
Mesenchymal Stem Cells: from Regeneration to Cancer

Peishan Lia,b, Zheng Gonga,b, Leonard D. Shultzb, and Guangwen Renb,*

aThe Key Laboratory of Experimental Teratology, Ministry of Education and Department of 
Molecular Medicine and Genetics, School of Basic Medical Science, Shandong University, Jinan, 
Shandong, 250012, China

bThe Jackson Laboratory, Bar Harbor, ME 04609, USA

Abstract

Mesenchymal stem cells (MSCs) are multipotent tissue stem cells that differentiate into a number 

of mesodermal tissue types, including osteoblasts, adipocytes, chondrocytes and myofibroblasts. 

MSCs were originally identified in the bone marrow (BM) of humans and other mammals, but 

recent studies have shown that they are multilineage progenitors in various adult organs and 

tissues. MSCs that localize at perivascular sites function to rapidly respond to external stimuli and 

coordinate with the vascular and immune systems to accomplish the wound healing process. 

Cancer, considered as wounds that never heal, is also accompanied by changes in MSCs that 

parallels the wound healing response. MSCs are now recognized as key players at distinct steps of 

tumorigenesis. In this review, we provide an overview of the function of MSCs in wound healing 

and cancer progression with the goal of providing insight into the development of novel MSC-

manipulating strategies for clinical cancer treatment.
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1. Introduction

Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the potential to 

differentiate into diverse types of tissue cells, including osteoblasts, adipocytes, 

chondrocytes and myofibroblasts (Keating, 2012; Singer & Caplan, 2011). This type of 

tissue stem cell plays an essential role in tissue regeneration and closely interacts with cells 

of the immune system in the tissue microenvironment during repair from tissue damage (Le 

Blanc & Davies, 2015; Y. Shi et al., 2012; Uccelli, Moretta, & Pistoia, 2008). Recently, 

MSCs have also emerged as a new player in the tumor microenvironment, contributing to 
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tumor growth, metastasis and therapeutic resistance (Ridge, Sullivan, & Glynn, 2017; Y. Shi, 

Du, Lin, & Wang, 2017).

Cancer, regarded as “non-healing wounds” (Dvorak, 1986, 2015), is believed to take 

advantage of the regenerative functions of host cells to facilitate local cancer growth, 

resistance to therapy, and metastases to distant organs (Calvo et al., 2015; Krall et al., 2018; 

Sundaram et al., 2017). In this review, we discuss how MSCs participate in distinct stages of 

wound healing and tumor “wound” progression, and compare the functions and mechanisms 

of MSCs in these two pathological processes. Understanding how the tumor 

microenvironmental cues drive MSCs to regenerate tumor “wounds” will facilitate our 

deeper understanding of MSC biology in distinct steps of cancer progression, thereby 

supporting development of new cancer treatments that target MSCs.

2. Tumors are wounds that do not heal: comparison of wound healing to 

injury with wound healing in tumorigenesis

2.1 Wound healing response to injury

Upon tissue injury, a series of wound healing steps including inflammation, tissue 

proliferation and remodeling are successively initiated and highly coordinated by the adult 

tissue cells (Maxson, Lopez, Yoo, Danilkovitch-Miagkova, & Leroux, 2012). Blood clotting, 

or coagulation, occurs immediately after injury. This is achieved by platelet aggregation and 

clot formation from fibrinogen-converted fibrin and extracellular matrix (ECM) proteins. 

Blood clotting serves as the first barrier against blood and water loss as well as invading 

pathogens. After clot formation, an inflammation stage is initiated by neutrophil infiltration 

into the injury sites usually within a few hours but up to one day post injury, and is followed 

by the arrival of monocytes and mast cells one to two days later. The monocytes differentiate 

into macrophages, which persist long-term at the tissue sites until wound healing is 

complete. Myeloid cell migration is guided by chemotactic substances such as damage- or 

pathogen-associated molecular patterns (DAMPs or PAMPs), hydrogen peroxide (H2O2) and 

chemokines, which are released from the damaged tissues and surrounding stroma in 

response to injury and invading pathogens (de Oliveira, Rosowski, & Huttenlocher, 2016).

