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Abstract

Purpose—Diffusion encoding with asymmetric gradient waveforms is appealing because the 

asymmetry provides superior efficiency. However, concomitant gradients may cause a residual 

gradient moment at the end of the waveform, which can cause significant signal error and image 

artifacts. The purpose of this study was to develop an asymmetric waveform designs for tensor-

valued diffusion encoding that is not sensitive to concomitant gradients.

Methods—The “Maxwell index” was proposed as a scalar invariant to capture the effect of 

concomitant gradients. Optimization of “Maxwell-compensated” waveforms was performed in 

which this index was constrained. Resulting waveforms were compared to waveforms from 

literature, in terms of the measured and predicted impact of concomitant gradients, by numerical 

analysis as well as experiments in a phantom and in a healthy human brain.

Results—Maxwell-compensated waveforms with Maxwell indices below 100 (mT/m)2ms 

showed negligible signal bias in both numerical analysis and experiments. By contrast, several 

waveforms from literature showed gross signal bias under the same conditions, leading to a signal 

bias that was large enough to markedly affect parameter maps. Experimental results were 

accurately predicted by theory.

Conclusion—Constraining the Maxwell index in the optimization of asymmetric gradient 

waveforms yields efficient diffusion encoding that negates the effects of concomitant fields while 

enabling arbitrary shapes of the b-tensor. This waveform design is especially useful in 

combination with strong gradients, long encoding times, thick slices, simultaneous multi-slice 

acquisition and large FOVs.
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Introduction

Diffusion-weighted magnetic resonance imaging employs magnetic field gradients to 

sensitize the signal to the diffusive motion of signal-carrying spins. The gradients are 

assumed to be linear in space, but in practice, they are accompanied by so-called 

concomitant gradients, also referred to as Maxwell terms1. In spin-echo sequences, 

diffusion-weighting is most commonly achieved with an identical pair of pulsed field 

gradients on either side of the refocusing pulse. This elegant symmetry ensures that the 0th 

moment of the concomitant gradients caused by the first pulse is cancelled by the second 

pulse. Although the desired gradient waveform will be slightly perturbed by the concomitant 

gradients, they are too small to have a relevant impact on the b-value2 and their 0th moment 

will be zero. They can therefore be safely ignored.

In contrast to the symmetric case, compensation of concomitant gradients is not guaranteed 

for asymmetric gradient waveforms. Instead, asymmetric waveforms may cause a spatially 

dependent residual gradient moments at the end of the encoding. A residual moment causes 

a shift in k-space that may manifest as through-slice dephasing, image blurring2, T2*-

relaxation3, and signal-dropout4, all of which reduce the accuracy of quantities or imaging 

biomarkers estimated from the data. Despite the potential problems, asymmetric waveforms 

are an appealing alternative to symmetric designs because of their superior efficiency. For 

example, asymmetry can be exploited in experiments that yield encoding periods of unequal 

duration (asymmetric timing) where gradients for diffusion encoding can be engaged during 

all of the available time, rather than inserting periods where the gradients are turned off5,6. 

This facilitates a categorical improvement of the encoding efficiency (encoding strength per 

unit time) and can be used to reduce echo-times and thus improve the signal to noise ratio 

(SNR). Moreover, asymmetric designs can also be used to reduce eddy-currents7, enable 

motion and acceleration compensation8 and facilitate pore shape estimation9,10.

Concomitant gradients are a well-known pitfall for applications that rely on strong gradients, 

and their effects have been described in several contexts1,2,4,11–15. Two strategies have been 

applied to address the effects of concomitant fields in the context of diffusion-weighted 

imaging. The first is to correct the error by calculating the concomitant gradients at some 

location in space and subtract them from the desired waveform2,4. This approach corrects 

the error in a single position in space, but data acquired at some distance from the selected 

point may still suffer from the error. The second strategy is to design waveforms that can be 

asymmetric but where the gradient moment from the concomitant gradients match on both 

sides of the refocusing pulse, or so-called waveform reshaping16. This approach has been 

applied for linear diffusion encoding (along a single spatial direction), however, it does not 

generalize to single-shot diffusion encoding along multiple directions.

We refer to single-shot diffusion encoding along multiple spatial directions as “tensor-

valued” since it cannot be described by just a b-value and a direction vector, but is instead 

described by a b-tensor that also captures the shape of the encoding17–20. Tensor-valued 

encoding can probe features of the tissue microstructure that cannot be probed by 

conventional encoding alone21–29, e.g. microscopic anisotropy, orientation coherence and 

isotropic heterogeneity of tissue30. It can also inform biophysical models31–33. Waveforms 
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that yield tensor-valued encoding have been proposed in both symmetric and asymmetric 

variants34–37. Recently, Sjölund et al.5 proposed a numerical optimization technique that can 

generate arbitrary b-tensor shapes with asymmetric waveforms that enabled a significant 

reduction of encoding times and improved SNR compared to previous designs.

In this work we propose a waveform design that negates effects of concomitant fields while 

enabling arbitrary shapes of the b-tensor. We propose the scalar Maxwell index as a cost 

function for minimization during waveform optimization and show that Maxwell-

compensated waveforms do not suffer errors due to concomitant gradients.

