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Abstract

Multiple myeloma (MM) is genetically complex disease. Identification of mutations and aberrant 

signaling pathways that contribute to the progression of MM and drug resistance has potential to 

lead to specific targets and personalized treatment. Aberrant signal pathways include: RAS 

pathway activation due to RAS or BRAF mutations (targeted by vermurafenib alone or combined 

with cobimetinib), BCL2 overexpression especially in t(11:14) (targeted by venetoclax), JAK2 

pathway activation (targeted by ruxolitinib), NF-kB pathway activation (treated with DANFIN 
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combined with bortezomib), MDM2 overexpression (targeted by DS-3032b) and targeting the 

PI3K/mTOR pathway (targeted by BEZ235). Cyclin D1 (CCND1), and MYC are also emerging as 

key potential targets. In addition, histone deacetylase (HDAC) inhibitors are already in use for the 

treatment of MM in combination therapy and targeted inhibition of FGFR3 (AZD4547) is effective 

in myeloma cells with t(4;14) translocation. Bromodomain and extra terminal (BET) protein 

antagonists decrease the expression of MYC and have displayed promising anti-myeloma activity. 

A better understanding of the alterations in signaling pathways that promote MM progression will 

further inform the development of precision therapy for patients.
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Introduction:

Multiple myeloma (MM) is a genetically complex B-cell malignancy. Clonal plasma cells 

acquire increasing levels of genetic aberrations including copy number variations, point 

mutations, gene deletions, and translocations. Clinical guidelines define disease risk 

stratification based on cytogenetic aberrations and secondary mutational events in plasma 

cell populations of MM patients. Cytogenetic aberrations in MM can be divided into two 

main groups: hyperdiploid MM (H-MM) and non-hyperdiploid MM (NH-MM). H-MM are 

characterized by trisomies of chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. NH-MM harbor 

IGH translocations, mainly t (4;14), t (6;14), t (11;14), t (14;16), and t (14;20).1,2,3 

Secondary mutational events contribute to tumor progression and include MYC 

rearrangements, copy number variations (CNV), del(13q), dup(1q), del(1p) del(17p) and 

somatic mutations in KRAS, NRAS, BRAF, and P53 among many others.

MM is clinically divided into high, intermediate and standard risk based on interphase 

fluorescence in situ hybridization (I-FISH). High risk MM (HRMM) patients have del (17p), 

t(14;16), t(14;20), t(4;14), del 13, plasma cell labeling index (PCLI), a measure of plasma 

cell proliferation ≥ 3% and gene expression profiling (GEP) shows a high risk signature. The 

intermediate risk category includes t(14;4), and 1q gain. Standard risk patients carry t(11;14) 

and t(6;14) mutations.4,5 For disease staging, the International Myeloma Working Group 

(IMWG) combined the International Staging System (ISS) with chromosomal abnormalities 

detected by I-FISH after CD138 and serum lactate dehydrogenase (LDH) sorting for newly 

diagnosed MM (NDMM) and proposed a revised (R) staging system named R-ISS6. The 

Mayo Clinic’s mSMART risk stratification guidelines 5 rely on I-FISH and serum 

biomarkers (LDH, β2 microglobulin), however, many characterized aberrations are not 

adequately surveyed by these methods. The use of other sequencing and array technologies 

to identify changes to the genomic landscape such as whole exome sequencing (WES), 

whole genome sequencing (WGS), single nucleotide polymorphism (SNP) arrays, gene 

expression profiling (GEP), array comparative genomic hybridization (aCGH), in addition to 

historical genetic testing methods could identify new subgroups and novel targetable 

pathways in MM. Research identifying aberrant molecular pathways enhances our 
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understanding of the mechanisms of disease in MM and offers opportunity for the 

development of new, more targeted therapeutic strategies.

Methods

We performed a focused review of the literature to compile current clinical data regarding 

novel genetic mutations, disrupted intracellular pathways, cancer driving aberrations and 

response to targeted therapies to summarize the potential for the advancement of 

personalized and precision therapy against MM.

