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Abstract

Allergic eosinophilic esophagitis (EoE) is a chronic, allergen-mediated inflammatory disease of 

the esophagus, and the most common cause of prolonged dysphagia in children and young adults 

in the developed world. While initially undistinguished from gastroesophageal reflux disease-

associated esophageal eosinophilia, EoE is now recognized as a clinically distinct entity that 

shares fundamental inflammatory features of other allergic conditions, and is similarly increasing 

in incidence and prevalence. The clinical and epidemiologic associations between EoE and other 

allergic manifestations are well established. In addition to exaggerated rates of atopic dermatitis, 

IgE-mediated food allergy, asthma, and allergic rhinitis in EoE patients, each of these allergic 

manifestations imparts individual and cumulative risk for subsequent EoE diagnosis. As such, EoE 

may be a member of the “allergic march”—the natural history of allergic manifestations during 

childhood. Several determinants likely contribute to the relationship between these conditions, 

including shared genetic, environmental, and immunologic factors. Herein, we present a 

comprehensive review of allergic comorbidity in EoE. We discuss areas of the genome associated 

with both EoE and other allergic diseases, including the well-studied variants encoding thymic 

stromal lymphopoietin and calpain 14, among other “atopic” regions. We summarize ways that 

environment factors (such as microbiome-altering pressures and aeroallergen exposure) may 

predispose to multiple allergic conditions including EoE. Finally, we discuss some fundamental 

features of type 2 inflammation, and the resulting implications for the development of multiple 

allergic manifestations. We conclude with an analysis of the “type 2” biologics, and how 

mechanistic similarities between EoE and the other allergic manifestations have important 

implications for screening and treatment of the allergic patient.
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Introduction

Allergic eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus 

that is thought to be caused by an allergen-specific immune response, and results in 

progressive esophageal dysfunction[1,2]. EoE is characterized clinically by abdominal pain, 

reflux, failure to thrive, odynophagia, and food impaction, and is associated 

histopathologically with progressive esophageal remodeling, stricture formation, and 

esophageal narrowing. In the 1970s-80s, early case descriptions began to distinguish the 

discrete characteristics of EoE from gastroesophageal reflux disease-associated esophageal 

eosinophilia; thought to be the predominant cause of esophagitis at the time [3–5]. In 1993, 

Attwood and colleagues described EoE as a clinically distinct syndrome [6], and soon 

thereafter EoE was found to share inflammatory features with other allergic conditions, 

including descriptions in early case reports [3,4,7]. EoE is now recognized as the most 

common cause of chronic dysphagia in children and young adults across the developed 

world[8–10]. Since its first description, rates of EoE diagnosis have steadily increased with 

current incidence estimates ranging from 5 to 10 cases per 100,000 with a prevalence of 

0.5-1 cases per 1000 individuals[10,11].

Though a specific allergen is not able to be identified in every patient, it is generally thought 

that allergen exposure is a central feature of EoE pathogenesis. Evidence for this comes 

from early studies that revealed excellent response rates of esophageal inflammation to 

elemental diets[12,13], as well newer evidence from animal models[14]. Cohort studies from 

major referral centers have revealed that the most common foods associated with EoE are 

milk, egg, soy, and wheat—notably overlapping with foods most commonly implicated in 

IgE-mediated food allergy (IgE-FA). Like IgE-FA, identification and avoidance of the 

causative food is the primary treatment goal in EoE, when possible [15,16]. In cases where a 

trigger remains elusive, topical corticosteroids in various formations are highly effective 

therapies[17,18]. Importantly, and similar to the effects of chronic allergic inflammation 

seen in asthma, failure to diagnose and treat EoE can result in permanent tissue remodeling 

of the esophagus leading to stricture formation, odynophagia, and food impaction[19,20].

Epidemiologic associations between EoE and the other allergic manifestations have now 

been well established, with atopic dermatitis (AD)[1,21,22], IgE-FA, asthma[1,21–23], 

allergic rhinitis (AR)[1,21,22,24], and pollen food allergy syndrome[25,26] all shown to be 

common comorbidities in EoE patients. Conversely, patients with AD, IgE-FA, asthma, or 

AR are at increased risk of subsequently being diagnosed with EoE [27]. The relationship 

between IgE-FA and EoE seems to be particularly strong, with IgE-FA patients developing 

EoE almost nine-times faster than healthy peers[28]. Further, the risk relationship between 

EoE and AR seems to be bidirectional, with each condition imparting risk for the subsequent 

diagnosis of the other[27]. This final observation is consistent with data suggesting that EoE 

symptoms can be triggered by specific environmental allergens[7,29,30]. As a result of these 

various associations, EoE has been proposed as a fifth member of the allergic march[27,31]. 

Despite this, the recognition that EoE is associated with non-atopic diseases, such as 

inflammatory bowel disease and connective tissue disorders [32], speaks to the complexity 

of this disease and the possibility that multiple EoE endotypes exist[33].
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Given the considerable allergic burden in EoE, and the relevance of shared allergic features 

to emerging therapeutics, we discuss the primary literature focusing on allergic comorbidity 

and type 2 inflammation in EoE. We focus on the shared genetic, environmental, and 

immunologic features that likely underlie the associations among these various allergic 

manifestations. We conclude with a discussion of the “type 2” biologics, and how 

mechanistic similarities between EoE and the other allergic manifestations have important 

implications for screening and treatment of the allergic patient.