Theory

Approximation of concomitant gradients

The Maxwell equations dictate that linear magnetic field gradients, such as those used for 

diffusion encoding, are accompanied by spatially dependent concomitant gradients11. The 

concomitant gradients depend on the main magnetic field (B0) and the desired (subscript D) 

gradient waveform

gD(t) = R [g1(t) g2(t) g3(t)]T = [gx(t) gy(t) gz(t)]T, Eq. 1

where R is a rotation matrix that determines how the three-dimensional waveform shape 

(g1,2,3) is translated to the physical gradient axes (gx,y,z). To abbreviate the notation, we will 

only use the latter format, but we note that all subsequent expressions depend on R even if 

not explicitly stated. The concomitant (subscript C) gradient waveform (gC) can be 

approximated with an expansion in B0 at a given position (r = [x y z]T, z-axis is parallel 

with B0)1,11, according to

gC(t, r) = GC(t)r, Eq. 2

where the concomitant gradient matrix is given by

GC(t) ≈ 1
4B0

gz
2(t)  0 

  −2gx(t)gz(t)

 0 
  gz

2(t) −2gy(t)gz(t)

−2gx(t)gz(t) −2gy(t)gz(t) 4gx
2(t) + 4gy

2(t)

. Eq. 3

The actual (no subscript) gradient waveform, experienced by the spins, will not be the 

desired waveform, but rather the sum of the desired waveform and the concomitant 

waveform

g(t, r) = gD(t) + gC(t, r) . Eq. 4
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Errors due to concomitant gradients may appear when the actual gradient waveform is not 

balanced, meaning it has a non-negligible 0th moment at the time of the readout. This causes 

a shift in k-space. To capture the size of the k-space shift independent of the location we 

construct a concomitant moment matrix

K = γ
2π∫

0

τ

h(t) ⋅ GC(t)dt, Eq. 5

where γ is the gyromagnetic ratio, and τ is the duration of the diffusion encoding. The sign 

function h(t) = (−1)j(t) represents the spin-dephasing direction and assumes values of 1 or −1 

for each encoding period j(t) ∈ ℕ, such that neighboring periods—separated by a refocusing 

pulse—have opposite signs. In this work we only consider spin-echo sequences, but this 

convention provides a straightforward generalization to experiments with an arbitrary 

number of refocusing pulses.

The residual 0th moment vector (k) is the integral of the actual gradient waveform at any 

given position, according to

k(r) = γ
2π∫

0

τ

h(t) ⋅ g(t, r)dt  = Kr
If balanced gD

, Eq. 6

which can be simplified to the expression on the right-hand side if the desired waveform is 

balanced, i.e., if the desired 0th moment kD = ∫ 0
τ h(t) ⋅ gD(t)dt is zero. Figure 1 visualizes the 

desired and concomitant gradient waveforms at multiple positions along with the resulting 

residual moment vectors. At the end of the gradient waveform, the residual 0th moment (k) 

along an arbitrary direction (n, unit vector) is a scalar that carries information about the local 

shift in k-space at position r, according to

k(n, r) = nTKr . Eq. 7

In summary, concomitant gradients are proportional to the square of the gradient amplitude 

and inversely proportional to the main magnetic field strength (Eq. 3). The residual moment 

caused by concomitant gradients has a non-trivial dependency on rotation and spatial 

position.
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Signal error and artifacts caused by concomitant gradients

Several spatially varying artifacts may manifest when k ≠ 0. For simplicity, we will describe 

the relevant effects for an ideal spin-echo sequence with rectangular slice profiles and echo-

planar imaging (EPI) readout; these are slice dephasing and blurring2,13 as well as T2*-

weighting3.

Slice dephasing is caused by a residual moment along the slice encoding direction (ns, unit 

vector normal to the slice plane), where the shift is kS(nS, r) = nS
TKr (Eq. 7). Assuming 

approximately linear phase dispersion within each voxel12 and a rectangular slice profile2, 

the slice attenuation factor (AFS) is given by

AFS(nS, r) = sinc(nS
TKr ⋅ T) , Eq. 8

where T is the slice thickness. Shifting the echo within the readout plane incurs blurring, as 

information about high spatial frequencies is shifted outside of the readout window. For EPI, 

any shift in the readout plane also incurs a spatially dependent T2*-weighting, whenever the 

intensity-generating readout is performed at different time than at the time of the spin-echo 

echo3. This effect is most prominent for shifts along the phase direction due to the slower 

readout speed in that direction. The residual moment along the phase encoding direction 

(nP) is given by kP(nP, r) = nP
TKr (Eq. 7). Assuming negligible T2*-relaxation during the 

relatively rapid readout of each k-space line, the attenuation factor (AFP) can be 

approximated by the echo-shift in relation to the readout trajectory

AFP(nP, r) = exp −
nP

TKr
Δk ⋅ Δt

T2*
, Eq. 9

where Δk = W/FOVP is the inverse distance between two acquired k-space lines, where W is 

the parallel imaging factor and FOVP is the field of view in the phase direction and Δt is the 

time between the acquisitions of two consecutive k-space lines. The total attenuation factor 

from both dephasing and T2*-weighting is the product

AF(nS, nP, r) = AFS(nS, r) ⋅ AFP(nP, r) . Eq. 10

We conclude that spatially dependent signal errors can be caused by concomitant fields and 

will manifest as deleterious signal attenuation (AF < 1). This attenuation depends on the 

waveform and the T2* of tissue as well as on imaging parameters such as slice position, 

angulation, in-plane acceleration, bandwidth and slice thickness.

