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Abstract

Purpose: We introduce and validate a scalable retrospective motion correction technique for 

brain imaging that incorporates a machine learning component into a model-based motion 

minimization.

Methods: A convolutional neural network (CNN) trained to remove motion artifacts from 2D T2-

weighted RARE images is introduced into a model-based data-consistency optimization to jointly 

search for 2D motion parameters and the uncorrupted image. Our separable motion model allows 

for efficient intra-shot (line-by-line) motion correction of highly corrupted shots, as opposed to 

previous methods which do not scale well with this refinement of the motion model. Final image 

generation incorporates the motion parameters within a model-based image reconstruction. The 

method is tested in simulations and in vivo motion experiments of in-plane motion corruption.

Results: While the CNN alone provides some motion mitigation (at the expense of introduced 

blurring), allowing it to guide the iterative joint-optimization both improves the search 

convergence and renders the joint-optimization separable. This enables rapid mitigation within 

shots in addition to between shots. For 2D in-plane motion correction experiments, the result is a 

significant reduction of both image space RMSE in simulations, and a reduction of motion 

artifacts in the in vivo motion tests.

Conclusion: The separability and convergence improvements afforded by the combined CNN

+model-based method show the potential for meaningful post-acquisition motion mitigation in 

clinical MRI.
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Introduction

Since its inception MRI has been hindered by artifacts due to patient motion, which are both 

common and costly [1]. Many techniques attempt to track or otherwise account and correct 

for motion during MRI data acquisition [2], [3], yet few are currently used clinically due to 

workflow challenges or sequence disturbances. While prospective motion correction 

methods measure patient motion and update the acquisition coordinates on the fly, they often 

require sequence modifications (insertion of navigators [4], [5]) or external hardware 

tracking systems [6], [7]. On the other hand, retrospective methods correct the data after the 

acquisition, possibly incorporating information from navigators [8] or trackers. Data-driven 

retrospective approaches operating without tracker or navigator input are attractive because 

they minimally impact the clinical workflow [9]–[13]. These algorithms estimate the motion 

parameters providing the best parallel imaging model agreement [14] through the addition of 

motion operators in the encoding [15]. Unfortunately, this approach typically leads to a 

poorly conditioned, nonconvex optimization problem. In addition to potentially finding a 

deficient local minimum, the reconstructions often require prohibitive compute times using 

standard vendor hardware, limiting the widespread use of the methods.

Machine learning (ML) techniques provide a potential avenue for dramatically reducing the 

computation time and improving the convergence of retrospective motion correction 

methods. Recent work has demonstrated how ML can be used to detect, localize, and 

quantify motion artifacts [16] and deep networks have been trained to reduce motion 

artifacts [17]–[20]. While the reliance on an ML approach alone shows promise, issues 

remain with the degree of artifact removal and the robustness of the process to the 

introduction of blurring or non-physical features. In this work, we attempt to harness the 

power of a CNN within a controlled model-based reconstruction. We demonstrate how ML 

can be effectively incorporated into retrospective motion correction approaches based on 

data consistency error minimization. Other works have balanced data consistency error with 

ML generated image priors (created using variational networks) to dramatically reduce 

reconstruction times and improve image quality for highly accelerated acquisitions [21]–

[25]. Here, we demonstrate the effective use of ML to guide each step in an iterative model-

based retrospective motion correction.

Specifically, we show how a CNN trained to remove motion artifacts from images can 

improve a model-based motion estimation. During each pass of the iterative process, a CNN 

image estimate is used as an image prior for the motion parameter search. This motion 

estimate is then used to create an improved image which can be propagated as input to the 

CNN to initialize the next pass of the algorithm. The quality of this image estimate can 

significantly improve the conditioning and convergence of the nonconvex motion parameter 

optimization. In addition, we demonstrate that with this high quality CNN image estimate, 

Haskell et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the motion optimization becomes separable. The separability of the motion model allows for 

small sub-problems to be optimized in a highly parallel fashion. This allows for a scalable 

extension of the model-based approach to include intra-shot (line-by-line) motion as well as 

the inter-shot motion in the RARE acquisition. The increased computation speed also 

facilitates implementation on standard vendor computation hardware.