Epidemiologic associations between EoE and the other allergic manifestations

In parallel with the rise in allergic diseases over the past several decades, the prevalence of 

EoE so too has increased both in pediatric and adult populations[34,35]. In a large pediatric 

cohort study at Children’s Hospital of Philadelphia, a 70-fold increase in the rate of EoE was 

demonstrated from 1994-2011 [36]. Similarly, Straumann and Simon found an increase in 

EoE prevalence from 2/100,000 to 23/100,000 between 1989 and 2004 in an adult 

population in Switzerland[37]. While these findings may represent a true increase in the 

incidence of EoE over time, improved recognition and diagnostic capabilities likely also 

contribute to the increased diagnostic rates.

Additionally, a number of studies have associated EoE clinically with other atopic 

conditions, noting higher rates of comorbid asthma, AR, AD, asthma and IgE-FA in 

individuals with EoE compared to the general population[21,38,39]. In review of these early 

reports, approximately 25-50% of individuals with EoE have concurrent asthma, 30-90% 

have AR, and 10-25% have AD[24,40–43], with variation in these rates likely influenced by 

individual study populations and definition of conditions. Further, approximately 10-25% of 

EoE patients have concurrent or prior history of IgE-FA, compared to a rate of 8% in the 

general pediatric population[40–42,44]. Interestingly, patients with established IgE-FA have 

been found to have higher rates of subsequent EoE development compared to the general 

population, often secondary to the same culprit food responsible for the IgE-mediated 

allergy [28]. More recent studies in both children and adults within the past 5 years continue 

to support the association between EoE and atopy (Table 1).

To date, one large meta-analysis has also delineated the atopic burden in patients with EoE, 

showing significantly increased odds of AD (OR 2.85, 95% CI, 1.87-4.34), asthma (OR 

3.01, 95% CI 1.96-4.62), and AR (OR 5.09, 95% CI 2.91-8.90) in those with EoE compared 

to healthy individuals[21]. We also performed a large analysis assessing children with and 

without EoE in a single large pediatric primary care network population[49]. In this study, 

the rates of atopic conditions were found to be significantly higher in subjects with EoE 

when compared to healthy children, and included AR (60% of EoE vs 17% without EoE; 

OR 7.1, 95% CI 5.8-8.6), asthma (60% of EoE vs 21% without EoE; OR 5.2, 95% CI 

4.3-6.3) and AD (18% of EoE vs 7% without EoE; OR 3.1, 95% CI 2.4-4.0). Finally, in a 

large multicenter assessment of patients with EoE from the Consortium for Food Allergy 

Research, concomitant allergic disease was observed in 91% of the study population[50]. 

The overall prevalence of specific allergic diseases in EoE is depicted in Figure 1.

Given the clinical associations between EoE and the other allergic manifestations, we 

hypothesized that EoE might be an intrinsic member of the allergic (or atopic) march[27,31]. 
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The allergic march refers to the natural history of allergic disease manifestations, and time 

course progression of these conditions throughout infancy and childhood[52]. Initial work 

by our group determined the peak age of diagnosis of EoE to be approximately 3 years 

following onset of AD, IgE-FA, and asthma (though actual EoE incidence may be earlier 

given the known barriers to diagnosis including presentation and histologic evaluation)[31]. 

Subsequently, in an analysis of over 130,000 children within a large primary care cohort, 

presence of AD, IgE-FA, asthma and AR were found to be both independently and 

cumulatively associated with subsequent diagnosis of EoE[27]. Despite these observations, 

it should be noted that there are varying degrees of EoE presentation, and an allergic trigger 

is not always identified. This fact speaks to the complexity of this disease process, and to the 

possible existence of multiple disease endotypes with varying degrees of allergic 

pathophysiology[33]. In the sections ahead, we discuss the shared genetic, environmental, 

and immunologic factors that may be responsible for the clinical and epidemiologic 

associations between EoE and the other allergic manifestations.

Genetic determinants of allergy susceptibility

Several studies, both involving human subjects and murine models, have contributed to our 

understanding of the immunopathogenesis of EoE[2]. Eosinophilic inflammation is 

generally thought to be a late-stage effector response to T helper (TH) 2 cell-mediated 

inflammation, critical to other atopic diseases, and affecting select individuals with specific 

genetic predispositions. Many of these associations have been comprehensively reviewed 

previously with discrimination by genetic (disease risk variants, transcriptome) and 

epigenetic (histones, DNA, microRNA) disease-associated modifications[53]. Here we focus 

on genetic associations that may predispose to multiple allergic manifestations, including 

EoE.

Two widely studied genetic components involved in EoE and atopy include thymic stromal 

lymphopoietin (TSLP) and calpain 14 (CAPN14). Variants in the 5q22 locus encoding the 

gene for TSLP have been associated with EoE as well as the most common atopic diseases 

including, AD, asthma, and AR[54–58]. TSLP is an epithelial cell-derived cytokine that is 

secreted at barrier surfaces in response to allergen exposure, and is involved in the initiation 

and propagation of type 2 inflammation. In the esophagus, TSLP has been found to be 

overexpressed in biopsies from subjects with EoE, as compared to healthy 

individuals[59,60]. Furthermore, TSLP mediates inflammatory basophil responses in the 

context of experimental EoE[14]. These observations are reminiscent of the overexpression 

of TSLP that is observed in the skin of in patients with AD [61,62]. Notably, targeting TSLP 

for neutralization in murine models leads to elimination of esophageal eosinophilia, 

supporting a central role for TSLP in this disease process[14].

Similarly, variants in the 2p33 locus encoding the CAPN14 gene have been directly 

associated with EoE and atopy, with upregulation of CAPN14 in the esophagus of those with 

active esophagitis and following exposure to type 2 cytokines [55,63]. Previous reports have 

also associated CAPN14 dysregulation with epithelial barrier dysfunction[64,65]. Further, 

CAPN14 encodes a member of the calcium-dependent, non-lysosomal cysteine protease 

family and therefore may contribute to the protease hypothesis of EoE described below. 