Literature Search

We searched PubMed, and Clinicaltrials.gov for only English language studies. We did not 

limit our search to time period. We also cross checked bibliographies manually to avoid 

missing potential studies. We retrieved preclinical studies, phase I/II trials and data from 

clinicaltrials.gov on complete or still recruiting trials. We based our electronic database 

search on keywords like multiple myeloma, cytogenetics, molecular profiling, mutations, 

disrupted pathways and prognosis. A sample search strategy is “(multiple myeloma [MeSH 

Terms]) AND factor NF-kb, transcription [MeSH Terms]) AND “drug therapy” [MeSH 

Subheading])”. The final updated search was performed on 03/16/2018.

Eligibility Criteria

We included 1) Preclinical studies, 2) Case report & series, 3) Phase 1 or higher clinical 

trials, and 4) studies that had efficacy outcomes clearly documented. We excluded studies in 

which no objective efficacy outcomes were reported.

Results

The literature search yielded a total of 827 articles. Relevant articles which focused on the 

effect of drug therapy on MM cell lines and patients with specific mutation and aberrant 

intracellular pathways yielded 49 preclinical studies, case reports, case series and clinical 

trials. We present the summary of findings from these articles here and in Table 1.

A) Developing Targets: Signaling pathways against which specific agents have been 
tested in clinical trials

Apoptosis in MM—BCL-2 proteins that regulate cell death are grouped according to their 

pro-apoptotic (i.e. BAX, BAK, BAD, BIK) or anti-apoptotic (i.e. BCL-2, BCL-XL, BCL-W, 

MCL-1) activity. MM cell lines and primary patient samples, with t(11;14), detected in up to 

20% MM patients, have upregulation of cyclin D1, high BCL-2, low BCL-XL, and low 

MCL-1 profile.7 Patients with MM often have overexpression of BCL-2 or MCL-1, which 

makes them resistant to apoptosis.8 Therefore, inhibitors that target these anti-apoptotic 

proteins have been the focus of several studies.

BCL2 inhibition—Kumar et al. conducted a phase 1 study on 66 patients with relapsed 

refractory MM (RRMM) using venetoclax, a BCL-2 inhibitor. Venetoclax given weekly in 

dose-escalation (300, 600, 900, or 1200 mg) had an acceptable toxicity profile. The overall 
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response rate (ORR) was 21% (14/66) and 15% achieved a partial response (PR) or better. 

The best response (12/14 [86%]) was seen in patients with t(11;14), a translocation that is 

associated with high levels of BCL-2. Those with t(11;14) had an ORR of 40% and PR of 

27%.9 Moreau et al. in an open-label phase 1b study on 66 patients with RRMM used 

venetoclax in combination with the proteasome inhibitor bortezomib and dexamethasone, a 

steroid that has been reported to increase the expression of proapoptotic protein BIM.8 The 

treatment was well tolerated when considering adverse events, with an ORR of 67% (44/66) 

and a PR rate of 42% or better. The median time to progression was 9.5 months and the 

duration of response was 9.7 months.8

Ras/Raf/Mek/Erk—The RAS/RAF/MEK/ERK pathway is an important regulator of gene 

expression, cell survival, proliferation, migration and angiogenesis. KRAS/NRAS/BRAF 

mutations are detectable in up to 50% of MM patients10 and 45-81% of RRMM patients.11 

RAS mutations are linked to a more aggressive clinical course leading to shorter survival.12 

t(4;14) translocation can cause increased expression of FGFR3 which also stimulates RAS/

MAPK pathway.13 IL-6 also triggers growth of cells via the RAS/MAPK pathway.14 Xu et 
al.15 noted a dominant mutation cluster in RAS/RAF genes in samples taken from MM 

patients, identifying RAS/RAF/MEK/ERK signaling as a therapeutic target. In comparison 

with NDMM, RRMM patients have statistically significant higher overall incidence of RAS/
BRAF mutations (p =0.011), which are mostly driven by a higher prevalence of NRAS 
mutations (p =0.010). Mulligan et al16 observed that NRAS but not KRAS-mutant MM had 

significantly lower response rates (P = .016) and a shorter time to progression (P = .012) 

following treatment with bortezomib monotherapy. These data indicate that an important 

component of bortezomib’s antitumor activity acts at a level upstream of NRAS survival 

signaling and thus cannot effectively kill myeloma cells with this mutation. MEK inhibitors 

can kill MM cell lines that have MAF oncogenes and are resistant to other chemotherapeutic 

agents like lenalidomide, pomalidomide, bortezomib and dexamethasone by re-sensitizing 