Methods

An overview of the Network Accelerated Motion Estimation and Reduction (NAMER) 

method is shown in Fig. 1. The method is initialized with a SENSE [26] reconstruction of 

the raw k-space data. The motion correction algorithm is divided into three processes that 

are iteratively performed: (1) an artifact detecting CNN (Fig. 2) is applied to identify motion 

artifacts that are subsequently removed, (2) based upon the CNN output, a non-linear 

optimization estimates the associated motion parameters that minimize the data-consistency 

error of the forward model, and (3) a model-based reconstruction is performed to generate 

an updated image based on the motion parameters found in step (2). These steps are then 

repeated using the updated model-based reconstruction to further reduce the data 

consistency error and related motion artifacts. Example NAMER code can be found at 

https://github.com/mwhaskell/namer_mri.

MRI Acquisition

T2-weighted RARE/TSE/FSE [27] data were acquired on 3T MAGNETOM Skyra and 

Prisma scanners (Siemens Healthcare, Erlangen, Germany) using the product 32-channel 

head array coil and default clinical protocols. The imaging parameters are: TR/TE=6.1s/

103ms, in-plane FOV=220×220mm2, 4mm slices, 448×448×35 matrix size, 80% phase 

resolution, R=2 uniform undersampling, and echo train length (ETL)=11. A 12s FLASH 

[28] scan provides motion robust auto-calibration data that is used to generate coil sensitivity 

maps (calculated using ESPRiT [29] from the BART toolbox [30]). In this work data from 

six healthy subjects were acquired in compliance with institutional practice. Data from four 

of the subjects were utilized to train the CNN, and the data from the two other subjects were 

used to evaluate the performance of our method through simulations and supervised motion 

experiments.

Training Data Generation

Training data for the CNN were created by manipulating raw k-space data (free of motion 

contamination) using the forward model described in [13] to simulate the effects of realistic 

patient motion trajectories. Motion trajectories were created using augmentation (shifting 

and scaling) of timeseries registration information from fMRI scans of patients with 

Alzheimer’s disease (see Supplementary Figure S1). The residual learning CNN attempts to 

identify the motion artifacts using an L2-norm loss function against the motion corrupted 

input image minus the ground truth image. Ten evenly spaced slices from the four healthy 

subjects were used, and each slice was corrupted by 10 different motion trajectories. Thus, 

there were 400 motion examples available to choose from in order to create the training data.
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The training data was refined through the exclusion of motion corrupted images with RMSE 

(compared to ground truth) that was greater than 0.50 or less than 0.12. Images with RMSE 

greater than 0.50 were excluded because they contained severe motion corruption artifacts 

that could bias the training (due to the large error). Images with RMSE less than 0.12 were 

excluded because they contained so few motion artifacts which were not productive toward 

training the CNN to detect artifacts. Overall 76 of the 400 examples were excluded, 61 for 

RMSE < 0.12 and 15 for RMSE > 0.50, leaving 324 remaining. To reduce the memory and 

computational footprint, 24 random cases were dropped to limit the training size to 300 

motion cases. These 300 images were divided into patches of size 51×51 with a stride size of 

10 (resulting in an overlap region of 41 voxels), which produced 1600 patches per motion 

corrupted image. For each image, 1250 out of 1600 patches were randomly selected to bring 

the total number of motion corrupted patches to 375k. From this set of patches, 300k were 

used for training and 75k used for validation (80/20 training/validation split).

Motion Artifact Detecting Convolutional Neural Network

Fig. 2 shows the 27 layer network topology, which follows previous work [31] and is 

implemented in Keras [32]. The network isolates the image artifacts within the two-channel 

(real and imaginary) motion corrupted input patch. The initial layer is a convolutional layer 

followed by a ReLU activation. The next 25 layers consist of a convolutional layer with 

batch normalization and ReLU activation, and the final layer is a convolution layer. The 

number of hidden layers was chosen because the loss function did not improve using more 

than 25 layers. Additional layers were not added to avoid potential problems with 

overfitting. Each convolutional layer uses 3×3 kernels with 64 filters. The network was 

trained using the Adam optimizer [33], with learning rate = 1e-4 and a mean squared error 

loss function.

Before being passed through the CNN, the images are scaled to range in magnitude from 0 

to 1. Patches are then created, with size 51×51 (as in the training data) and a stride size of 8, 

which generated 2500 patches per image. After patches were passed through the CNN, they 

were combined and normalized by the number of patches overlapping at each pixel. No 

image padding was used for the examples in this paper since the FOV was not tight on the 

anatomy. The updated artifact free image, xcnn, can be described mathematically as:

xcnn = x − CNN(x)

where CNN(x) is an image containing the detected motion artifacts within the input image x.