Migration of myeloid cells marks the beginning of the inflammation stage in wound healing 

from injury. Myeloid cells function to not only phagocytize the dead tissue cells or invading 

pathogens during the inflammation stage, but also further modulate the next stages of tissue 

proliferation and remodeling by releasing cytokines, chemokines and other trophic factors 

(Minutti, Knipper, Allen, & Zaiss, 2017). Along with myeloid cell infiltration, adaptive 

immune cells such as T lymphocytes are also recruited to the injury sites where they 

specifically target pathogens and release cytokines to further regulate inflammation, 

proliferation and tissue remodeling (Havran & Jameson, 2010; Keyes et al., 2016). In the 

absence of major infection, the inflammatory phase peaks at about two to three days post-

injury and gives way to the proliferative phase that lasts about two weeks. Proliferation of 

three major cell types including epithelial cells (re-epithelialization), mesenchymal cells 

(fibroplasia) and endothelial cells (revascularization or angiogenesis), occurs concomitantly 

in the proliferation phase. Through both autocrine and paracrine mechanisms, a plethora of 
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cytokines and trophic factors, such as epidermal growth factor (EGF), transforming growth 

factor beta (TGFβ), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) 

and vascular endothelial growth factor (VEGF), play essential roles in the acceleration of 

epithelial tissue re-growth, production of collagen and other ECM proteins and formation of 

new blood vessels (Guo & Dipietro, 2010). Following the proliferative phase, tissue 

remodeling continues from weeks to years depending on the wound type and size. During 

tissue remodeling, the disorganized collagen fibers formed during the proliferative phase 

will rearrange and align along tension lines. Wound contraction occurs in parallel with a 

reduction in the numbers of macrophages and fibroblasts and a reduction in blood vessels by 

apoptosis, which together achieve a successful healing process (Hinz et al., 2012).

2.2 Wound healing response to tumorigenesis

Tumors have long been regarded as wounds that fail to complete the normal three stages of 

wound healing (Dvorak, 1986). During early tumorigenesis, cancer cells are recognized by 

innate and adaptive immune cell-mediated host surveillance leading to apoptosis and/or 

necrosis. The dead tumor cells in turn release various DAMPs such as adenosine, high-

mobility group box 1 protein (HMGB1), annexins and calreticulin, which serve to initiate 

the inflammatory response followed by a cascade of events within the wound healing 

process (Hernandez, Huebener, & Schwabe, 2016). With tumor progression, the surrounding 

blood vessels become permeable which further triggers platelet and fibrin deposition, and, in 

turn, starts the program of inflammation, proliferation and ECM remodeling (Kreuger & 

Phillipson, 2016). As long as tumors are not eradicated by the host immune system or 

external therapies, the healing steps continue until the tumor burden exceeds the host’s 

capability to survive. An apparent difference between normal physiological wound healing 

and tumorigenesis is that the latter possesses one or multiple prolonged, uncompleted 

phases, and tumors can therefore be considered as an “overhealing wound” (Schafer & 

Werner, 2008).

Tumor progression is closely associated with the three phases of wound healing. The first 

phase, inflammation, a hallmark of cancer, is in fact a double–edged sword in tumor 

development and therapy responses. The innate and adaptive immune cells are 

phenotypically and functionally plastic depending on their resident microenvironment. Type 

1 immune cells are conventionally activated cells, such as “N1” neutrophils, “M1” 

macrophages and “Th1” or “Tc1” T cells. These cells are mainly considered to be 

tumoricidal and exert direct cytotoxic effects against tumor cells. In contrast, the 

alternatively activated type 2 immune cells function to promote distinct steps in cancer 

progression through release of multiple cytokines and chemokines (Gabrilovich, Ostrand-

Rosenberg, & Bronte, 2012; Nowarski, Gagliani, Huber, & Flavell, 2013). During the 

second phase, the proliferation phase, angiogenesis (revascularization) and desmoplasia 

