90° system. Although the packing fraction for the liquid 

branch and the critical ϕ are comparable at low temperatures, the value of Tc* for M = 3°–90° 

is considerably lower than the one of the M = 3°–120° system. Figure 7 also shows the 

theoretical prediction for the three-patch system. We find that the Wertheim theory is in 

much better agreement with the M = 3°–120° L-V results than with the ones for the M = 3°–

90° model. It seems likely that the L-V diagram of M = 3°–90° compares poorly with TPT1 

because it can form “inert” cubic structures (see Fig. 8); the TPT1 does not account for this 

possibility. At this stage, it is not yet known if a recently proposed generalization of 

Wertheim’s theory for the assembly of rings and closed loop structures57 would perform 

better for the case of M = 3°–90°.

While it is not surprising that different patch geometries result in different phase diagrams, 

the magnitude of the effect is unexpectedly large. Figure 9 shows ϕ (a) and U (b) as a 

function of p* for the two different 3-patch models at T* = 0.075. In both cases, the 

simulations were started from a fluid equilibrated at p* = 0.8. Subsequently, the pressure 

was decreased down to p* = 0.01. For the M = 3°–120° system, T* = 0.075 is below the 

critical temperature, and as we start from a liquid density, the system remains liquid upon 
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decreasing the pressure down to the coexistence region. In contrast, for the M = 3°–90° 

system, T* = 0.075 is above Tc* and hence ϕ tends to zero as p* → 0. Yet for pressures 

above p* = 0.1, the two 3-patch systems behave similarly (see Fig. 7). Not surprisingly, 

similar behavior is observed for the potential energy [Fig. 9(b)].

C Flexibility vs rigidity

Having established that the phase diagram of a patchy-particle fluid is sensitive to the 

geometric distribution of patches, it is clearly interesting to know what the effect of relaxing 

the geometric constraints on the location of the attractive patches is. To investigate this, we 

consider how the L-V phase diagram of the M = 3°–120° three-patch system changes if we 

allow the patches to fluctuate moderately (±15° as maximum) around their original position. 

To implement flexibility in our model, we introduce a bond-angle potential with a strength 

of about 2 εCSW between the vectors joining the center of the particle to the patchy 

interaction sites. The distance from the particle center to the patches was kept constant at 

σ/2. Figure 10 shows that the L-V coexistence densities for the flexible (red triangles) 

system are very similar to those of the rigid system (black circles). To be more precise, in 

both cases, the critical volume fraction and temperature are approximately the same, and the 

main difference appears in the liquid branch where ϕ is slightly higher for the flexible 

model. However, density shift is a minor effect compared to the effect of the overall patch 

geometry on the location of the L-V coexistence curve.

D Effect on patch specificity

As shown in Ref. 47, the phase behavior of patchy particle systems depends strongly on 

whether all patches interact equally strongly or certain patches can interact only with 

specific complementary patches. The effect of selective patch-patch interactions is well 

known from the study of a patchy particle model for water [the primitive model of water 

(PMW)58]. The latter model consists of a HS particle decorated with four associative sites 

that are tetrahedrally arranged. In the PMW, two of the patches represent the hydrogen 

atoms (sites A) and the other two patches represent the lone-pair electrons (sites B). In 

PMW, only A sites are allowed to interact with B sites. In Fig. 11, we compare our results 

for the non-specific four-patch system, where all sites were equivalent (denoted in Fig. 11 as 

M = 4 p-p), to a specific four-patch system (denoted M = 4 p-ap for patch-antipatch), where 

only A-B interactions are attractive, as in the PMW. In Fig. 11, we also include the values 

for the critical points estimated for the M = 4 p-p case from Refs. 10 and 27 and for the 

PMW model (which is slightly different from our model in terms of the distance from the 

lone pair patches to the center of the particles, 0.45 σ, and in terms of the cutoff of the 

patchy interaction, 0.15 σ) from Refs. 26 and 59. In Fig. 11, we show that both systems 

exhibit L-V phase diagrams with a maximum and a minimum in density. However, when 

only specific interactions are allowed (blue circles), the location of the critical temperature is 

shifted to lower values. This decrease in critical temperature is consistent with the earlier 

simulations of Filion et al.47,59 However, the model used in Ref. 47 was different from the 

one used in the present work and did not show clear evidence of a nonmonotonic variation 

with the temperature of the density of the liquid phase. The shift in the critical temperature 
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between the M = 4 p-p and M = 4 p-ap systems (ΔT* ≈ 0.015 is well accounted for (ΔT* ≈ 
0.01) by TPT1 (see Ref. 53 for the PMW case and Ref. 27 for the M = 4 p-p model).