Motion Parameter Optimization

The vector containing the motion parameters, θ, is estimated from xcnn through a non-linear 

optimization to minimize the data consistency error between the acquired data and the 

forward model described by the encoding matrix. The encoding includes the effect of the 

motion trajectory as well as the Fourier encoding and undersampling. The encoding matrix, 

Eθ, for the motion parameters θ, is described mathematically as:
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Eθ = UFCTθRθ (1)

where Rθ is the rotation operator, Tθ is the translation operator, C applies coil sensitivities, F 
is Fourier encoding, and U is the sampling operator. The motion parameters are found by 

minimizing the data consistency error between the acquired k-space data, s, and the k-space 

data generated by applying the motion forward model Eθ to the CNN image:

[θ] = argminθ ∥ s − Eθxcnn ∥2 (2)

The minimization is performed using a quasi-Newton search available with the built in 

fminunc function in MATLAB (Mathworks, Natick, MA).

As discussed in prior work [11], [13], the underlying image and motion parameters are 

tightly coupled which prohibits the separation of the optimization variables into orthogonal 

subsets. This directly limits the performance of alternating methods to only 1 or 2 productive 

steps during each alternating pass. However, we will demonstrate that the application of the 

CNN allows for the efficient decomposition of the optimization. Specifically, the motion 

parameters, θ, which are typically optimized in a single cost function as shown in (2), can be 

separated to create a set of much smaller optimization problems, where we can 

independently estimate θ for each shot of the RARE sequence (11 k-space lines in our case). 

The motion parameters can then be indexed by the shot number; θ = [θ1, θ2, … θN] where 

N is the total number of shots, and each vector θn contains the six rigid body motion 

parameters for a given shot. The motion forward model, Eθ, is reduced to only generate the 

subset of k-space associated with shot n, and is denoted as Eθn. Similarly, the acquired data 

for a single shot is denoted as sn and the cost function for a single shot is:

[θn] = argminθn
∥ sn − Eθn

xcnn ∥
2

(3)

By using (3) instead of (2), the number of unknowns for any optimization is decreased by a 

factor of N (the total number of shots). These separate minimizations can be done in parallel, 

which greatly improves the computational scalability of the retrospective motion correction 

approach.

This computational efficiency allows us to consider further refinement of the optimization 

variables. Namely, we extend cost function (3) to consider motion within the RARE shots 

(intra-shot motion) by assigning additional motion parameters to the individual lines of k-

space within a shot. Thus θn is expanded from size 6×1 to size (6*ETL)x1, and can be 

written as θn = [θn,1, θn,2, … θn,L] where L is the number of lines per shot (the ETL of the 

RARE sequence) and θn,l contains the six rigid body motion parameters for shot n, line l. 
The forward model is further reduced to Eθn,l to generate the k-space data only for line l of 

Haskell et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shot n, and the signal for that line is written as sn,l. To find the optimal motion parameters 

for an individual line, the cost function becomes:

[θn, l] = argminθn, l
∥ sn, l − Eθn, l

xcnn ∥
2

(4)

The ability to selectively refine the optimization variables is extremely valuable as only 

small portions of the acquisition are likely to suffer from significant intra-shot motion. These 

shots show significant data consistency error and are often considered as outliers to be 

discarded [12]. However, with the separable model approach we can expand the model 

dynamically. The parallel optimizations in Eqn. (3) can be performed for each shot, and then 

shots that had large data inconsistency after this first pass can then be improved upon using 

Eqn. (4) (see Supplementary Figure S2). By using this multiscale optimization for the 

motion parameters, the length of θ can vary depending on how many shots require intra-shot 

correction, with the minimum length being 6N and a maximum length of 6NL. Similar to 

Eqn. (2), a quasi-Newton search using MATLAB’s fminunc is performed for equations (3) 

and (4).

Model-based Image Reconstruction

Using the raw k-space data, s, and the current estimate for the motion trajectory, θ, the linear 

least squares image reconstruction problem is solved using the conjugate gradient method to 

find the image, x:

[x] = argminx ∥ s − E
θ
x ∥

2
(5)

The model-based reconstruction, x, can then be fed back through the CNN to identify 

remaining artifacts. The three steps (apply CNN, motion search, solve for image) are 

repeated until a stopping criterion is met (either a maximum number of iterations or the 

change in x is below a given threshold). In all cases, the final image returned by NAMER is 

the model-based reconstruction from Eqn. (5).