(fibroplasia) coordinately support epithelial tumor growth (re-epithelialization) via a 

collection of growth factors, which are equally essential for wound healing. The third phase, 

tissue remodeling, completes the wound healing response but fails to be completed in the 

context of a tumor. However, many of the tissue remodeling activities that occur during 

wound healing, such as lysyl oxidase (LOX)-induced collagen crosslinking and matrix 

metalloproteinase (MMP)-mediated collagen rearrangement and alignment, have been 
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shown to be pivotal in tumor cell migration, invasion and metastasis, as well as in resistance 

to therapy (Cox & Erler, 2011; P. Lu, Weaver, & Werb, 2012).

3. In vitro and in vivo identity of mesenchymal stem cells

MSCs are multipotent stem cells that can differentiate into multiple cell lineages including 

adipocytes, osteoblasts, chondrocytes, tenocytes and myofibroblasts. In the 1960s and 1970s, 

this type of adult stem cell was initially identified as a population of bone marrow (BM) 

cells with colony forming capabilities in vitro and osteogenic cell differentiation potential in 

vivo (Friedenstein, Chailakhjan, & Lalykina, 1970; Friedenstein, Petrakova, Kurolesova, & 

Frolova, 1968). In the 1980s and 1990s, these cells were defined as “Mesenchymal Stem 

Cells” possessing multiple non-hematopoietic mesenchymal lineage cell differentiation 

capabilities in vitro and in vivo (Caplan, 1991; Prockop, 1997). Afterwards, MSCs were 

isolated from almost every tissue in the body (umbilical cord, Wharton’s jelly, skin, lung, 

liver, adipose tissue, muscle, dental pulp, etc.) in addition to the BM (da Silva Meirelles, 

Chagastelles, & Nardi, 2006). In recent years, MSCs were also isolated from various tumor 

tissues as “tumor wounds” could stimulate resident MSC proliferation or recruit circulating 

MSCs (Karnoub et al., 2007; Ren et al., 2012; Y. Shi et al., 2017).

According to criteria by the International Society for Cellular Therapy (ISCT) published in 

2006, cultured MSCs should be adherent, fibroblast-like cells with osteogenic, adipogenic 

and chondrogenic differentiative capacity in vitro. Moreover MSCs must express the surface 

markers CD105, CD73 and CD90, but not express CD45, CD34, CD14, CD11b, CD79α, 

CD19 or human leukocyte antigen-DR isotype (HLA-DR) (Dominici et al., 2006). In 2013, 

ISCT further shared guidelines for the immunological characterization of MSCs, 

highlighting the functional plasticity of MSCs in the context of different inflammatory 

milieus (Krampera et al., 2013). In spite of all these efforts in defining MSCs, the boundaries 

for delineating MSCs, fibroblasts and pericytes still remain largely illusive due to a lack of 

specific markers for these cell populations (Caplan, 2008; Haniffa, Collin, Buckley, & 

Dazzi, 2009; Keating, 2012; Nombela-Arrieta, Ritz, & Silberstein, 2011). Nevertheless, 

MSCs were recently described as “Medicinal Signaling Cells” to reflect their multifaceted 

functions in wound repair rather than considering their stemness properties (Caplan, 2017). 

Based upon their robust capacity in regulating every step of wound healing, cultured MSCs 

have been applied in over 450 clinical trials to treat degenerative diseases and immune 

disorders (Maxson et al., 2012; Squillaro, Peluso, & Galderisi, 2016).