E Liquid-solid vs liquid-vapor equilibrium

Using the MD-Patchy model described above, we can also study solid-fluid coexistence for 

patchy particles. We have carried out such simulations for the four-patch system60 (M = 4 p-

p), considering two different solid crystalline phases, namely, a low-density diamond 

structure (D) and a BCC-like interpenetrating double-diamond structure (BCC), which is a 

high-density solid phase formed by two interpenetrated but not interconnected diamond 

structures (i.e., the analogous of ice VII in the phase diagram of water). Although we denote 

this structure as BCC as the spheres form a simple BCC lattice, notice that each sphere is 

bonded to only four nearest neighbors [as in the NaTI (B32) structure]. Both these crystal 

phases resemble different ice phases. The diamond phase can be interpreted as cubic ice I 
and the BCC-like phase as ice VII. These structural similarities are independent of allowing 

patch-patch interactions (instead of patch-antipatch as in water), as they emerge simply from 

the tetrahedral geometry of the patches around the hard core. By means of NPT direct 

coexistence simulations, we have identified the coexistence pressure for several isotherms by 

bracketing it between the lowest pressure at which the solid crystallized and the highest one 

at which it melted. In Fig. 12(a), we show the coexistence packing fractions between the 

liquid and the vapor (red squares) and between the liquid and the diamond phase (red circles 

and thick line). The L-V equilibrium is metastable with respect to the diamond phase, which 

has a re-entrant stability as ϕ (pressure) increases. We note that the meta-stable diamond 

structure is always less stable than the liquid for T* > 0.131. As we increase the pressure at 

constant temperature T* = 0.126, we observe first a liquid phase, which freezes into the 

diamond phase. As we keep increasing the pressure beyond the point where the low density 

fluid has been fully converted into diamond, the diamond phase melts again. We find that the 

density of the diamond phase varies by barely 0.2% between T* = 0.06 and T* = 0.12.

The maximum of the diamond-liquid coexistence curve in our model is at T* = 0.131 and ϕ 
= 0.305, which is similar to the one reported in for the PMW model (approximately T* = 

0.13 and ϕ = 0.3).53 At the highest point on the diamond-liquid coexistence curve, the 

density of both phases is the same. However, the solid-liquid transition is still first a first 

order transition since the melting enthalpy is nonzero.

We note that the L-D curves for the p-p and p-ap 4-patch models behave almost identically; 

this in contrast to the LV binodals.

If we now also consider the high density crystal phase, BCC, we find [see Fig. 12(b)] that 

BCC is always more stable than the diamond phase, as the fluid coexisting with the BCC 

phase has a lower density (and hence a lower free energy) than the D phase. The coexistence 

ϕ between the liquid and the BCC crystal phase (red triangles) is shown in Fig. 12(b). Our 

results obtained for the L-BCC coexistence curve are in good agreement with the ones 

reported previously for the same freezing line of a p-p four-patch system in Ref. 61 using a 

discontinuous colloidal patchy model.62 Hence, the L-V coexistence occurs in a temperature 

density regime where the fluid is less stable than both the D and BCC phases.
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V Concluding Remarks

One of the striking features of the L-V phase coexistence curve of the 4-patch model is that 

the density maximum is very close to the critical temperature. This is clearly very different 

for water, where the density maximum at low pressures is at temperatures that are far 

removed from the critical temperature. It would be interesting if experimental systems could 

be prepared such that they would exhibit a density maximum close to the critical 

temperature. One consequence of the unusual shape of the L-V coexistence curve is that the 

law of rectilinear diameter (i.e., the rule that suggests that the critical density can be found 

from a linear extrapolation of the average of the densities of the coexisting liquid and vapor) 

has an anomalously small region of validity.
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Fig. 1. 
Different patchy particles modeled in this work. Hard-sphere cores are depicted by gray 

spheres while attractive sites are represented by red and blue hemispheres. Vectors from the 

center of the hard sphere to the attractive sites on the surface are drawn to show the 

distribution of the sites. From the left to the right, colloidal particles with four attractive sites 

in a tetrahedral arrangement (M = 4 p-ap, where only sites of different colors are allowed to 

interact, and M = 4 p-p, where all attractive sites can interact) and three attractive sites of the 

p-p type in an equatorial plane arrangement with angles between the vectors of 120° (M = 