MM cells to these agents.17–19

BRAF and MEK inhibition—Selumetinib and sorafenib are two agents under 

investigation for use in MM with mutations in the Ras/Raf/Mek/Erk pathway. In a phase II 

trial of the MEK1/2 inhibitor selumetinib (AZD6244) for treating RRMM as a single-agent, 

AZD6244 resulted in minimal improvement with only 2 out of 36 heavily pretreated RRMM 

patients achieving very good partial response (VGPR).20 Another phase II trial for assessing 

the efficacy of sorafenib, a multi-kinase inhibitor, in RRMM patients showed 50% overall 

survival (95% CI 27-73%) at 12 months and median progression-free survival of 1.2 months 

(95% CI 1.0-5.4). 21

Approximately 4% of patients with MM have BRAF mutations.22,23 Patients who harbor an 

activating V600E mutation in the BRAF kinase have an aggressive clinical course, higher 

incidence of extra-medullary disease and shorter overall survival (OS).24 BRAF mutations 

are highly prevalent in melanoma and hairy cell leukemia and treatment with vemurafenib, a 

BRAF inhibitor, has shown to have clinical benefit.25,26 Andrulis et al reported a RRMM 

patient with BRAF V600E who was refractory to all approved treatments, but responded 

rapidly and had a durable response as stable remission to vermurafenib.24 Larger scale trials 
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are needed to further explore the role of BRAF mutation inhibitors for treatment of MM 

patients harboring the V600E mutation.

Cobimetinib (C21H21F3IN3O2) is an FDA approved drug to treat melanoma with a BRAF 

V600E or V600K mutation, in combination with vemurafenib. Cobimetinib is a reversible, 

non-ATP-competitive MEK1/MEK2/MAPK. In a case report of RRMM with V600E 

mutation, Mey et al. reported a rapid and sustained response with a combination of 

vemurafenib and cobimetinib.27 A phase III study of combined inhibition of BRAF 

(vemurafenib) and MEK (cobimetinib) showed a statistically significant (p<0.001) 

improvement in progression-free survival (PFS) of patients with BRAF-mutated melanoma, 

compared to the usage of vemurafenib alone. The usage of vemurafenib alone showed 

progression-free survival (PFS) of 6.2 months, while the combination showed 9.9 months of 

progression-free survival, total of a 16-week difference.28 A phase Ib/II clinical trial is 

currently underway using cobimetinib as a single agent and in combination with venetoclax 

with or without atezolizumab in patients with RRMM.29

FGFR3 inhibition—FGFR3 mutations have been identified in MM.30 t(4;14) brings 

FGFR3 under the control of Ig heavy chain promoter, causing aberrant expression of 

FGFR3.30,31 Myeloma cell lines with t(4;14) chromosomal translocation are very sensitive 

to FGFR3 targeted inhibition.31 Monoclonal antibodies bind to the FGFR extracellular 

domain, compete with FGFs and as a result block FGF-FGFR association. Monoclonal 

antibodies targeting FGFR3 have been shown to have significant inhibitor effect on cellular 

proliferation in t(4;14) positive multiple myeloma cases.32 MFGR1877S, is a human anti-

FGFR3 monoclonal antibody which was studied in a phase I trial. It was found to be well-

tolerated overall in patients with multiple RRMM. No objective responses were observed; 

however, stable disease was observed in 3 out of 14 patients for 3–4 cycles.33

Dovitinib (TKI258) is a well-studied second-generation non-selective FGFR inhibitor. 

Among its other actions, it has been shown to inhibit the cellular activity of FGFR3 in 

t(4;14) MM in pre-clinical studies.34 In a phase II, open label, non-randomized trial, 

dovitinib did not demonstrate single-agent activity in RRMM, but may stabilize disease in 

some t(4;14)-positive patients.35

BGJ398 is a potent, pan-FGFR inhibitor which demonstrated preclinical antitumor activity 

in RT112 bladder cancer xenograft models overexpressing wild-type FGFR3. In a study of 

t(4;14)-positive myeloma cells, 36 enhanced expression of FGFR3 was observed. However, 

the cells were not sensitive to FGFR inhibitors (neither dovitinib nor BGJ398). While 

preclinical data was promising, this study concluded that single agent activity is modest and 

often independent of FGFR status.