Signal bias from diffusion-weighted images

In simulations we can calculate the relative signal bias as AF − 1 where the attenuation 

factor can be calculated independent of the effects of diffusion-weighting (Eq. 10). By 

Szczepankiewicz et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contrast, in practical experiments the estimation of bias may be conflated with the diffusion 

weighting. The two effects can be separated by comparing a candidate waveform to a 

reference waveform that is not affected by concomitant gradients; all other variables kept 

equal. In a substrate that exhibits purely Gaussian diffusion, it is enough to compare the 

signal across identical b-values (and imaging parameters) to remove the effect of diffusion 

and relaxation weighting and retain only effects caused by the concomitant gradients. More 

generally, however, in the presence of microscopic or macroscopic diffusion anisotropy, the 

encoding must be matched with respect to the b-tensor. The b-tensor is calculated from the 

gradient waveform, according to17,19

B =∫
0

τ

q(t)q(t)Tdt, Eq. 11

where the dephasing q-vector is

q(t) = γ∫
0

t

h(t′) ⋅ gD(t′)dt′, Eq. 12

and the b-value is simply b = Tr(B). Notably, this definition ignores the concomitant 

gradients because they have a negligible effect on the b-tensor2. With matching b-tensors for 

a given waveform (i) and its reference (ref), the relative signal bias can be estimated by 

comparing the two, according to

SB =
Si(B)
Si(0) ⋅

Sref(0)
Sref(B) − 1, Eq. 13

where negative values of the relative signal bias reflect that signal is lost (AF < 1). Here, we 

do not impose the equality Si(0) = Sref(0) since this condition may be violated if the baseline 

signal differs across acquisitions, e.g. due to amplifier gain recalibration. We note that this 

estimation assumes that other effects—that also depend on the exact shape of the waveform

—are negligible. Such effects include diffusion time38–40, exchange41, flow42, and eddy-

currents7.
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Methods

Maxwell index

We seek a gradient waveform gD for which K = 0 independent of the waveform rotation so 

that the signal bias is negligible. We propose to achieve this condition by minimizing the 

“Maxwell index” (m), herein defined as

m = (Tr(MM))
1
2 , Eq. 14

where

M =∫
0

τ

h(t)gD(t)gD
T(t)dt . Eq. 15

We motivate this construct by noting that both M and K comprise the same self-squared and 

cross-terms found in gD(t)gD
T(t), such that nulling the elements of M and/or K would satisfy 

our aim. In other words, K = 0 if ∫ 0
τ h(t)gi(t)g j(t)dt = 0 for all axis combinations and 

waveform rotations. In the special case where the waveform is a one-dimensional trajectory 

(g1D), this problem has a simple solution because K = 0 when ∫ 0
τ h(t)g1D

2 (t)dt = 0 independent 

of rotation16. However, in the general case, K is not invariant to rotation of the gradient 

waveform and is therefore a poor target for optimization. Instead, we propose to base the 

optimization target on m which is strictly positive and invariant to rotation. This means that 

for a given experimental setup, a waveform with a sufficiently small m will yield negligible 

effects due to concomitant gradients independent of rotation, FOV-orientation, and position 

within the FOV. Note that the diagonal elements of MM are strictly positive so that Tr(MM) 

is zero if and only if the eigenvalues of M are all zero, whereas Tr(M) may be zero when M 
has both positive and negative eigenvalues. See the Supporting Information for a more 

complete evaluation of m as the target for optimization.

Optimization of Maxwell-compensated waveforms

Tensor-valued diffusion encoding can be tailored to an arbitrary configuration of the imaging 

sequence and hardware capabilities using the numerical optimization framework by Sjölund 

et al.5. To achieve Maxwell-compensated waveforms (MCW) for arbitrary b-tensor shapes 

we introduce the Maxwell index (Eq. 14) as an additional constraint in the optimization 

framework. To allow arbitrary rotation of the waveform, we used the Euclidean norm and a 

heat dissipation factor of 1.

In principle, waveforms can be optimized at the temporal resolution employed by the 

gradient amplifier system (gradient raster time). However, with the current implementation, 
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the optimization time increases rapidly with the number of waveform samples (N). 

Therefore, the optimization was limited to a relatively coarse temporal resolution and linear 

interpolation was used to resample the waveform to the gradient raster time. Although this 

approach facilitates fast optimization of waveforms, linear interpolation does not perfectly 

preserve Maxwell-compensation. We circumvent this problem by predicting the signal bias 

after interpolation in a worst-case scenario and increasing the temporal resolution until the 

bias is negligible. For the purposes of this paper, the worst-case scenario is taken to mean 

that we use the actual imaging parameters of the sequence but considers the rotation of the 

waveform that gives the largest signal bias within a sphere with a diameter of 0.5 m 

(centered on the isocenter) and a T2* of 40 ms. Under these conditions, we consider a signal 

bias magnitude below 1 % (AF > 0.99) at the highest b-value to be negligible. Figure 2 

shows that N = 100 is a sufficient temporal resolution for the waveform optimization and 

that the optimization should constrain the Maxwell index to be less than approximately 1000 

(mT/m)2ms. To create additional headroom, we constrain all Maxwell-compensated 

waveforms to have m ≤ 100 (mT/m)2ms. We emphasize that these parameters can be tailored 

to any specific application and may therefore result in more or less conservative restrictions 

on the waveform design.