Capucilli and Hill Page 4

Clin Rev Allergy Immunol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Relevant to discussion of TSLP and CAPN14, a recent study investigated the relationship 

between atopy, EoE, and genetic risk[66]. In this study, single nucleotide polymorphisms in 

63 atopy genes were evaluated for EoE associations both in atopic and nonatopic 

individuals. The results suggested a mechanistic gene-gene interaction whereby atopy-

related genes and EoE-specific loci (notably those for IL-4 and TSLP) synergistically 

cooperate to increase EoE risk. Thus, genetic susceptibility of EoE development is mediated 

by both EoE-specific and common atopic loci that, when present together, act synergistically 

to increase susceptibility to allergic disease development.

Other “atopic” regions of the genome previously identified include the 11q13 loci encoding 

EMSY and LRRC32 which are associated with EoE[55], AD[67,68], asthma[56,69], and 

AR[56]. Interestingly, this locus has also been associated with inflammatory bowel disease 

[70], which was recently found to be a significant comorbidity seen in children with 

EoE[49]. Genome-wide association studies have also identified regions contributing to 

susceptibility of IgE-FA onset, including the SERPINB gene[71]. While a direct association 

between SERPINB and EoE has not yet been established, the family of SERPINs genes are 

highly expressed in the esophagus, and so may be an important target for future exploration. 

Finally, 16p13 has been identified as an additional risk locus for EoE, associated with 

various disease including AD and asthma, and AR[56,72], among other immune and 

autoimmune conditions[73]. Together, these studies indicate that a shared set of genetic 

changes may predispose an individual to develop multiple allergic manifestations, including 

EoE.

Environmental factors common to the allergic manifestations

Multiple environmental factors have been associated with development of allergy [74], and 

the environment in which an individual is raised is a strong contributor to EoE 

development[54]. Common environmental factors that predispose to multiple allergic 

manifestations therefore likely contribute to the observed associations between EoE and its 

comorbidities. Here we review the major environmental considerations thought to contribute 

to allergy in general, and EoE specifically.

Microbiome-altering environmental pressures—Billions of microbes colonize the 

mucosal surfaces of mammals in a symbiotic relationship that supports normal physiology. 

The term microbiome describes the DNA material of these microbial communities which 

consists of bacteria, viruses, fungi, and protozoa. The human microbiome is both immense, 

and complex, with 100 trillion microbes representing multiple genera colonizing the 

gastrointestinal (GI) tract alone [75]. Over the past several decades, the GI microbiome has 

been a subject of particular focus, and research has added to our appreciation of dysbiosis 

(microbial imbalance or maladaptation) as an important factor in multiple human disease 

states [76], including allergy. Previous efforts have sought to understand the role of the 

microbiome in the context of allergic inflammation[77,78], and microbiome-altering 

environmental pressures are now thought to be important contributors to allergy risk[79].

Investigators have also focused specifically on the relationship between the esophageal 

microbiome and EoE. The esophagus itself is colonized by at least hundreds of bacterial 
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species, with members of the Firmicutes and Bacteroides phyla being among the most 

highly represented in both children and adults [80–83]. Initial studies of the esophageal 

microbiome in children with EoE have noted a few key associations. Most notably, when 

examining biopsy samples in children with active EoE, there is shift away from the genera 

Streptococcus and Atopobium in favor of Neisseria and Corynebacterium when compared 

with samples from patients with inactive EoE or healthy controls [83]. In another study that 

examined 16S rRNA from esophageal string tests from children and adults, it was observed 

that the total bacterial load, as well as members of the Haemophilus genus specifically, were 

enriched in patients with EoE as compared with controls[82]. In addition, approximately 

half of subjects with active EoE on proton-pump-inhibitor treatment had an enrichment of 

members of the Proteobacteria phylum when compared with controls, an enrichment that 

was also observed upon examination of esophageal biopsies from patients with active 

EoE[83]. Though preliminary, these studies have started to elucidate the microbiome of the 

EoE esophagus.

It is particularly useful to note that the esophageal bacterial load seems to be increased in 

patients with EoE irrespective of treatment status or the degree of mucosal eosinophilia, and 

that the microbiomes of the inflamed esophagus in patients with EoE or gastrointestinal 

reflux disease are distinct[82]. Together, these observations suggest that the dysbiosis 

observed in EoE is may be at least in part the result of a primary mucosal defect in the 

regulation of microbial communities, as opposed to solely the consequence of mucosal 

inflammation. That being said, mechanistic studies in animal models (germ-free, 

gnotobiotic, or otherwise) are required to establish the extent to which microbial changes are 

a secondary consequence of, or contributing factor to, the esophageal inflammation observed 

in EoE.

It is challenging to integrate microbiome data across biologic niches, as the commensals that 

colonize different mucosal and epithelial surfaces are distinct. However, there are a number 

of common environmental pressures that can impact commensal communities across the 

body, thereby creating dysbiosis that could contribute to allergy development or progression. 

Animal models have taught us that normal microbiota help control allergic responses to 

foods and other allergens [84,85], and antibiotic exposure, birth mode, preterm birth, and 

diet each dynamically restructure commensal populations [86,87], while increasing risk for 

allergy[79,88–90]. Similar associations exist with early-life environmental pressures and the 

development of EoE. For example, antibiotic exposure is associated with EoE in the 

majority of studies[91–95]. Similarly, cesarean delivery also increases risk of EoE[92,93]. 