Simulation Experiments

The performance of the motion detecting CNN was tested using simulated motion corrupted 

data. For an unseen subject, each slice was motion corrupted and passed through the CNN. 

Image space RMSE was calculated for all the motion corrupted slices. Next, a single slice 

was chosen from the imaging volume and NAMER was performed using both a single cost 

function (Eqn. (2)), and a separable cost function (Eqn. (3) for all shots). Motion correction 

using an alternating minimization (only the 2nd and 3rd steps of the NAMER loop) was also 

performed with both a single and separable cost function, in order to compare to previous 

methods [11]. No intra-shot motion corruption or correction was used for the comparison 

experiment. We performed 20 total iterations for all four methods, and the algorithm 

convergence and final images are compared. Additionally, a simulation using NAMER with 

the separable cost function was performed in a case with intra-shot motion corrupted data.
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We also investigate the potential of combining NAMER with previously developed reduced 

modeling strategies [13] using simulations. During the third step of NAMER (update of the 

voxel values), we only updated a strip of voxels that corresponded to the width of a single 

patch (51 voxels), and then passed the partially updated image through the CNN at the next 

step. We then evaluated the total number of voxel updates required using a full volume solve 

versus a targeted voxel update during step 3 of NAMER.

In Vivo Experiments

NAMER was applied to a single brain volume from a healthy subject who was instructed to 

move during the scan. The subject was asked to shake their head in a “no” pattern for a few 

seconds, approximately halfway through the 2-minute scan. This motion pattern was used in 

order to restrict motion artifacts to those caused by within slice motion. Here, a 2D 

implementation of NAMER, correcting for in-plane translations and rotations, was 

employed. First, eight iterations of NAMER were performed for each slice, assuming motion 

only occurred between the shots. Next, one iteration of line-by-line motion correction was 

performed for the three shots that occurred during the middle of the scan (shots 10, 11, and 

12 out of 17 total) and had larger data consistency error.

Results

We present results demonstrating the motion mitigation capabilities of NAMER in 

simulations and a supervised motion experiment. First, we show that the CNN removes 

motion artifacts and decreases image space RMSE in all slices of an unseen subject with 

simulated motion corruption. Next, we show in simulations that NAMER removes more 

motion artifacts than an alternating minimization for both a single cost function (Eqn. 2) and 

a separable cost function (Eqn. 3). Unlike the alternating method, the performance of 

NAMER does not suffer when using a separable cost function. Finally, NAMER removes 

inter-shot and intra-shot motion artifacts from an in vivo motion experiment where the 

subject was instructed to move during the scan.

Performance of convolutional neural network

Fig. 3 shows the artifact removal performance of the CNN when applied to simulated motion 

corruption of data from a subject not included in the training data. Significant ringing 

artifacts are removed for all slices. When compared to the ground truth images, the 

simulated motion resulted in an average RMSE of 20% across the slices. The average error 

was reduced to 16.1% through the application of the CNN. As can be seen in Fig. 3-C, the 

network removes a significant portion of the motion artifacts, but some residual ringing and 

blurring are present.

Simulated motion correction using NAMER

Fig. 4 shows the performance of NAMER motion correction compared to an alternating 

method. Each approach was applied to simulated motion corruption which produced a 

43.8% image space RMSE (compared to the ground truth). The final images returned by 

NAMER for the single cost function (Eqn. 2) and separable cost function (Eqn. 3) 

formulations show negligible remaining artifacts and the image space RMSE decreased to 
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12.7% and 11.7% respectively. For the alternating method, significant artifacts remain after 

the 20 optimization steps. The lack of separability of the alternating optimization is observed 

as the single cost function outperformed the separable cost function. In that case, the single 

cost function produced cleaner images with a lower final RMSE (28.2% compared to 

31.2%).

The convergence rates of the NAMER and alternating optimizations can be seen in Fig 4-C. 