While the clinical application of ex vivo-expanded MSCs in treating diseases has been 

established, in vivo exploration of endogenous MSCs has also progressed. Pioneering work 

by Crisan et al in 2008 demonstrated a perivascular origin of MSCs in multiple human 

organs. They purified perivascular cells from human skeletal muscle, pancreas, adipose 

tissue and placenta and showed after long-term culture that these cells maintained the MSC 

phenotype as well as the trilineage differentiation potential (Crisan et al., 2008). Since then, 

the endogenous MSCs were believed to reside at perivascular sites in various tissues which 

may be regarded as a subset of pericytes in vivo (Caplan, 2008, 2017). Genetic lineage 

tracing assays were also widely applied to identify the differentiation fates of perivascular 

MSC-like cells in the context of fibrotic diseases and tissue injury models (El Agha et al., 
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2017). A series of transgenic mice with Cre/loxP technology have recently been created and 

applied to explore the cellular hierarchies of the perivascular MSCs, such as Nestin-cre 

(Mendez-Ferrer et al., 2010; Tronche et al., 1999), myxovirus resistant 1 (Mx1)-cre (R. 

Kuhn, Schwenk, Aguet, & Rajewsky, 1995; Park et al., 2012), Leptin-receptor (Lepr)-cre 

(Decker et al., 2017; DeFalco et al., 2001; Zhou, Yue, Murphy, Peyer, & Morrison, 2014), 

and glioma-associated oncogene homolog 1 (Gli1)-cre (Ahn & Joyner, 2004; Kramann et al., 

2015; Schneider et al., 2017). Although the differentiation specificity and efficiency of the 

perivascular MSCs still remain controversial, most reports support the notion that 

endogenous MSCs are highly plastic upon tissue injury and give rise to myofibroblasts, 

osteoblasts or adipocytes in bone, lung, liver, kidney, heart, spinal cord, muscle, and skin 

depending on the injury types or duration. It is also well accepted that cells differentiating 

from endogenous tissue MSCs play a major role in induction of organ or tissue fibrosis (El 

Agha et al., 2017). In contrast to the extensive studies that recognize the in vivo identity of 

MSCs in tissue regeneration, far fewer studies have been carried out to determine the role of 

MSCs in primary tumor tissues and metastatic sites.

4. MSCs participate in all phases of the wound healing response to injury

Perivascular mesenchymal cells including MSCs play crucial roles through every step of 

wound healing. Immediately after tissue injury, MSCs express tissue factor (TF) and Factor 

VIII:c (FVIII) which activate both extrinsic and intrinsic coagulation pathways to facilitate 

blood clotting (Christy et al., 2017; Sanada et al., 2013). In addition to driving the 

inflammation stage (described below) MSCs themselves also secrete antimicrobial peptides 

such as LL-37, hepcidin, β-defensin 2 and lipocalin-2 serving to restrain the invading 

pathogens (Alcayaga-Miranda et al., 2015; Gupta et al., 2012; Krasnodembskaya et al., 

2010; Sung et al., 2016). We next provide an overview of the participation of MSCs in the 

three stages of wound healing: inflammation, proliferation and tissue remodeling (outlined 

in Fig. 1).

4.1 Inflammation

In the inflammatory stage, MSCs play dual roles serving as both facilitators and terminators 

of the inflammation process. At the beginning of inflammation or infection, wound signals 

such as toll-like receptor (TLR) ligands stimulate bone marrow MSCs to secrete the 

chemokine CCL-2 which triggers the emigration of monocytes from the BM to the 

circulation (C. Shi et al., 2011). At the wound sites, paracrine chemokines such as CCL-2, 

CCL-3, CCL-4, CXCL1, IL-8 and macrophage migration inhibitory factor (MIF) expressed 

by naïve or TLR ligand-stimulated MSCs serve to recruit monocytes, macrophages and 

neutrophils (Brandau et al., 2010; L. Chen, Tredget, Wu, & Wu, 2008; Romieu-Mourez et 

al., 2009). Intravital microscopy, a technique that allows visualizing the biological events in 

live animals, has enabled us to understand how perivascular mesenchymal cells, including 

endogenous MSCs, regulate myeloid cell infiltration at the early stage of inflammation in 

vivo (Proebstl et al., 2012). Upon stimulation by lipopolysaccharide (LPS) or inflammatory 

cytokines, endogenous perivascular cells (or pericytes) upregulate their expression of the 

chemokine CXCL1 or MIF, as well as the adhesion molecule intercellular adhesion 

molecule 1 (ICAM-1). Chemokines serve to recruit neutrophils and monocytes for 

Li et al. Page 5

Pharmacol Ther. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extravasation whereas adhesion molecules in turn guide these emigrating myeloid cells as 

they crawl on perivascular cells and move towards the inflammatory foci (Proebstl et al., 

2012; Stark et al., 2013).