AZD4547 is a selective, small molecule, oral FGFR (FGFR 1-3) inhibitor which has shown 

to be a potent inhibitor of proliferation in cell lines with activation of the FGFR pathway and 

also in tumor xenograft models 37. Inhibition by AZD4547 is also shown to cause a 

significant dose-dependent tumor growth inhibition and increased survival in gastric cancer 

carrying an FGFR2 gene amplification.38 A Phase I, open label, multicenter study that 

assessed the safety, tolerability, pharmacokinetics and preliminary anti-tumor activity of 
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ascending doses of AZD4547 in patients with advanced solid tumors was completed in 

March 2015.39 It is currently in phase II trials, aimed to define its role in targeted therapy 

directed by genetic testing in patients with advanced refractory solid tumors, lymphomas, or 

MM.40

CDK inhibition—Dysregulation of cyclin D is an early and unifying event in MM 

pathogenesis.41 Post-transcriptional modifications play an important role in regulating 

CCND2 expression.42 Overexpression of cyclin D1 is seen in up to 60% of MM cells, which 

is associated with either t(11;14)(q13;q32), polysomy of chromosome 11 or induced 

expression from interaction of MM tumor cells with the surrounding bone marrow stroma.
43,44 CCND1 overexpression is historically associated with poor prognosis in MM.45,46 In a 

small series of patients, CCND1 overexpression conferred improved response to bortezomib 

therapy.47,48 In a study of 45 relapsed MM patients who received bortezomib, CCND1 

expression was associated with better prognosis (OR, −2.21; p = 0.07).49 In a study of 74 

NDMM patients who received high-dose chemotherapy with autologous stem cell transplant 

(ASCT), patients who overexpressed cyclin-D1 had significantly longer duration of 

remission in comparison with patients who did not (41 vs. 26 months, respectively; p = 0.02) 

resulting in longer median event-free survival (33 vs. 24 months, respectively; p = 0.055). 

The risk for progression after bortezomib treatment was significantly decreased (HR 0.102, 

95% CI 0.021-0.498, p = 0.0048) and progression-free survival prolonged (p = 0.0011).50 

Palbociclib (C24H29N7O2), an FDA approved drug to treat breast cancer works by 

selectively inhibiting CDK4/6. In a phase II study, to evaluate the safety and efficacy of 

palbociclib in combination with bortezomib and dexamethasone in RRMM, objective 

responses were achieved in 5 (20%) patients and 11 (44%) achieved stable disease.51

PI3K/mTOR inhibition—The PI3K/AKT/mTOR pathway guards tumor growth and is 

involved in proliferation, survival and drug resistance in MM cells. This pathway also 

mediates the formation and activity of bone-forming osteoblasts and bone-resorbing 

osteoclasts.52 IL-6 can directly activate the proliferative effects of PI3K53and activate AKT 

hence playing an important role in MM pathogenesis.54,55

Dysregulated activation of mTOR signaling pathway is considered to be associated with 

drug resistance and poor prognosis of many cancers, including MM. 56 mTOR coordinates 

cell growth and proliferation in response to inputs from growth factors, nutrient status and 

energy stress, thus regulating cell cycle progress and survival.56 mTORC1 is a key 

modulator in MM cell proliferation, tumor development and chemoresistance. Disruption of 

this signaling could lead to MM cell apoptosis, tumor regression, and improved survival of 

MM patients.57

Feng et al. researched the effects of an organic compound, silybin, which decreased 

proliferation and ultimately led to apoptosis of MM cell lines by inhibiting the expression of 

PI3K, p-AKT and mTOR.58 With in vitro studies, a novel PI3K and mTOR inhibitor, 

BEZ235, showed potent antitumor effects as well as decreased osteoclast and increased 

osteoblast production and activity, respectively. This property of BEZ235 can be utilized 

against osteolytic lesions in MM patients.52 Oral PI3K/AKT inhibitors C98 and C96, have 

also been shown to inhibit proliferation and induce apoptosis of MM cells in both in vitro 

Anwer et al. Page 6

Clin Lymphoma Myeloma Leuk. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and xenograft studies. Importantly, the agents were very well tolerated in the animal studies.
59,60

Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an anti-microbial drug, metal chelator, 

and potential anticancer drug. Clioquinol inhibits mTOR activity by disrupting the integrity 

of mTORC1 in MM.57 In preclinical studies, Clioquinol induced autophagy in leukemia and 

myeloma cells. Clioquinol has been shown to induce autophagy in association with the 

increase of the PI3KC3/Beclin 1 complex and dissociation of Beclin 1/Bcl-2.61 A phase I 

trial of Clioquinol was performed in patients with advanced hematological malignancies, 

including MM, identifying neuropathy and abdominal pain as dose limiting toxicities 

(NCT00963495).