The initial data consistency error of the motion corrupted image was 17.4% (corresponding 

to 43.8% image space RMSE), compared to a data consistency error of 9.4% when using the 

ground truth motion. With NAMER motion correction, the data consistency error was 

reduced to the ground truth level of 9.4% after 9 iterations for both the single cost function 

(Eqn. 2) and separable cost functions (Eqn. 3). After 20 iterations, the alternating method 

was only able to achieve data consistency errors of 10.4% for the single cost function, and 

11.6% for the separable cost function.

For the simulated motion corruption example shown in Figure 4, using a reduced model [13] 

for image reconstruction (instead of a full volume solve at each NAMER iteration) requires 

33% fewer voxels updates. Additionally, NAMER simulations of intra-shot motion 

correction also produced an artifact mitigated image (Supplementary Figure S3).

NAMER motion correction applied to supervised in vivo motion experiment

NAMER motion correction was applied across the full 3D brain volume to correct artifacts 

produced by the subject shaking their head “no” during the acquisition. Slice 14 from the 35 

slice stack is shown in Fig. 5. The image without any motion correction contains substantial 

ringing artifacts. Using only between shot NAMER correction with a separable cost function 

(Eqn. 3) resulted in residual ringing. By refining the model to optimize individual lines 

within the shots that contain the largest data consistency error (Eqn. 4), the ringing artifacts 

are significantly reduced. The data consistency RMSE (shown in bottom right of the images 

in Fig. 5) decreased for all slices within the volume. For slices within the brain region there 

was an average reduction of 0.2% between the no correction reconstruction and the within 

shot motion correction. Similar qualitative improvements in image quality were observed for 

the slices not shown in Fig. 5, and two additional slices are presented in Supplementary 

Figure S4.

For a single slice of real motion corrupted data (subject 2 in Supplementary Figure S2), the 

first step of NAMER (CNN evaluation) took on average (averaged across the iterations) 10s 

on a 12GB NVIDIA Tesla P100. The I/O time to interface the CNN to MATLAB required 

an additional 40s. The second step of NAMER (motion optimization) took on average 2.7 

minutes, and the final step of NAMER (full image solve with motion parameters included) 

took on average 3.6 minutes.

Discussion

In this work we introduce a scalable retrospective motion correction method that effectively 

integrates a motion artifact detecting CNN within a model-based motion estimation 

framework. The image estimates provided by the CNN allow for separation of the motion 
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parameter search into either individual shots (containing 11 k-space lines in our case) or 

individual k-space lines. The small optimization problems can be efficiently computed in an 

embarrassingly parallel fashion. This results in a highly scalable algorithm that has the 

potential for clinical acceptance. In addition, the separability of the motion optimization 

facilitates efficient refinement of the model to consider motion disturbances that can occur 

within a shot. These specific shots can be clearly identified due to their large data 

consistency error and line-by-line motion correction can be applied. The separability 

afforded by our method allows us to focus on further improving these limited number of 

troubled regions without incurring a substantial computational burden. The benefits of this 

model refinement can be clearly observed (e.g. Fig. 5).

The model-based reconstruction presented here also relaxes concerns about the accuracy, 

robustness, and predictability of the CNN. As can be seen in Fig. 3, the CNN is able to 

reduce motion artifacts across all slices from a previously unobserved data set. But, 

following our expectations, the CNN is not able to completely remove all of the artifacts (see 

Fig. 3, slice 20) and it can introduce undesirable blurring to the images (see Fig. 3, slice 14). 

However, the CNN output is accurate enough to both improve the convergence of the 

reconstruction and promote the separability of the motion parameter optimization. Through 

the inclusion of more diverse and larger training data sets we expect these benefits to grow. 

In addition, the NAMER method presented in this work utilizes a standard convolution 

network. Further improvement might be achieved with more sophisticated networks or loss 

functions [34]. The topology used here could benefit from further optimization of design 

parameters, where a sensitivity analysis across network attributes could be performed (i.e. 

patch size, number of hidden layers). It is important to note that the optimal network may 

not necessarily be the one which has the lowest validation loss during network training, but 

instead will be the network that best aids in advancing the motion optimization (step 2 of 

NAMER).