3°–120°) and with angles between vectors of 90°, M = 3°–90°.
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Fig. 2. 
Comparison of the continuous representation of the square-well potential (CSW) described 

in Eq. (2) and the corresponding square-well interaction (SW). In both cases, rw was set 

equal to 0.12 σ.
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Fig. 3. 
L-V equilibrium curves for M = 4 p-p (red squares) and M = 3°–120° (blue circles). Empty 

squares (M = 4 p-p) and circle (M = 3°–120°) account for the estimated location of the 

critical points obtained via Eqs. (4) and (5) and crosses account for the calculated 

equilibrium packing fractions and critical points of a discontinuous potential from Refs. 10 

and 27. Empty diamonds account for the averaged packing fractions between the liquid and 

the vapor phases. Only the four upper ones (in both cases) have been used for estimating the 

location of critical point.
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Fig. 4. 
Packing fraction of the fluid for the isobar of p* = 0 for the four-patch colloid (M = 4 p-p, 

red squares).
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Fig. 5. 
Liquid-vapor interfacial free energies for M = 4 p-p. The empty square represents the value 

of Tc* estimated using Eq. (4). The cross corresponds to the estimate Tc* estimate obtained in 

Ref. 27.

Espinosa et al. Page 18

J Chem Phys. Author manuscript; available in PMC 2020 June 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 6. 
Comparison between the results of the MD-Patchy model and Wertheim’s perturbation 

theory for M = 3°–120° and M = 4 p-p in the L-V T*–ϕ diagram. Symbols account for 

simulation results, and dashed lines (red for M = 4 p-p and black for M = 3°–120°) accounts 

for the theoretical predictions.
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Fig. 7. 
L-V phase diagram in the T*–ϕ plane for both three-patch systems, one with patches located 

on the equatorial plane (M = 3°–120°, black circles) and the other with a Cartesian 

arrangement. (M = 3°–90°, orange squares). Empty symbols account for the estimation of 

the critical points in each case. Dashed black line represents the L-V equilibrium from 

Wertheim’s theory for M = 3.
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Fig. 8. 
(a) Snapshot of a direct coexistence simulation of the Cartesian three-patch system (M = 3°–

90°) at T* = 0.057. Small closed structures (cubes) can be observed in the vapor phase. (b) 

The same for a system of M = 3°–120° at T* = 0.0833. Notice that in (b) no closed 

structures appear in the vapor phase.
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Fig. 9. 
(a) Packing fraction for the M = 3°–120° three-patch colloid (black circles) and for the M = 

3°–90° one (orange squares) as a function of pressure p* for the isotherm of T* = 0.075. (b) 

Same as in (a) but for the potential energy (U). Units of U are given in number of bonds per 

particle (nb). Notice that the potential energy also includes the contribution from the HS 

repulsive interactions.
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Fig. 10. 
L-V phase diagram for the rigid M = 3°–120° three-patch colloid (black circles) and for the 

flexible one (red triangles). Empty symbols mean the estimated critical points for each 

model.
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Fig. 11. 
Coexistence densities for the L-V equilibrium of a four-patch colloid with four equivalent 

patches (M = 4 p-p) and for a four-patch colloid with two patches type A and two patches of 

type B, where attractive interactions are only allowed between A-B ones (M = 4 p-ap). 

Crosses indicate the location of the critical points for the discontinuous version of the M = 4 

p-p reported in Refs. 10 and 27 and for the PMW model reported in Refs. 26 and 59.
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Fig. 12. 
T*–ϕ diagram for the p-p four-patch colloid. L-V equilibrium is represented by squares 

joined by dashed lines. In (a), liquid packing fractions for the liquid-diamond transition are 

represented by circles, and the thick continuous line accounts for the diamond packing 

fraction at coexistence conditions. (b) The same as in (a) but also considering the 

coexistence packing fractions along the freezing line between liquid and BCC (triangles).

Espinosa et al. Page 25

J Chem Phys. Author manuscript; available in PMC 2020 June 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Patchy Particle Model for MD Simulations
	Methods and Simulation Details
	Results
	Validation of the model against a discontinuous potential
	Comparison with Wertheim theory
	Flexibility vs rigidity
	Effect on patch specificity
	Liquid-solid vs liquid-vapor equilibrium

	Concluding Remarks
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12