A novel small molecule SC-06 also disrupts the mTOR signaling pathway, inducing cell 

apoptosis. In preclinical studies, SC06 showed promising results by disrupting mTOR 

signaling thus decreasing tumor volume in mouse xenograft models of MM.56 There have 

been no clinical trials to date with SC-06.

Histone deacetylase inhibition—Histone deacetylases (HDAC) modulate the 

organization of chromatin, thereby functioning as a controller over gene transcription. In 

MM, HDAC function is dysregulated, sometimes resulting in the upregulation of oncogenes. 

HDAC inhibitors represent a new therapeutic class in MM treatment that have the potential 

to control proliferation, differentiation, cell cycle arrest, and apoptosis. HDAC inhibitors are 

continuing to emerge as a promising therapy to inhibit MMSET complex assembly, because 

MMSET associates with HDACs in a large complex.62–64 Several preclinical investigations 

and clinical trials have demonstrated the antimyeloma activity of HDAC inhibitors.65 In 

preclinical settings, HDAC inhibitors (panobinostat, vorinostat and romidepsin) showed 

remarkable anti-MM activities as single agents. However, they showed only modest clinical 

activity in cases of relapsed or refractory MM.66–68 HDAC inhibitors have been clinically 

evaluated in combination with other agents, especially with proteasome inhibitors. Clinical 

efficacy of vorinostat has been studied in combination with bortezomib in phase I trials,69,70 

and subsequently in phase II and III trials (Vorinostat Clinical Trials in Hematologic and 

Solid Malignancies or VANTAGE trials).71,72 In the phase II VANTAGE 095 trial, 17 % 

ORR and 31% clinical benefit rate (CBR) were observed. The phase III VANTAGE 088 trial 

showed only a modest statistically significant difference in median progression free survival 

(PFS). The combination of panobinostat with bortezomib has been studied in RRMM 

patients in a phase Ib study73 and later in phase II and III.74,75 In phase II PANORAMA 

trial, the ORR was 34.5 % and the CBR was 52.7 %. In the randomized, double-blind phase 

III PANORAMA trial, the combination of panobinostat with bortezomib improved median 

PFS. The results of the phase III PANORAMA trial resulted in the FDA approval of 

panobinostat in combination with bortezomib and dexamethasone. A HDAC6 selective 

inhibitor ricolinostat has also been studied as monotherapy and in combination with 

bortezomib and dexamethasone.76,77 This combination showed ORR of 29% and CBR of 

39% while in bortezomib refractory patients, ORR was 14% in all combination doses.77
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B) Emerging Targets: Pathways for which only preclinical data exist, but there is a 
potential to develop future targeted therapies.

JAK-STAT inhibition—JAK2 (Janus kinase 2) is a tyrosine kinase that binds to cytokine 

receptors. It is thought that autocrine and paracrine IL-6 leads to upregulation of the JAK2 

pathway.78 Upon binding of cytokine IL-6 to the receptor, the receptor will dimerize and 

allow JAK2 to cross phosphorylate the receptors. Once phosphorylated these act as docking 

site for STAT3 to bind and influence gene expression as a transcription factor.79 Inhibition of 

the IL-6 receptor and STAT3 pathway has been reported to induce apoptosis in various 

myeloma cell lines.80,81 JAK2 pathway activation in MM leads to increased BCL-XL 

expression, which protects cells from chemotherapy-induced cell death.82 Interestingly, the 

JAK2 V617F mutation which is commonly found in myeloproliferative diseases was not 

found in 93 MM cases.83 JAK pathway inhibitors, including ruxolitinib, act by binding to 

the cytokine receptor and preventing JAK2 association, thereby decreasing activity.84 Zhang 

et al identified a JAK2/STAT3 inhibitor, SC99, that displays potent activity against MM cells 

by decreasing their proliferation and increasing MM cell apoptosis in both in vitro and MM 

xenograft models in mice.85

Proteasome inhibition of NF-κB pathway—The NF-kB pathway is primarily involved 

in DNA transcription, production of cytokines, cell proliferation and ultimately cell survival. 