Finally, while diet is known to influence the esophageal microbiome[83], like other allergic 

manifestations the association between early life breast vs. formula feeding and EoE is less 

clear[91,96]. Together, these studies support a role for environmental pressures that alter the 

microbiome as common factors that contribute to the development of EoE, and other allergic 

manifestations. However, future research is necessary to expand upon this work and define 

the most relevant microbes and immunologic mechanisms involved.

Exposure to aeroallergens as a trigger of EoE—As noted previously, there is a very 

high degree of comorbidity between EoE and AR[27]. However, evidence linking these two 

conditions extends beyond epidemiologic associations. Over the past decade, a body of 
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literature has emerged that describes how aeroallergens can exacerbate EoE in some 

individuals[97,98]. For example, a case series of 1,180 EoE patients found that 14% had a 

history of exacerbation by aeroallergens, and 1/5th of those had biopsy-confirmed seasonal 

variation of esophageal eosinophilia[30]. Several other reports have further supported an 

intrinsic, seasonal dependence of EoE with a decrease in the diagnosis of EoE during winter 

months, and increases in diagnosis during times of high pollen as the spring, summer, and 

fall[99–104]. One study even noted a significantly higher incidence of food bolus impactions 

in those with EoE during the summer and fall, compared with the winter[105].

Direct evidence for the role of aeroallergens in EoE exacerbations comes from both animal 

models and clinical observations. Researchers have developed models of experimental EoE 

in mice through exposure to perennial allergens such as cockroaches, dust mites, or 

molds[106,107]. Furthermore, EoE development has been seen in patients exposed to large 

volumes of allergens such as mold, dust, and grass following acute, large-volume accidental 

exposure[108] or sublingual pollen immunotherapy to trees[109] or grasses[109,110]. 

Interestingly, associations between aeroallergens and EoE seem to be primarily related to 

pollens, in contrast to the common “indoor” allergens. There is actually a small protective 

effect of owning a furred pet when it comes to subsequent EoE development[93,111]. It is 

not entirely known why pollens are particularly relevant, though it may be due to 

immunologic cross-reactivity with food allergen components[112].

Despite these associations, the correlation between season and rate of EoE diagnosis is not 

consistent across studies[113,114]. For example, a large report of over 700 patients found 

that EoE symptoms did not vary by season suggesting that the causal allergens are present 

year-round[115], and a meta-analysis of 18 studies and 16,846 patients found no statistical 

difference in the annual seasonal distribution of newly diagnosed EoE [116]. It is also worth 

pointing out that the endpoint for this meta-analysis was food bolus impaction requiring 

medical care—an outcome that favors specificity over sensitivity. None the less, these 

studies indicate that the role of aeroallergens in EoE may be nuanced, with aeroallergens 

being relevant in a subset of patients (for example older children where allergic rhinitis is 

more prevalent), or due to sensitivity to allergens characteristic of distinct seasons, 

geographic regions, or diets.

Oral or sublingual immunotherapy for IgE-mediated food allergy—Recently, the 

recognition of EoE in patients undergoing oral immunotherapy (OIT) for IgE-mediated food 

allergy has raised concern that OIT could trigger EoE in susceptible individuals [117–119]. 

This association was further explored in a meta-analysis which reported a positive 

correlation between OIT and EoE, with new onset of EoE occurring in 2.7% of patients 

undergoing OIT[119]. However, it should be noted that in this meta-analysis EoE diagnosis 

was defined by biopsy, excluding patients with clinical symptoms of EoE (such as 

abdominal pain or vomiting) alone [120]. In our previous review of studies that documented 

discontinuation of OIT due to EoE symptoms and/or consistent biopsy findings, we found 

that symptoms of EoE occur at a rate between 8 and 14%[28]. Thus, while abdominal pain 

and vomiting are not diagnostic for EoE, actual rate of EoE during OIT may be higher than 

previously appreciated.
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It is unclear at this time whether OIT causes EoE, or whether OIT exacerbates mild EoE in 

otherwise sub-clinical individuals. We found that the prevalence of EoE in patients with IgE-

mediated food allergy is higher than the rate of EoE in the general population[28], and that a 

history of IgE-FA to the three of the most common food allergens (milk, egg, and shellfish) 

was highly associated with the subsequent diagnosis of EoE [28]. In a follow-up study, we 

observed a hazard ratio of 9.1 for children with IgE-FA going on to develop EoE, the 

strongest association detected among the various allergic march relationships [27]. Finally, it 

has been reported that individuals who outgrow IgE-FA can go on to develop EoE to the 

same food[121–123]. Together, these findings suggest that a common allergen-specific TH2 

response could give rise to both IgE-FA and EoE. This body of literature also suggests that 

the concern for iatrogenic EoE in patients undergoing OIT is warranted, and patients 

undergoing OIT should be closely monitored for development of EoE symptoms.

Role of infections in EoE predisposition—In investigations into environmental 

factors that might influence EoE development, an interesting association was made with 

Helicobacter pylori (H. pylori). H. pylori infects about half of the global population[124], 

with a wide variation between regions and countries. Since it’s identification as a cause of 

peptic ulcer disease, gastritis, and several cancers, the prevalence of H. pylori has 

dramatically decreased in westernized countries[125,126]. This occurred at the same time as 

an increasing recognition and diagnosis of EoE, resulting in an inverse association between 

EoE rates and H. pylori infections[127–132].

The inverse association between EoE and H. pylori resulted in the development of a 

hypothesis that H. pylori, by inducing both a TH1 and TH17 response[133], polarizes the 

immune system away from allergic inflammation. This hypothesis was supported by animal 

studies that show a protective effect of H. pylori infection in a model of allergic 

asthma[134]. However, a recent large, multicenter, case-control study directly examined the 

relationship between H. pylori and EoE in a prospective manner. A total of 808 individuals 

were studied, including 170 children. The study found that there was no difference in H. 
pylori prevalence between cases and controls in either children or adults [135]. Thus, despite 

the potential for relevant immunologic mechanisms, it is unlikely that there is a clinically-

relevant protective effect of H. pylori infection in the setting of EoE.