Experimental validation of Maxwell-compensated waveforms

To verify that Maxwell-compensated waveforms (MCW) yield negligible signal bias due to 

concomitant gradients we tested the waveforms by performing diffusion-weighted imaging 

in an oil phantom and in a healthy brain in vivo. To include a wide range of b-tensor shapes, 

we optimized waveforms that yield linear, planar and spherical b-tensor encoding (LTE, PTE 

and STE, respectively) at b-values up to b = 2.0 ms/μm2 while minimizing the encoding time 

(see Westin et al.17 for definitions of b-tensor shapes).

All experiments were performed on a 3 T MAGNETOM Prisma (Siemens Healthcare, 

Erlangen, Germany) with maximal gradient amplitude of 80 mT/m and maximal slew rate of 

200 T/m/s. We used a prototype pulse sequence developed in-house43, based on a diffusion-

weighted spin-echo sequence. The imaging parameters were TR = 4.5 s, FOV = 

220×220×175 mm3, slices = 35, resolution = 2×2×5 mm3, iPAT = 2 (GRAPPA), echo 

spacing = 0.65 ms, partial-Fourier = 7/8, and b-values of 0.1, 0.7, 1.4 and 2.0 ms/μm2. This 

setup yielded a separation between the first and second encoding periods of approximately 8 

ms during which the refocusing pulse is executed. Since the EPI-readout before the echo 

takes up more time than the selective excitation and navigators, the available time for 

diffusion encoding on either side of the refocusing pulse is asymmetric. For the current 

setup, δ1 =δ2 + 8 ms, where δ1 and δ2 are the durations of the encoding before and after the 

refocusing pulse. This timing asymmetry was used for all waveform optimization. TE was 

set to 102 ms, as determined by the waveform that required the longest encoding time to 

reach the maximal b-value. We found that all waveforms could be robustly executed on the 

scanner, without violating duty cycle or peripheral nerve stimulation limits, by limiting the 

maximal gradient amplitude to 75 mT/m and the maximal slew rate to 60 T/m/s in the 

optimization and execution.
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The reference waveform was a pair of symmetric trapezoidal gradient waveforms on either 

side of the refocusing pulse, i.e. the Stejskal-Tanner design44, also known as single diffusion 

encoding45 that yields linear tensor encoding (SDE-LTE). For comparison, we also included 

numerically optimized waveforms without compensation5 (NOW) that yield linear, planar 

and spherical b-tensor encoding (NOW-LTE, NOW-PTE and NOW-STE). Finally, we 

included double diffusion encoding in an orthogonal configuration that yields planar tensor 

encoding (DDE-PTE). The DDE-PTE waveform required the longest encoding time to reach 

the maximal b-value, and therefore defined the TE that was used for all experiments. Note 

that all waveforms were executed in the timing for which they were optimized to retain the 

concomitant gradient characteristics that they exhibit at a minimal TE (Figure 3).

We predicted that none of the experiments would cause peripheral nerve stimulation above 

the permitted level. The prediction was performed in an in-house implementation of the 

SAFE model46 and considered only the diffusion encoding gradient waveform and the EPI 

train.

A homogeneous oil phantom (cylinder with diameter 0.12 m, and length 0.20 m) was used to 

detect signal loss caused by concomitant gradients. Oil was chosen because it exhibits slow 

Gaussian diffusion (< 0.01 μm2/ms). Thus, signal attenuation due to diffusion encoding is 

small (in the order of 1 %) so that substantial signal attenuation can be attributed to 

concomitant gradient effects2. We investigate the signal as a function of encoding strength 

for different waveform rotations and estimate the relative signal bias (Eq. 13) by comparing 

it to the reference sequence. Since the effect is expected to depend on waveform rotation we 

use 16 rotations of the waveform for each b-value. The same rotations were used for each b-

value. We used axial slice orientation (nP = [0 1 0], nS = [0 0 1]) and placed the phantom so 

that the cylinder was approximately parallel to the main magnetic field. The FOV was placed 

so that the center of the outermost slices were at z-coordinates −25 and 125 mm. The FOV 

was shifted in this manner to measure at relatively large distances from the isocenter, 

because the magnitude of the concomitant fields increases with distance from the iso center.

Brain imaging was also performed in a healthy volunteer (male, age 38 y). The study was 

approved by the Regional Ethical Review Board (Lund, Sweden), and informed consent was 

obtained prior to participation. Each waveform was executed in 8, 12, 18 and 24 rotations for 

the four b-values, respectively. The diffusion encoding directions were generated by 

electrostatic repulsion on the half-sphere47,48. Each encoding direction corresponds to the 

symmetry axis of the b-tensors. Since spherical tensor encoding does not have a well-

defined symmetry axis, we assigned g1 (Eq. 1) to be the symmetry axis. An axial slice 

orientation was used, and the center of the FOV was placed in the plane of the isocenter (z = 

0), which coincided with the corpus callosum as seen in a mid-sagittal view. The center of 

the outermost slices covered z-coordinates −70 and 80 mm. The total scan time for all seven 

waveform designs was 36 min. Image volumes were corrected for motion and eddy currents 

in ElastiX49, using extrapolated references50.