NF-kB is thought to play an important role in the pathogenesis of MM, as the pathway 

becomes constitutively active, a potential mechanism by which tumor cells function 

independently of the marrow microenvironment.86 Dysregulation of the NF-kB pathway has 

led to the enhanced proliferation of cancerous cells and an increased likelihood of tumor 

development. Additionally, NF-kB pathway activation leads to MM lytic bone disease by 

activating osteoclasts.87,88 NF-kB also regulates cyclin D1expression.89,90

Proteasome inhibitors91, which partially act by inhibiting NF-kB, have shown great clinical 

success in NDMM as well as RRMM.92 DANFIN (N,N’-bis-(2,4-dimethyl-phenyl)-

ethane-1,2-diamine) has also been shown to inhibit NF-κB activation and signaling. In 

preclinical studies, Uematsu et al. treated a MM xenograft mouse model with DANFIN plus 

bortezomib; this combination decreased tumor weight by more than 60% and enhanced the 

apoptosis of MM cells.93

MDM2 inhibition—TP53 is a tumor suppressor gene that promotes normal cellular 

proliferation, differentiation and apoptosis. Murine double minute (MDM) 2 is a pleiotropic 

protein that functions as an E3 ubiquitin ligase that limits the accumulation and function of 

TP53.94 It does so by helping ubiquitination of TP53 and thus facilitating its proteasome-

mediated degradation. It also binds to TP53 amino acids 15–29, thereby limiting TP53 

transcription.94 MDM2 is a rational target for TP53 mutated MM.95 Over-expression of 

MDM2 is seen in 0-20% of MM patient population 96–98 and its overexpression is associated 

with increased proliferation and survival of myeloma cells, partly due to down-regulation of 

cyclin-dependent kinase inhibitor p21.99 Nutlins are potent and selective small molecule 

antagonists of MDM2. They function by binding to MDM2 in the p53 binding pocket, 

releasing p53 from negative control. Preclinical data have demonstrated nutlin-induced 
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apoptosis in MM cells, supporting further investigation of this therapeutic intervention in 

MM100.

c-MYC/WNT—Pathologic activation of c-MYC has a key role in cancer development by 

upregulating the transcriptional program of the cell, enhancing cell proliferation.101,102 

Amplification, translocation or rearrangement of MYC is among the most common genetic 

alterations observed in cancer genomes, including MM103,104 where activation is found in 

more than 60% of patient-derived MM cells.105 Increased activity of MYC upregulates 

ribosomal biogenesis and translation.

MYC inhibition—With a high-throughput screen, Manier et al. determined rocaglate 

derivatives are active against MM. Rocaglates are plant-derived cytotoxic compounds known 

to inhibit protein synthesis and can repress translation of specific messenger RNAs. 

Rocaglates inhibit a specific translation oncogenic program related to high expression of 

MYC, with potent in vitro and in vivo activity in preclinical studies. Due to their specificity, 

targeting dysregulated translation initiation with rocaglates rather than targeting the 

elongation machinery with other translation inhibitors might be less toxic to normal tissues.
106

WNT inhibition—Deletion or mutation of the tumor suppressor gene encoding the 

deubiquitinating enzyme CYLD is a common genomic aberration in MM. CYLD acts as a 

negative regulator of NF-κB and WNTβ-catenin signaling and loss of CYLD sensitizes MM 

cells to NF-κB-stimuli and WNT ligands. In NDMM, low CYLD expression is strongly 

correlated with proliferation and a WNT signaling-gene expression signature.107 In a 

preclinical study, Schmmel et al demonstrated that targeting WNT signaling with ethacrynic 

acid and ciclopirox olamine with piceatannol had a synergistic effect, increasing cytotoxicity 

in myeloma cells with minimal effect on healthy cells.108 Given these early preclinical 

results, targeting the WNT pathway is a potential therapeutic strategy in MM with loss of 

CYLD activity.

Histone methyltransferase inhibition—MMSET, also known as Wolf-Hirschhorn 

syndrome candidate 1 (WHSC1) or nuclear receptor-binding SET domain 2 (NSD2), is a 

member of the nuclear receptor binding SET domain (NSD) histone methyltransferase 

(HMT) family, which also includes NSD1 and NSD3.109–111 NSDs are histone modifiers 

that maintain chromatin, methylating histone H3 lysine 36 (H3K36) and histone H4 lysine 

20 (H4K20). Multiple myeloma SET domain (MMSET) is specifically over-expressed in 

15% of MM cases due to chromosomal translocation of t (4;14); putting the MMSET locus 

under the control of the Ig heavy chain promoter.112 As a lysine histone methyltransferase, 

MMSET regulates the methylation of histones, thereby causing global changes to the 

chromatin state and subsequent gene expression in t(4;14) MM cells.