Shared features of “type 2” inflammation among the allergic manifestations

The observation that most EoE patients have comorbid allergic conditions suggests that EoE 

is immunopathologically related to the other allergic manifestations. Additional evidence of 

this relationship comes from the fact that EoE shares many clinical similarities to other 

allergic conditions including exhibiting a “type 2” or allergic form of 

inflammation[136,137], and being responsive to allergen avoidance and/or topical steroid 

applications. For example, elemental diets have been shown to be highly effective in 

inducing histologic and clinical remission in children and adolescents with EoE[138–140], 

as have empiric elimination diets based on the most commonly identified etiologic 

foods[139]. Alternatively, orally administered topical steroids are an effective therapy for 

EoE, with resolution rates up to 80%[17,18,141–147]. A notable exception to the clinical 

similarities between EoE and the other allergic manifestations is that allergen testing (skin 
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prick or specific serum IgE) is of limited utility when attempting to determine causal foods 

[15,138], likely because IgE is not required for EoE pathogenesis (in animal models) [14]. 

There have been considerable advances over the past decade to our understanding of the 

immunologic mechanisms underlying EoE pathophysiology, the details of which have been 

reviewed previously [2,148]. We therefore focus on fundamental features of allergy 

development, and how they may contribute to the relationship between EoE and its 

comorbid conditions (Fig. 2).

The protease hypothesis—The protease hypothesis supposes that protease activity is 

one upstream trigger of type 2 inflammatory responses; the mammalian immune system’s 

reaction to both parasitic and allergic stimuli. There are evolutionary advantages to 

mammals evolving sensors of protease activity, as many parasites utilize proteases to both 

aid host invasion and establish chronic infection[149]. Protease sensors of the immune 

system include the interleukin (IL)-1 family of cytokines, and in particular the potent TH2 

stimulus IL-33, which are directly activated by microbial and allergen-associated 

proteases[150,151]; direct activation of innate immune cells including basophils, 

eosinophils, and mast cells[152–155]; and polarization of naive T cells towards a TH2 

activation state such as that mediated upon cleavage of the protease-activated receptor 2 

[156]. These innate protease sensors may be unintended targets of many of the most 

clinically-relevant allergens including insect venoms[157], some food allergens[158], and 

respiratory allergens[151,159,160], all of which can exhibit inherent protease activity. Given 

the fundamental role of proteases in inducing type 2 inflammatory responses, it is perhaps 

not surprising that the protease activity of allergens has been shown to be important for 

generating multiple models of allergic disease[161].

There is also building evidence to support a role for protease dysregulation in EoE 

pathogenesis. Clinically, a high proportion of patients with EoE display sensitivity to indoor 

protease allergens derived from insects[107,159,162]. Experimentally, exposure to these 

same indoor allergens including house dust mite (HDM), cockroach, or mold allergens, can 

induce EoE-like inflammation in mice[106,107,163]. For example, the major HDM allergen 

(Derp1) has prominent cysteine protease activity that mediates immune cell activation via 

cleavage of the low-affinity IgE receptor CD23, and the alpha subunit of the interleukin IL-2 

receptor CD25[164,165]. In mice, exposure to HDM allergen results in significant 

infiltration of eosinophils and mast cells into the esophagus, which is independently 

dependent on eotaxin-1/2, CCR3, and IL-5.

Additional evidence of a role for proteases in EoE pathogenesis comes from genome-wide 

studies that have identified polymorphisms in protease inhibitors that associate with the 

disease. For example, EoE has been linked to polymorphisms in the CAPN14 gene[63], a 

calcium-activated cysteine protease that is induced by IL-13, and contributes to the 

esophageal epithelial barrier impairment observed in EoE [64]. Conversely, polymorphisms 

that interfere with potentially protective, anti-peptidases expressed by the esophageal 

epithelium are also associated with EoE. The SERPIN gene family, which encode serine and 

other protease inhibitors, are highly expressed in the esophagus and associated with FA on a 

genome-wide level[71]. Intriguingly, the SERPINs are among the most dysregulated 

esophagus-specific protein families in EoE[166]. Similarly, the serine protease inhibitor 
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Kazal-type 7 (SPINK7) is important for normal epithelial differentiation. SPINK7 is lost in 

the epithelium of EoE patients, and experimental manipulations of SPINK7 have shown that 

it plays a homeostatic role in maintaining barrier function and allergic inflammatory 

responses[167]. Together, these results identify mammalian-encoded proteases, and protease 

inhibitors, and integral components of normal esophageal epithelial barrier function and 

immune responses, and emphasize the role of both mechanisms in EoE pathogenesis (Fig. 

2AB)[168].

A failure of barrier integrity—An additional shared feature of type 2 inflammatory 

diseases, whether they be of the skin, gastrointestinal (GI) tract, or airway, is an impairment 

of epithelial barrier integrity [169]. When this important barrier is disrupted, immune 

activating microorganisms and antigens can gain access to body’s immune system, with 

resulting inflammatory responses. The GI tract is one of the best studied of the mucosal 

sites, and is unique in that it is one of two organ systems (along with the lungs) that has 

evolved to facilitate biologic interactions with the external world. Consequently, the large 

surface area of the GI tract is charged with absorbing essential minerals and nutrients while 

being simultaneously exposed to inert compounds, allergens, toxins, commensal organisms, 

and pathogens.