To establish the size of the signal error that may occur if concomitant gradients are ignored, 

we investigate the impact on the diffusion-weighted signal as a function of b-value at 

multiple locations in the brain parenchyma. We manually defined regions of interest in the 
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cerebellum, posterior (close to the isocenter) and anterior corpus callosum, and in the 

superior white matter close to the cortex. To take the diffusion anisotropy into account, we 

compared the signal from non-compensated and Maxwell-compensated waveforms that 

yield identical b-tensors (Eq. 13). We also investigate the impact of concomitant gradients 

on parameter maps estimated by q-space trajectory imaging (QTI)17,19. The QTI model was 

fitted to data acquired with SDE-LTE combined with either compensated or non-

compensated variants of planar tensor encoding (MCW-PTE or DDE-PTE, respectively). We 

estimated parameter maps of mean diffusivity (MD), fractional anisotropy (FA)51, mean 

kurtosis (MK)52,53, as well as the microscopic fractional anisotropy (μFA) and mean kurtosis 

decomposed into the isotropic (MKI) and anisotropic (MKA) components17,22,25. The 

parameter bias caused by concomitant gradients in the non-compensated case was calculated 

as the difference in parameter values. To establish if the observed differences can be 

attributed to concomitant gradients, we predicted the error in the diffusion-weighted signal 

and QTI parameters by assuming that the signal from MCW-PTE was free from errors and 

multiplying it by the spatially-dependent attenuation factor estimated by Eq. 10 given the 

DDE-PTE waveform. Errors related to signal are presented as the signal bias (Eq. 13) and 

QTI parameter errors are presented as the difference.

We have modified the numerical waveform optimization5 to include Maxwell-compensation, 

and shared it at https://github.com/jsjol/NOW. We have also shared the SAFE peripheral 

nerve stimulation model at https://github.com/filip-szczepankiewicz/safe_pns_prediction, as 

well as tools for simulating and analyzing concomitant gradients and their effects as part of 

the multidimensional diffusion toolbox at https://github.com/markus-nilsson/md-dmri. These 

tools were implemented in Matlab (The MathWorks, Natick, MA, USA).

Simulated validation of Maxwell-compensated waveforms

To verify that Maxwell-compensated waveforms yield negligible signal bias due to 

concomitant gradients for a comprehensive set of rotations, we simulated the expected signal 

bias according to Eq. 10 and Eq. 13. The simulations used the same waveforms and imaging 

settings as the experiments. The worst signal bias within a sphere with a diameter of 0.2 m 

was calculated for three rotation modes. First, we investigated the effect of rotating the 

waveform assuming stationary axial slices. Second, the waveform was stationary but the 

FOV was rotated. Finally, both the waveform and FOV were rotated simultaneously but with 

independent rotation matrices. For each setup we use 104 random rotations to yield a 

distribution of signal biases. We used boxplots to visualize the distribution of signal biases 

for each waveform and rotation mode.

Impact of constraining the Maxwell index on encoding efficiency

Constraining the Maxwell index in the waveform optimization is associated with a reduced 

diffusion encoding efficiency compared to optimization where the effects of concomitant 

gradients are ignored. We investigated how the maximal b-value depends on the Maxwell 

index by optimizing waveforms where m was constrained to be below values in the interval 

1 to 105 (mT/m)2ms. Optimization was also performed without constraining the Maxwell 

index. Thus, the range between extremely conservative to entirely unconstrained Maxwell 

indexes was investigated. The optimization settings were the same as for waveforms used in 
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the experiments. The encoding efficiency was quantified in terms of the b-value that is 

achievable at a given constraint on the Maxwell index relative to the maximal b-value, b(m)/

max(b).

Since the Maxwell index reflects a balance of the time-integral of the gradients squared on 

both sides of the refocusing pulse, we also investigated how the efficiency depends on the 

encoding time asymmetry. The timing asymmetry was defined as |δ1 − δ2|/(δ1 + δ2). The 

impact was also gauged in terms of the additional encoding time necessary to achieve the 

same b-value as for the non-compensated waveforms. We report the cost in terms of the 

additional encoding time required in absolute terms (cabs = tMCW − tNOW) and relative terms 

(crel = cabs/tNOW) where t is the total duration of Maxwell-compensated (tMCW) and non-

compensated (tNOW) waveforms.

Results

Measurements of the diffusion-weighted signal in oil using the Maxwell-compensated 

waveforms appeared to be unaffected by concomitant gradients and had the same signal 

behavior as the reference sequence (Figure 3). At the highest b-value, the average signal bias 

across rotations (one standard deviation) was −0.1 (0.6), −0.2 (0.4) and −0.2 (0.5) in percent 

for linear, planar and spherical tensor encoding, respectively. By contrast, non-compensated 

waveforms yielded gross signal bias; the worst case was observed for DDE-PTE where some 

rotations exhibited a complete signal dropout (SB ≈ −100 %) at a distance of approximately 

75 mm from the isocenter. Figure 3 also shows that the effect increases with increasing b-

value, and that it introduces rotational variance even if the diffusion itself is perfectly 

isotropic. Overall, the phantom experiments consistently verified that the Maxwell index is 

an appropriate target for optimization to alleviate the effects of concomitant gradients, and 

that ignoring such effects may have a marked effect on the diffusion-weighted signal.