A myriad of mechanisms have evolved to impede excessive innate immune responses 

following the peak of inflammation. Dampening of innate immunity is particularly critical in 

cases of sterile inflammation. Perivascular MSCs indeed play a “gatekeeper” role to limit 

inflammation-caused tissue damage. Such effects are achieved through a negative feedback 

mechanism driven by inflammatory mediators such as tumor necrosis factor alpha (TNFα), 

interleukin-1 (IL-1) and reactive oxygen species (ROS). These factors stimulate MSCs to 

upregulate cyclooxygenase-2 (COX-2), TNFα-stimulated gene-6 (TSG-6), superoxide 

dismutase 3 (SOD3) and possibly other effector molecules, to suppress the phagocytic 

activities of type 1 myeloid cells leading to remission of inflammatory responses (Francois, 

Romieu-Mourez, Li, & Galipeau, 2012; D. Jiang et al., 2016; R. H. Lee et al., 2009; Nemeth 

et al., 2009). Notably, the COX-2-prostaglandin E2 (PGE2) pathway and TSG-6 have been 

extensively studied in MSC-mediated reprograming of M1 macrophages to M2 regulatory 

macrophages. These regulatory macrophages preferentially release higher levels of cytokines 

and growth factors to drive the wound healing process into the proliferation stage (Mittal et 

al., 2016; Nemeth et al., 2009; Ylostalo, Bartosh, Coble, & Prockop, 2012). In addition to 

these mechanisms, a recent report suggested that engulfment of apoptotic MSCs can also 

reprogram the host phagocytes to be an immunosuppressive phenotype via production of 

indoleamine 2, 3-dioxygenase (IDO) which in turn inhibits graft-versus-host disease 

(GvHD) in mice (Galleu et al., 2017). In addition to modulating monocytes, macrophages 

and neutrophils, MSCs are also able to repress the functions of other innate immune cell 

populations including natural killer (NK) cells, dendritic cells and mast cells through PGE2 

release and other mechanisms (Aggarwal & Pittenger, 2005; Cui et al., 2016; X. X. Jiang et 

al., 2005; Spaggiari et al., 2008; Spaggiari, Capobianco, Becchetti, Mingari, & Moretta, 

2006; W. R. Su, Zhang, Shi, Nguyen, & Le, 2011).

Compared to the innate immune responses that participate early in the wound healing 

process, T and B lymphocyte-mediated adaptive immune responses participate at a later time 

point (Strbo, Yin, & Stojadinovic, 2014). Similar to their dual roles in regulation of innate 

immune responses, MSCs are capable of augmenting or inhibiting the activities of the 

adaptive immune cells. When concentrations of environmental stimuli or inflammatory 

cytokines are low, in vitro cultured MSCs can boost T-cell responses likely through MSC-

secreted T-cell chemokines (W. Li et al., 2012; Renner et al., 2009). With the elevation of the 

T-cell responses, the high levels of T-cell cytokines subsequently turn on the negative 

feedback mechanisms in MSCs to dampen excessive T-cell reactivity. A key T-cell cytokine 

in this regulation is IFNγ, which acts independently or with inflammatory mediators 

including TNFα, IL-1, interleukin 17A (IL-17) and TLR ligands to functionally convert 

MSCs from a resting state to a highly immunosuppressive stage (X. Han et al., 2014; Opitz 

et al., 2009; Y. Wang, Chen, Cao, & Shi, 2014). Such an immunosuppression is achieved via 

cytokine-induced expression of the immunosuppressive molecules inducible nitric oxide 

synthase (iNOS) and IDO in mouse and human MSCs, respectively (Krampera et al., 2006; 