As a result of this complicated task, the GI tract has evolved physical, biochemical, and 

immunologic barriers between the internal and external environment[76]. Epithelial cells of 

the GI tract express various intercellular junctions (apical tight junctions, subjacent adherens 

junctions, and desmosomes) all of which control the absorption of fluid and solutes while 

impeding access of pathogens and other harmful molecules[170]. In addition, biochemical 

adaptations (such as mucus, and antimicrobial peptides) confer broad-spectrum 

antimicrobial properties to the epithelium[170]. Finally, the human GI tract is home to one 

of the highest densities of immune cells in the entire body which must identify potentially 

harmful stimuli and mount a protective response [171].

When these adaptations fail, the results can be catastrophic. One of the best examples of this 

comes from our understanding of inflammatory bowel disease where an overwhelming 

immune response to normally commensal microbes results in significant morbidity and 

mortality [172]. However, defects in barrier function are characteristic of the allergic 

manifestations, where microbial exposure activates the innate immune system, and 

subsequent TH2 responses can develop against otherwise inert antigens. For example, AD is 

characterized by defects in filaggrin (a filament-associated epidermal differentiation 

complex protein essential for regulation of epidermal homeostasis) [173], desmosomal 

proteins[174,175], and tight junction proteins[176], while disruption of both epithelial tight 

and adherens junctions is characteristic of asthma[177].

Consistent with epithelial barrier dysfunction being a common feature of allergy, genes and 

molecules important for epithelial integrity (including CRISP3, CLDN10, DSG1, and FLG) 

have been linked to EoE in patients and disease models [167,178,179]. For example, it has 

been noted that patients with EoE have reduced levels of DSG1, an intercellular adhesion 

molecule that is important for maintaining suprabasal epithelial integrity, as compared with 

controls[180]—a defect which is also observed in AD[174,175]. Treatment of EoE with 
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topical steroids results in normalization of DSG1 expression, suggesting a central role in the 

barrier dysfunction observed in EoE[181]. Patients have also been identified with 

homozygous mutations in DSG1, and the resulting severe allergic phenotype includes 

eosinophilic esophageal inflammation[174,175]. Mechanistically, deletion of DSG1 in 

cultured epithelial cells results in a transcriptional phenotype similar of EoE biopsies [180]. 

While IL-13 treatment or overexpression of calpain 14 (a protease discussed above) reduces 

DSG1 expression in epithelial cells and results in impaired barrier function[64,180,182]. 

Together, these observations identify epithelial barrier dysfunction as a central feature of 

EoE pathology, that is common to the other allergic manifestations (Fig. 2C).

Promiscuity of type 2 inflammatory responses—An additional mechanistic question 

related to the clinical associations between EoE and the other allergic manifestations is 

whether there is an additive effect of existing type 2 inflammation on the subsequent 

development of food-specific TH2 cell responses. This effect could contribute to the 

progression of the allergic march in a manner that is complementary too genetic and 

environmental factors. Perhaps the best understood example of this phenomenon is the 

increased likelihood of allergic sensitization that occurs when the immune system is exposed 

to an antigen via inflamed skin, such as that seen in atopic dermatitis. In this case, the 

resulting inflammatory milieu of a primary skin defect promotes the development of specific 

T- and B-cell responses, and subsequent allergic disease. This mode of sensitization is 

certainly relevant to IgE-FA and respiratory allergy, as well as EoE (Fig. 2D)[14]

However, there is also evidence to suggest that systemic allergic inflammation could act as 

an adjuvant for the development of TH2 cell responses. Basophils are one potential 

mechanism for this effect as they are potent innate sources of IL-4, and are recruited to 

lymph nodes quickly after exposure to infectious or allergic stimuli where they cooperate 

with DCs to promote TH2 cell development[183]. What is particularly notable about 

basophils however is that their number in the blood in the steady-state, and their recruitment 

to lymph nodes after allergen exposure, are both directly related to serum IgE levels in an 

antigen-independent manner [84,184]. Thus, elevated IgE levels as a result of multiple 

factors could potentiate the subsequent development of basophil-facilitated TH2 responses at 

other tissue sites, including the esophagus [185]. While these observations offer preliminary 

insights into immunologic mechanisms by which the presence of allergic inflammation at 

one site may potentiate the development of additional allergic manifestations, additional 

basic and translational research is necessary to establish its relevance.

The role of “Type 2” targeted biologics in EoE management

Given the shared features of EoE and the other allergic manifestations, it is reasonable to 

consider the role of new, type 2-targeted biologics in EoE management. Indeed, biologic 

therapies have proved to be innovative therapeutics for various allergic diseases, and several 

of these agents have also been evaluated for use in EoE. The possibility to treat allergic 

patients with a single medication that is effective against multiple allergic manifestations 

may represent a reality for the future of allergy care. Here we review biologics that target 

immunologic pathways that are common to multiple allergic manifestations including EoE.
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IL-5-targeted therapies—IL-5, integral for multiple facets of eosinophil biology, and has 

perhaps been the most widely studied target for treatment of EoE. Studies have primarily 

focused on mepolizumab, a humanized monoclonal antibody currently approved for the 

treatment of asthma and for other hypereosinophilic syndromes including eosinophilic 

granulomatosis withpolyangiitis[186–188]. Initial murine studies using IL-5 targeted therapy 

demonstrated promising results with significant reductions in airway inflammation/

hyperresponsiveness, airway eosinophilia and reduced response to methacholine[189–191]. 