The effects of concomitant gradients were also investigated in the brain in vivo. Figure 4 

shows that non-compensated waveforms suffer a rotation dependent signal error that is large 

enough to affect the average signal, whereas the Maxwell-compensated waveforms exhibit 

no evident attenuation due to concomitant gradients. As in the oil, the effect depends on the 

rotation of the waveform and is larger for higher b-values. Therefore, the impact on 

parameters that correspond to the initial slope of S(b), such as the mean diffusivity, is likely 

smaller compared to parameters based on signal characteristics at high b-values, such as 

microscopic anisotropy and kurtosis parameters.

The diffusion-weighted signal and QTI parameter maps for Maxwell-compensated and non-

compensated waveforms are shown in Figure 5. The diffusion-weighted signal for DDE-PTE 

at b = 2 ms/μm2 is visibly affected by signal dropout, most prominent along the inferior-

superior direction, whereas MCW-PTE exhibited no such behavior. We emphasize that the 

top row of the figure only shows the signal maps for two rotations of the waveform, and that 

the artifacts produced by DDE-PTE take on different appearances depending on the rotation, 

as seen in the oil phantom where S(b) varies wildly depending on the waveform rotation 

(Figure 3). As expected, the differences in MD and FA were relatively small (see Supporting 

Information Figure S1), but gross parameter differences were observed in the μFA, MKA 
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(overestimated by 0.3 and 0.8, respectively) and MKI (underestimated by 0.8). The 

underestimation of MKI was severe enough to cause large regions in the parenchyma to 

exhibit negative values, which are not expected from the current experiments43. The 

measured and predicted differences show a remarkable similarity, indicating that the 

difference between signal and QTI parameters based on DDE-PTE and MCW-PTE is indeed 

primarily due to the prominent concomitant gradients created by DDE-PTE.

Simulations presented in Figure 6 show that the Maxwell-compensated waveforms can 

retain a negligible signal bias (magnitude is always below 1 %) due to concomitant gradients 

regardless of rotations of the waveform and/or FOV. By contrast, all non-compensated 

waveforms show a large variation of the bias depending on rotations.

The cost of imposing a constraint on the Maxwell index in the optimization of the 

waveforms is that the encoding efficiency, in terms of the achieved b-value per unit time, is 

reduced. Using the current premise, the efficiency was reduced by 7–23 %, depending on b-

tensor shape (Figure 7). This translates to an extension of the required encoding time to 

reach b = 2 ms/μm2 of approximately cabs = 1–6 ms or crel = 2–8 %. Furthermore, the 

efficiency depends on the sequence timing asymmetry, where equal timing on both sides of 

the refocusing pulse yields the highest efficiency.

Discussion

It is critical to consider signal errors and artifacts caused by concomitant gradients in 

diffusion encoding with asymmetric waveforms. We have proposed the Maxwell index as a 

target for waveform optimization and demonstrated that waveforms with Maxwell indices 

below approximately 100–1000 (mT/m)2ms exhibit negligible effects from concomitant 

gradients. This result generalizes to arbitrary rotations of the gradient waveform (encoding 

directions) and FOVs with arbitrary size and orientation. As such, the optimization is 

performed only once—under appropriate conditions—and will produce a waveform with 

negligible bias independent of how the FOV is placed and what diffusion encoding 

directions are used in any given subject. Additionally, we have presented a compact matrix 

formulation for the approximation of concomitant gradients for an arbitrary number of 

refocusing pulses and expanded the signal error prediction for slice selective spin-echo 

experiments to include the effect of T2*-relaxation.

Investigations of concomitant gradient effects revealed that the impact of concomitant 

gradients is large for several asymmetric gradient waveform designs proposed in literature. 

Most prominently, DDE in a single spin-echo can be used to showcase the gross errors that 

can appear due to concomitant gradients. Figures 3 and 5 show examples of massive signal 

loss in both a phantom and in the human brain. Although we cannot rule out that the signal 

in the brain depends on effects that are not captured by the b-tensor, we expect that diffusion 

time dependency, exchange and flow are negligible compared to the gross signal loss 

predicted by theory and measured for non-compensated waveforms. Thus, it is reasonable to 

attribute the differences in diffusion-weighted signal and parameter maps in Figure 5 to 

concomitant gradients caused by the DDE-PTE waveform. As such, MCW-PTE is a viable 

alternative to DDE-PTE, since it is both robust to concomitant gradient effects and more 
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efficient (shorter minimal TE for any given b-value). We stress that this issue with DDE is 

not present for imaging sequences where multiple refocusing pulses are used to make the 

diffusion encoding symmetric, such as in the double-spin-echo54.

Maxwell-compensated waveforms are compatible with existing approaches for alleviating 

the effects of concomitant gradients. For example, it is possible to subtract the concomitant 

waveform for a given position (e.g., center of the slice) from the desired waveform such that 

the actual waveform is closer to the desired waveform, as described by Meier et al.4. The 

drawback of this approach is that the correction holds only for a single point in space, 

whereas remaining parts of the slice still suffer some error that may be non-negligible. 

Another drawback is that such single-point corrections may be incompatible with techniques 

that excite multiple slices simultaneously55, although adaptions have been proposed56. 