Min et al. showed that MMSET stimulates cell growth and enhances the expression of 

cMYC protein in t(4;14) cells.112 Various studies have shown that when MMSET expression 

is inhibited, there is reduction of proliferation, induction of apoptosis and alteration of cell 

adhesion.113–115 Due to alternative splicing and differential promoter usage, the MMSET 

locus produces several different transcripts and is also overexpressed in many other cancers 
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including: pediatric acute lymphoblastic leukemia, lung, prostate, bladder and other solid 

tumors.116

Di Luccio et al. discovered a small molecule, LEM-06, which inhibits the H3K36 

methylation action of MMSET by putatively blocking the histone binding pocket.117 Tisi et 
al. demonstrated that N-alkyl sinefungin derivatives also assert low level inhibition of 

MMSET. 116 Though these compounds have not yet progressed to clinical trial, preclinical 

research suggests the feasibility of these products or their derivatives to inhibit epigenetic 

remodeling mechanisms driving MM progression.

BET inhibition—The bromodomain and extra terminal (BET) family of proteins can bind 

to acetylated chromatin and regulate gene transcription. These molecules were first studied 

in myeloma and were found to repress c-MYC expression which resulted in significant 

downregulation of c-MYC regulated genes. A bromodomain (BRD) is an approximately 110 

amino acid protein domain that recognizes acetylated lysine residues, such as those on the 

N-terminal tails of histones and is responsible for transducing the signal carried by 

acetylated lysine residues and recruiting different molecular partners, including chromatin 

factors and transcriptional machinery.118 Histone acetylation is a critical process of 

chromatin remodeling that underlies the open chromatin architecture dynamics and 

activation of transcription.119,120 Histone acetyltransferases (HATs) and histone deacetylases 

(HDACs) catalyze the addition and removal of acetyl groups on lysine residues of histones 

and other regulatory proteins, then BRDs recognize the relaxed chromatin segments and 

bind to the acetylated nucleosomes, transcription factors and co-activators.121122,123

Given this, inhibitors of BRDs have demonstrated positive effects in both solid and 

hematologic malignancies.124 The selective small molecule bromodomain inhibitor, JQ-1 

has shown to selectively inhibit the interaction between BET proteins and acetylated 

chromatin, resulting in dissociation. It was demonstrated to inhibit proliferation when tested 

against a panel of 25 MM cell lines and primary MM samples. The molecule was similarly 

tested in a xenograft mouse model of MM where treatment with JQ-1 resulted in decreased 

tumor burden, reduced immunoglobulin expression and increased overall survival.125 Jake et 
al. showed that BET inhibition by JQ-1 downregulates MYC and inhibits MM cell 

proliferation including MM cell lines that are resistant to FDA approved drugs like 

dexamethasone and melphalan.125 Another BET inhibitor, CPI-0610, is currently in phase I 

testing and preliminary results show that human MM cell lines are sensitive to BET 

inhibition. CPI-0610 induces apoptosis, G1 cell cycle arrest and caspase-dependent cell 

death associated with inhibition of MYC, IKZF1 and IRF4.126,127 Boi et al. demonstrated 

the antiproliferative activity of BET inhibitor OTX015, in a preclinical study using multiple 

myeloma cells.128 OTX015 acts via binding to BRD motifs and is currently in phase I trials.
129,130

BET inhibition by CPI203 increases lenalidomide/dexamethasone efficacy in MM cell lines. 