Use of mepolizumab for EoE was initially openly studied in a small phase 1-2 study of 

adults that found significant reductions in esophageal eosinophilia and clinical symptoms in 

the treatment group[192]. These results were not replicated, however, in prospective, 

randomized, double-blind placebo-controlled trials (RDBPCT) including one adult study in 

which both the histologic and symptom-based end points were not reached[193]. In the 

pediatric RDBPCT trial, only 8.8% of patients reached the pathologic primary end point, 

with no significant improvement in clinical symptoms [194].

Other IL-5 inhibitors studied in the treatment of EoE include Benralizumab and Reslizumab, 

both currently approved for use in eosinophilic asthma in adults, with additional approval for 

use of Benralizumab in adolescents [188]. While no specific RDBPCTs using Benralizumab 

(a IL-5 receptor antagonist) for EoE exist to date, significant histologic and symptomatic 

improvement was demonstrated in patients with hypereosinophilic syndrome involving the 

gastrointestinal tract, whereby depletion of gut tissue eosinophilia was demonstrated[195]. 

In the randomized placebo-controlled trial of Reslizumab, involving a large cohort (n=226) 

of children with EoE, a significant reduction in peak esophageal eosinophils was positively 

achieved[196]. Specifically, compared to the 24% reduction demonstrated in the placebo 

group, those treated with Reslizumab demonstrated a 59-67% reduction in peak eosinophil 

counts, however, no significant differences in patient symptoms or physician global 

assessment was found between groups. Given the overall mixed nature of these data, further 

studies using targeted IL-5 therapy are needed.

IgE-targeted therapies—Omalizumab, a humanized mouse anti-IgE monoclonal 

antibody currently used in the management of asthma and chronic urticaria[184,197,198], 

has also been studied for use in EoE with variable outcomes. In a 12-week open label study, 

33% of patients who underwent omalizumab therapy achieved the study’s pathologic end 

point in pathologic reduction of esophageal eosinophils, with nearly half of these patients 

experiencing symptomatic improvement[199]. Similar to the anti-IL-5 studies, results were 

unable to be replicated in an RDBPCT of mostly adults with EoE, where no significant 

difference in EoE-related symptoms or esophageal eosinophils was observed between those 

in the treatment vs placebo groups[200]. These negative results could indicate that IgE is not 

required for EoE pathogenesis. However, in the open label study, omalizumab-induced 

remission of EoE was limited to subjects with low peripheral blood absolute eosinophil 

counts, which may suggest specific utility in a subset of patients, though further studies are 

needed.

IL-13 and IL-4-targeted therapies—Three additional RDBPCTs involving biologic 

therapies targeted towards the treatment of EoE should be mentioned. These include two 
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studies targeting IL-13, an integral TH2 cytokine secreted by active eosinophils and 

necessary for eotaxin-mediated eosinophil recruitment, among other functions[7,201]. The 

first study involved 23 adult patients with EoE treated with the monoclonal IgG1 anti-IL-13 

antibody, QAX576[202]. Although the primary endpoint of reduced peak eosinophils was 

not reached, mean eosinophil count was significant reduced in the treatment group compared 

to controls. Additionally, in the QAX576 group, several EoE-relevant transcription markers 

(eotaxin-3, periostin and markers of mast cells) were improved. In the second study, adult 

patients who underwent 16-week treatment with RPC4046, a humanized IgG1 kappa anti-

IL13 antibody showed improvement in EoE features, including improvement in clinical 

symptoms, clinician’s global assessment of disease severity, and histology, with a significant 

decrease in esophageal eosinophils compared to those receiving placebo[203]. Finally, a 

single study evaluating the utility of Dupilumab, a human anti-IL-4 receptor alpha 

monoclonal antibody that inhibits signaling both of IL-4 and IL-13, and currently approved 

in the treatment of adult severe atopic dermatitis, was also conducted in patients with EoE. 

In this phase 2 RDBPCT involving multiple clinical centers, adults with EoE in the 

treatment group were found to have significant improvement in comprehensive histologic 

evaluation, including significant reduction in peak esophageal eosinophils and in symptoms, 

compared to the placebo group[204]. Together, these studies suggest IL-13 (and potentially 

IL-4) as targets for EoE therapeutics, with the potential that future studies could evaluate 

IL-13 as a target for atopic diseases such as asthma and AD, specifically in patients with 

comorbid EoE diagnosis.

Conclusions and clinical implications

In sum, evidence suggests that EoE is a primarily allergic disease, that is closely associated 

with AD, IgE-FA, asthma, and AR. While the relationship between these conditions is likely 

the result of shared genetic, environmental, and immunologic features, the details of these 

relationships continue to be elucidated. For example, there is likely a subset of patients who 

are significantly predisposed to develop EoE as a result of their genetics alone (Fig. 3A). 

However, others may require contributions from their environment and/or concurrent type 2 

inflammation at sites other than the esophagus to potentiate EoE development (Fig. 3B,C). 

Future studies must focus on establishing the relative contributions of these “allergic 

determinants” to EoE development, with particular focus on the immunologic mechanisms 

that link one allergic manifestation to the development of another.

When considering the pathophysiology of EoE and the other allergic manifestations, a 

model emerges that can place EoE in immunologic and clinical context. In this simplified 

model, a foreign protein is exposed to the immune system as a result of a barrier defect such 

as AD (Fig. 4A). Upon exposure, there are two broad opportunities for tolerance—one at the 

point of the T cell, and one at the point of the B cell (Fig 4B). Should both of these checks 

fail, the individual develops an IgE-mediated disease such as AR, or IgE-FA (Fig. 4C). 

Individuals where allergen-specific TH2 cell response form, but B cell tolerance is 

maintained (or develops over time such as the case with children who “outgrow” IgE-FA), 

may still be at risk for developing a primarily T cell-mediated disease such as EoE (Fig. 4D). 