Another approach is post-hoc correction where signal is divided by the predicted attenuation 

factor in Eq. 10. This approach is limited by its requirement for very detailed knowledge of 

the sequence design as well as the T2* of the tissue. Furthermore, if the error is so large that 

most of the signal is lost (Figure 3 and Figure 5) the reduction of SNR will be significant 

and unavoidable. Thus, we argue that Maxwell-compensated waveforms may be a preferable 

solution, especially for diffusion encoding at high gradient amplitudes and/or long encoding 

times57,58, imaging of organs in large FOVs, simultaneous multi-slice imaging59, super-

resolution methods that employ thick slices and/or techniques based on rotated/oblique 

imaging stacks60–63.

A special case of Maxwell-compensation can be achieved for waveforms that do not require 

rotation. For such a premise, it is enough to ensure that K = 0 (Eq. 5). This case is usually 

not useful since rotations are required to probe the orientation distribution function of 

anisotropic systems. However, for powder-samples (randomly oriented tissue) or for 

spherical tensor encoding, rotation of the encoding waveform may not be necessary38–40. In 

such cases we may exploit the symmetries in Eq. 5 to design asymmetric waveforms that are 

Maxwell-compensated for a single stationary rotation. An example of this design principle 

was presented by Teh et al.64 where cardiac diffusion imaging was performed with a 

waveform that was motion and acceleration compensated at the same time as it provided 

efficient spherical tensor encoding with K = 0. The benefit of using stationary waveforms for 

spherical encoding in combination with enclosing them in the cube rather than the sphere 

(max-norm vs. L2-norm5) will be investigated in future studies.

The drawback of Maxwell-compensation is a penalty to the encoding efficiency which 

manifests as a slightly longer encoding time. However, the penalty is rather small (1–6 ms), 

at least for the conditions used in this paper. Notably, the penalty grows with increasing 

timing asymmetry (Figure 7), although we note that this is true for symmetric designs too. 

Asymmetric designs that ignore concomitant gradients can be virtually independent of 

timing asymmetry, but the signal bias is expected to grow with increasing asymmetry.

The premise of this study is limited to that of brain imaging at a 3 T clinical MRI system 

with b-values up to 2 ms/μm2. As such, we do not cover other relevant scenarios in detail. 

For example, we assume a T2* of 40 ms to simulate tissue, which may not always be a 

representative. Thus, specific results of this study may not be immediately translatable to 
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other systems, sequence designs, and tissues. However, we have shared the theoretical 

framework, waveform optimization tools and analysis software in open source so that it can 

be used to develop and test waveform and experiment designs in other scenarios. The 

proposed methods and tools can also be used to decide if Maxwell-compensation is at all 

necessary, or if the premise allows for the use of non-compensated waveforms due to, for 

example, very small FOVs. Finally, we have shown that any waveform with m = 0 yields K 
= 0 in support of the Maxwell index as an optimization target (Supporting Information). 

However, a better target cannot be ruled out. For example, such a target could include higher 

order spatial terms of the concomitant gradients1 and/or encompass the effects of using 

asymmetric gradient coils4.

Conclusions

We proposed and demonstrated that the Maxwell index is a valid optimization target in the 

design of asymmetric gradient waveforms to yield negligible concomitant gradient effects. 

The design is applicable to arbitrary b-tensor shapes, sequence timing, and for any number 

of refocusing pulses larger than zero. The waveforms are Maxwell-compensated throughout 

the imaging volume independent of waveform rotation and FOV orientation. As such, this 

approach is especially relevant for diffusion imaging at high gradient strength, long 

encoding times, low main magnetic fields, large/oblique/off-isocenter FOVs, thick slices, 

and simultaneous multi-slice acquisition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. 
Desired gradient waveforms and their concomitant gradients at the three positions in the 

brain. Top row shows the desired gradient waveforms—non-compensated (left) and 

Maxwell-compensated (right) —and their moment vectors as a function of time. The 

intention is that the desired moment vector, kD, should be zero at the end of the diffusion 

encoding, which is a trivial condition to fulfil in the absence of concomitant gradients. 

However, concomitant gradients may cause a residual gradient moment that persists after the 

end of the diffusion encoding (red arrows). The size and direction of the residual moment 

vector depends on the position in space, increasing in magnitude further away from the 

isocenter. By contrast, the Maxwell-compensated waveforms are designed to have 

concomitant gradients that exhibit a negligible residual moment. The inset plots in the 

rightmost column show that the residual moment after the diffusion encoding is negligible. 

The three positions (r) evaluated in this example are—from top to bottom—[10 0 60] mm, 

[0 0 0] mm (isocenter) and [50 0 −80] mm.
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Figure 2 –. 
The signal bias (Eq. 13) depends on the Maxwell index constraint as well as the target b-

tensor shape. The plot shows the simulated bias in the worst-case scenario when using 

interpolated (black) and original (red) waveforms optimized at a temporal resolution of N = 

100 samples. It is clear that the interpolation worsens the Maxwell-compensation but does 

not elevate the signal bias beyond the tolerated level of −1 % (horizontal gray line). 