The NAMER motion mitigation method was assessed through both simulations and 

supervised in vivo motion experiments. These include testing the CNN artifact removal 

capabilities on simulated 2D motion corrupted data, simulations to show convergence of the 

method toward a ground truth, and the supervised head shaking experiment where 2D 

motion occurred parallel to the imaging planes. The reconstruction framework presented 

here does generalize to 3D motion trajectories and we think similar benefits can be achieved 

with adequate training of the CNN, although these remain to be demonstrated. For 3D 

motion correction with NAMER, the 2D CNN developed here can still be used to mitigate 

some motion artifacts. However, we think training data that incorporates through plane 

motion effects will increase the performance of the CNN in general patient motion 

situations. Due to the limited range of rigid body brain motion, we anticipate that a CNN 

could be trained on small stacks of slices, where the objective is to remove artifacts from the 

interior voxels in the stack. The challenges we anticipate in extending NAMER to 3D are 

present in both the CNN step and the model-based motion optimization. First, the 

performance of the CNN on data corrupted by through-plane motion that includes spin 

history effects (which are currently not in the simulated training data model) would need to 

be evaluated. Second, previous model-based motion optimizations [12], [13] did not include 
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spin history effects into their motion models, and this could hinder NAMER’s performance 

even if the CNN was able to filter out many of these effects.

The NAMER framework can also accommodate state-of-the-art model reduction and data 

re-weighting strategies. Prior works have also shown that outlier rejection or soft gating can 

be beneficial for the mitigation of through plane motion artifacts [12], [35], and we see those 

prior works as complementary to the NAMER method. The outlier rejection strategy from 

those works could be used to determine which shots need to have intra-shot motion 

correction (shown in Fig 5). Further, the data interpolation step in [12] could instead be 

replaced with our motion mitigating CNN, similar to the cascading network approach in 

[36]. This could potentially relax the requirement of 2× oversampling used in [12] to achieve 

robust through plane motion correction. NAMER could also be combined with prior work 

shown in [13] that performed reduced modelling in image space, and preliminary simulation 

results presented here demonstrate the potential of the approach, with 33% fewer voxel 

updates required. Replacing the third step of the NAMER algorithm (see Fig 1) with a 

reduced model image reconstruction could improve algorithm efficiency and in this case the 

CNN would only need to evaluate the patches that contain updated voxel values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NAMER method overview.
First, a motion corrupted image is reconstructed from the multicoil data, assuming no 

motion occurred. Next, motion mitigation is performed by looping through three steps: (1) 

remove motion artifacts in image space by passing the 2-channel complex image (1 channel 

for the real component and one channel for the imaginary component) through the motion 

detecting CNN, (2) search for the motion parameters by minimizing the multicoil data 

consistency error of a motion-inclusive forward model, using complex voxel values from the 

CNN image, and (3) reconstruct the full image volume using the motion-inclusive multicoil 

forward model and position coordinates from step (2).
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Figure 2. Convolutional neural network for motion artifact detection.
A motion corrupted image is input as two channels (corresponding to the real and imaginary 

components) to a 27-layer patch-based CNN consisting of convolutional layers, batch 

normalization, and ReLU nonlinearities. The network outputs the image artifacts, which can 

be subtracted from the input image to arrive at a motion mitigated image.
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Figure 3. CNN artifact mitigation across whole brain.
A. Representative slices of CNN motion artifact mitigation across the brain volume for a 

simulated motion example. Bottom right shows the image space RMSE compared to the 

ground truth image. B. For all slices in the brain volume, the image space RMSE decreased 

after the CNN, with an average improvement of 3.9%. C. Despite large reductions in 

artifacts shown in A., compared to the ground truth ringing and blurring artifacts still 

remain.
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Figure 4. NAMER compared to alternating method in simulated motion data.
A. Original ground truth image and simulated motion corrupted image. B. Image results 

after 20 iterations of NAMER or an alternating motion correction method. The white 

numbers in the bottom right are image space RMSE compared to the ground truth image. 

Top row shows the reconstruction results when using a single cost function for the motion 

minimization (Eqn. 2), bottom row shows results from a separable cost function for the 

motion minimization (Eqn. 3). C. Convergence of the four methods displayed in B are 

shown. Both of the NAMER implementations converge more quickly, and to a lower final 

data consistency error.
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Figure 5. NAMER in vivo inter- and intra-shot motion correction.
Reconstructed images assuming no motion occurred, correcting for motion between shots 

(inter-shot correction), and correction results after allowing fine-tuning of the motion 

parameters for each line of k-space at highly corrupted shots (intra-shot correction). Motion 

artifacts are significantly reduced by allowing the motion parameters to vary across the lines 

within a shot, as shown in the right column. Data consistency error values are shown in the 

bottom right of each image.
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