Anti-myeloma activity of CPI203 is independent of cell sensitivity to lenalidomide and 

involves MYC and IKZF1 downregulation.131 There is a synergistic effect of CPI-203 on 

cell death induction which is followed by the reduced expression of MYC and IRF4.132 

CPI-203 and bortezomib have been shown to have synergistic effects in drug resistant 
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myeloma.133 In MM cells, a novel inhibitor CG13250 is capable of suppressing the MYC 

transcription by impeding BRD4 binding to the MYC promoter.134

Epigenetic Remodeling—The dysregulation of epigenetics is increasingly recognized in 

the pathogenesis of hematological malignancies and recently a number of epigenetic 

therapies targeting DNA methylation, acetylation, and posttranslational histone modification 

have been introduced in clinical practice.135

Conclusion

Recent advancements in preclinical and clinical research have identified novel aberrant 

molecular pathways in MM and by targeting these pathways, we could develop treatment 

modalities for achieving better results with less side effects. Targets for further clinical 

development include BCL-2, MDM2, KRAS, NRAS, BRAF MEK, JAK-STAT, NF-kB, c-

MYC/Wnt, PI3K/Akt/mTOR, Cyclin D, MMSET and BET. Cobimetinib (MEK) and 

vorinostat (Histone deacetylase inhibitor) are currently in phase 3 drug testing. Phase 2 trials 

of Selumetinib (MEK1/2 inhibitor) and palbociclib (CDK4/6 inhibitor) are underway while 

venetoclax (a BCL-2 inhibitor) is in phase 1 testing. In various preclinical studies, 

vemurafenib (BRAF inhibitor), SC99 (JAK2/STAT3 inhibitor), DANFIN (NF-κB), BEZ235 

(P13K and mTOR inhibitor), and clioquinol (mTOR inhibitor) displayed potent anti-

myeloma activity. Monoclonal antibodies targeting FGFR also have potential in the 

treatment of MM. Development of targeted therapies against these pathways offer promise 

for the future of precision and personalized treatment of MM.
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Table 1.
Emerging therapies targeting novel aberrant pathways in Multiple Myeloma.

Abbreviations: BCL-2=B cell lymphoma-2, JAK-STAT=Janus kinase Signal Transducer and Activator of 

Transcription proteins, MEK=Mitogen activated protein kinase kinase, FGFR=fibroblast growth factor 

receptor, NF-KB=nuclear factor kappa light chain enhancer of activated B cells, mTOR=mammalian target of 

rapamycin, MM=multiple myeloma, NSD2=nuclear receptor binding SET domain2, BET=bromodomain and 

extra terminal, BRD=bromodomain, MYC=Myeloctomatosis (oncogene), HDAC=histone deacetylase

Pathway Drug Name Mechanism of action Clinical Trial

BCL-2 overexpression

venetoclax (ABT-199) BCL-2 inhibitor NCT01794520

JAK-STAT

ruxolitinib JAK2 inhibitor NCT00639002

SC99 JAK2/STAT3 inhibitor

NF-KB

DANFIN Proteasome inhibitor-inhibits NF-KB activation and signaling

Ras/Raf/Mek/Erk

selumetinib (AZD6244) MEK 1/2 inhibitor -blocks the MEK immediately downstream of 
BRAF

NCT01085214

sorafenib Multi kinase inhibitor-inhibits cell surface TKIs and downstream 
intracellular serine/threonine kinases

vemurafenib BRAF inhibitor NCT01524978

cobimetinib BRAF inhibitor NCT03312530

FGFR mutation

MFGR1877S Anti-FGFR monoclonal antibody

dovitinib (TKI258) Non selective FGFR inhibitor NCT02465060

BGJ398 Non selective FGFR inhibitor

AZD4547 FGFR (1-3) inhibitor

Cyclin D

palbociclib CDK4/6 inhibitor

PI3K/AKT/mTOR

clioquinol Hydroxyquinoline, downregulates expression of mTOR, inducing 
autophagy in MM cells

NCT00963495

SC-06 Disrupts mTOR signaling pathway by downregulating Raptor, a key 
component of mTORC1 signaling

BEZ235 mTOR inhibitor

C98 PI3K/AKT inhibitor

C96 PI3K/AKT inhibitor

Epigenetic regulation

LEM06 MMSET/NSD2 inhibitor (histone methyl transferase inhibitor)

JQ-1 BET inhibitor

CPI-0601 BET inhibitor
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Pathway Drug Name Mechanism of action Clinical Trial

OTX015/MK8628 BET inhibitor NCT01713582

CPI-203 BET inhibitor

CGI13250 Suppresses MYC transcription by blocking BRD4 binding to MYC 
promoter

panobinostat HDAC inhibitor NCT01651039
NCT01023308

vorinostat HDAC inhibitor NCT00773838

romidepsin HDAC inhibitor NCT00066638
NCT01755975

ricolinostat HDAC inhibitor NCT01323751
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