Furthermore, the signal bias becomes virtually independent of the Maxwell index when m is 

below approximately 100 (mT/m)2ms. This indicates diminishing returns for overly 

conservative optimization of m when the waveform must be interpolated in a later step. The 

median optimization time over 20 repeated optimizations for each m was between 2 and 30 s 

using an Intel Core i7-8750H.
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Figure 3 –. 
Diffusion-weighted signal in an oil phantom shows that non-compensated asymmetric 

gradient waveform designs exhibit gross signal bias (Eq. 13) due to concomitant gradients, 

whereas the Maxwell-compensated waveforms exhibit a negligible signal bias. The top row 

shows maps of the signal bias in coronal slices at the maximal b-value for the worst 

waveform rotation that was observed for each waveform type. The middle row shows the 

waveforms and timing used in the experiments. The bottom row shows the average signal in 

an ROI placed at z = 75 mm as a function of b-value for 16 rotations; broken red lines show 

the average reference signal ± two standard deviations. The signal bias is worst for DDE-

PTE, reaching approximately –100 % (AF ≈ 0) in a large part of the volume. The signal bias 

is also visible for remaining non-compensated waveforms, albeit to a lesser degree. By 

contrast, the Maxwell-compensated waveforms showed no sign of concomitant gradient 

effects. The inset plots in the bottom row show the estimated signal bias (SB) in the ROI at b 
= 2 ms/μm2 where horizontal black lines show the average signal bias across all rotations. 

All Maxwell-compensated waveforms had negligible signal bias and the distribution across 

rotations exhibited a variability that was similar to the reference sequence.
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Figure 4 –. 
Plots show the signal vs b-value for planar tensor encoding produced by non-compensated 

(DDE-PTE, black markers) and Maxwell-compensated waveforms (MCW-PTE, white 

markers). In the main plots, the signal is averaged over directions, whereas the inset plots 

show individual directions at b = 2 ms/μm2 where gray lines link signal pairs encoded with 

identical b-tensors (Eq. 11). At low b-values the two waveforms are similar, however at 

larger b-values, DDE-PTE suffers gross signal attenuation due to concomitant gradients. The 

effect is largest in the inferior and superior parts of the brain, i.e. the bias is largest along the 

z-axis. As expected from theory, the effect is negligible in the posterior corpus callosum 

because of its proximity to the isocenter.
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Figure 5 –. 
Diffusion-weighted data by non-compensated and Maxwell-compensated gradient 

waveforms shows that concomitant gradients can have a marked impact on signal and QTI 

parameters. The linear encoding used the Stejskal-Tanner design (SDE-LTE) in both cases, 

whereas the planar encoding was achieved by either non-compensated (DDE-PTE) or 

Maxwell-compensated (MCW-PTE) waveforms. The top row shows a comparison of the 

normalized signal (S2/S0) at b = 2 ms/μm2 for identical b-tensors (Eq. 11), as well as the 

signal bias (SB, Eq. 13) where Maxwell-compensated data is used as the reference. The 

signal bias reaches values below −60 %, i.e., concomitant gradients in DDE-PTE can cause 

most of the signal to be lost in large portions of the brain. Data acquired with Maxwell-

compensated waveforms showed no such artifacts. The impact of concomitant gradients on 

QTI parameters is shown as the difference between estimation based on non-compensated 

and Maxwell-compensated data. Generally, μFA and MKA are overestimated, and MKI is 

underestimated. This is expected since it is only DDE-PTE that is affected by concomitant 

gradients such that the divergence between the linear and planar encoding increases 

artificially22,30. Notably, the bias in MKI is severe enough to causes it to be negative in large 

portions of the brain. The measured and predicted signal bias, and parameter differences, 

were similar in both magnitude and spatial dependency, which indicates that they are caused 

primarily by concomitant gradients in DDE-PTE. The difference in MD and FA was 

relatively small since these parameters rely on data at relatively low b-values which is less 

affected by concomitant gradients (see Supporting Information Figure S1).
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Figure 6 –. 
Simulation of signal bias (Eq. 13) for Maxwell-compensated and non-compensated 

waveforms that yield linear (LTE), planar (PTE) and spherical (STE) b-tensor encoding. The 

boxplots show the distribution of signal bias under 104 random rotations of the waveform, 

FOV, or both; whiskers show extreme values, the box lines show 25, 50 and 75 percentiles. 

The simulated waveforms are identical to those used in the practical experiments (Figure 3) 

at b = 2 ms/μm2. The non-compensated waveforms suffer from significant rotation 

dependent signal bias. Notably, DDE-PTE exhibits the worst overall signal bias. Throughout 

all examples the Maxwell-compensated waveforms exhibit negligible bias, regardless of b-

tensor shape and rotation scheme; the simulation predicts that both the waveform and FOV 

can be arbitrarily rotated without discernible signal bias. The inset plots show a 

magnification of the bias for the Maxwell-compensated waveforms (y-axis covers the 

interval 0 to −1.5 %). The dotted line shows the level where 1 % of the signal is lost due to 

concomitant gradient effects.
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Figure 7 –. 
Introducing a limit on the Maxwell index reduces the efficiency of the diffusion encoding 

and the penalty depends on the timing asymmetry. The left plot shows that the impact on 

efficiency is independent of the Maxwell index for m below approximately 1000 (mT/

m)2ms. The absolute and relative impact on the encoding duration (cabs & crel) is stated for 

the experiment setup used in the practical experiments (δ1 = δ2 + 8 ms) at m = 100 (mT/

m)2ms. For completeness, the same penalty is 3.6 ms or 7.9 % (data not shown), for STE 

when constraining the gradient waveform within a cube with sides of length 2×75 mT/m 

(max-norm optimization5) and disallowing arbitrary waveform rotation. The right plot shows 

that the efficiency depends heavily on the encoding time asymmetry of the sequence. As 

expected, equal gradient duration on either side of the refocusing pulse yields the highest 

efficiency.
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