There is some precedent for such discordance between allergen-specific T and B cell 

responses, as food allergen-specific IgE and basophil activation correlate with clinical IgE-
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FA, while presence of allergen-specific TH2 cells do not[205]. This model also provides a 

potential explanation for the limited utility of skin prick testing in EoE[15,138], as food-

specific T cell responses can exist in the absence of circulating food-specific IgE. Further, a 

natural extension of this logic suggests that the ability to measure food-specific T cell 

responses may aid in the identification of EoE-causal foods[206]. Finally, there are mixed 

IgE/T cell-mediated conditions such as asthma (Fig. 4E). While this model is useful to 

broadly categorize the relationship between the allergic manifestations, the authors are the 

first to acknowledge that EoE subtypes may exist that result from a mixed, IgE/T cell-

mediated mechanism. None the less, the prevailing view at this time is that IgE may 

contribute, but is not required for EoE pathogenesis in most cases[207].

From a clinical stand point, early diagnosis and institution of an effective treatment regimen 

is paramount in preventing long-term sequelae of EoE [208]. In 2018, the Updated 

International Consensus Criteria for EoE were published, establishing important changes in 

screening methods for patients suspected to have EoE [209]. Given the clinical associations 

between EoE and the other allergic manifestations, the use of allergic history in evaluating a 

patients risk for EoE is an attractive consideration[210]. It is reasonable that family or 

personal history of a preexisting allergic disease should increase the suspicion for EoE, as it 

has been reproducibly demonstrated across multiple studies that individuals with EoE have a 

high prevalence of allergic comorbidity. The relationship between IgE-FA and EoE seems to 

be particularly strong. Thus, physicians should suspect EoE in patients with chronic 

symptoms of esophageal dysfunction, especially in those with personal history of a 

significant atopic burden, and with particular emphasis on current or prior IgE-mediated 

food allergy. Finally, physicians should be vigilant about screening for symptoms of EoE in 

patients undergoing immunotherapy for IgE-FA. By continuing to elucidate the clinical and 

pathophysiologic relationship between these conditions, we will have the best chance of 

identifying and developing new preventative and therapeutic approaches that are common 

among EoE, and the other allergic manifestations.
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CAPN14 calpain 14

OIT oral immunotherapy

RDBPCT randomized, double-blind placebo-controlled trial

H. pylori Helicobacter pylori

TH T helper

IL interleukin
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Fig 1. 
Frequency of allergic diseases in patients with eosinophilic esophagitis from 2015-2019 

studies. Prevalence rates shown in parentheses. [212842-48]
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Fig 2. 
Model of allergy development. The epithelium (whether it be the airway, skin, or GI tract) is 

constantly exposed to protease and non-protease allergens (A). Exogenous protease 

exposure, up-regulation of endogenous proteases, and down-regulation of protease inhibitors 

is associated with impaired barrier integrity (B). Breakdown of the epithelial barrier allows 

allergen entry, and causes secretion of alarmin cytokines including IL-25, IL-33, and TSLP 

that recruit and activate innate lymphoid cells (ILC) and granulocytes (C). Innate cells are 

potent sources of type 2 cytokines that can help to activate naive dendritic cells (DC) to 

process antigen, and promote development of type 2 helper T (TH2) cell responses (D). TH2 

cells can home back to the site of inflammation via up-regulation of specific chemokine 

receptors and integrins, or enter the circulation along with allergen-specific IgE-producing 

plasma blasts to exert effects at distant tissue sites (E).
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Fig 3. 
Factors underlying the development of EoE. Cumulative influence of an individual’s 

genetics (A), environment (B), and existing type 2 inflammation (C) on risk of EoE 

development.
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Fig 4. 
Simplified model of the pathologic relationship between EoE and the other allergic 

manifestations. Allergy often is initiated at a site of barrier defect such as is the case in 

atopic dermatitis (AD) (A). There are two broad checkpoints at which antigen-specific 

activation or tolerance can occur: the T cell and the B cell (B). Should T and B cell tolerance 

fail, an IgE-mediated disease such as IgE-mediated food allergy (IgE-FA) or allergic rhinitis 

(AR) ensues (C). In the presence of B cell tolerance, allergen-specific T cells can cause 

eosinophilic esophagitis (EoE) (D). Mixed IgE/T cell-mediated disease can also occur, such 

as is the case with asthma (E).
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Table 1.

Summary of studies showing the frequency (and odds) of allergic diseases in patients with eosinophilic 

esophagitis between 2015-2019.

Author/Year[Ref] No.
EoE
Patients

Population AR Asthma AD IgE-FA

Dellon et al. 2015 [45] 81 Adults 62% 27% 6% 43%

Leung et al. 2015[46] 23 Children 57% 57% 30% 30%

Peterson et al. 2015[47] 4,423 Both - OR: 4.0 OR: 3.0 -

Duffeyet et al. 2016 [48] 4,009 Both - OR: 3.95 - -

Gonzalez-Cervera et al. 2017[21] 53,542
a Both OR: 5.09 OR: 3.01 OR: 2.85 -

Hill et al. 2017[28] 1,795 Children - - - 68%

Capucilli et al. 2018[49] 428 Children 60% OR 7.1 60% OR: 5.2 18% OR: 3.1 -

Chehade et al. 2018[50] 705 Both 60% 45% 46% 67%, 27%
b

Leigh et al. 2019 [51] 950 Adults 70% 36% 14% 24%

a
Data from meta-analysis report

b
Rate of FA-anaphylaxis, specified

Abbreviations: EoE, eosinophilic esophagitis; AR, allergic rhinitis; AD, atopic dermatitis; IgE-FA, IgE-mediated food allergy; OR, odds ratio.
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