Ren et al., 2009; Ren et al., 2008; Sato et al., 2007; J. Su et al., 2014). Other effector 

molecules and cell populations implicated in MSC-mediated T-cell immunoregulation 
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include PGE2, programmed death ligand 1 (PD-L1), heme oxygenase-1 (HO-1), leukemia 

inhibitory factor (LIF), IL-6, galectins, Fas ligand, TGF-β and regulatory T cells (reviewed 

in (Y. Shi et al., 2012; Singer & Caplan, 2011)). Certain chemokines and adhesion molecules 

that commonly play roles in accelerating immune responses, however, serve to recruit 

immune cells to form an MSC-immune cell interaction that supports a more robust 

immunosuppression (Espagnolle, Balguerie, Arnaud, Sensebe, & Varin, 2017; H. K. Lee et 

al., 2017; Ren et al., 2010; Rubtsov et al., 2017). Such a cytokine-elicited immunoregulatory 

mechanism was also reported in other endogenous stromal cells such as fibroblastic reticular 

cells (FRCs) and lymphatic endothelial cells (LECs) suggesting a common negative 

feedback regulation employed by distinct stromal subsets in vivo (Lukacs-Kornek et al., 

2011; Siegert et al., 2011).

4.2 Proliferation

After completion of the inflammation stage, MSCs further functionally contribute to wound 

healing by participating in the proliferation stage mainly via secretion of trophic factors. In 

addition to the resident perivascular MSCs, other tissue/organ-derived MSCs are recruited 

into the wound sites guided by chemokines and adhesion molecules produced during the 

inflammation stage (Karp & Leng Teo, 2009). The major chemokine-chemokine receptors 

involved in MSC trafficking include CXCL12-CXCR4, CCL-2-CCR2, CCL27-CCR10, and 

CCL21-CCR4 (Alexeev, Donahue, Uitto, & Igoucheva, 2013; Belema-Bedada, Uchida, 

Martire, Kostin, & Braun, 2008; Hu et al., 2013; Kitaori et al., 2009; Sasaki et al., 2008). 

Coordinated with chemokine-mediated chemotaxis, CD44-hyaluronic acid (HA) and 

vascular cell adhesion protein 1 (VCAM-1)-α4/β1 integrin interactions, as well as MMP-

mediated ECM degradation, facilitate MSCs to transmigrate into the endothelium (Ries et 

al., 2007; Ruster et al., 2006; Zhu et al., 2006).

Both resident and newly recruited MSCs exert two main effects in the proliferation stage at 

the wound sites. First, MSCs are directly involved in the tissue repair process through 

differentiating into multiple mesenchymal lineages. In the 1990s, the exogenously implanted 

BM-MSCs were shown to have a potent osteogenic potential as detected by the “cube assay” 

in vivo (Dennis, Haynesworth, Young, & Caplan, 1992; Dennis, Konstantakos, Arm, & 

Caplan, 1998). Further, by fluorescent protein labeling and in vivo genetic lineage tracing 

assays, exogenous and endogenous MSCs were demonstrated to possess the capacity to 

differentiate into other mesenchymal lineages such as adipocytes and myofibroblasts in 

various injury conditions (Anjos-Afonso, Siapati, & Bonnet, 2004; Kramann et al., 2015; 

Park et al., 2012; Uezumi, Fukada, Yamamoto, Takeda, & Tsuchida, 2010). Second, MSCs 

and their lineages serve as a reservoir of trophic agents continuously supplying growth 

factors to accelerate cell proliferation towards a successful damage repair. The major factors 

produced by mesenchymal lineages include EGF, PDGF, FGF, VEGF, TGFβ, keratinocyte 

growth factor (KGF) and hepatocyte growth factor (HGF) (Caplan & Dennis, 2006; Hofer & 

Tuan, 2016). Most of the wound-related cell types including epithelial cells, endothelial 

cells, keratinocytes and resident fibroblasts respond to these MSC-derived growth factors for 

their survival, activation and proliferation to accomplish re-epithelialization, angiogenesis 

and fibroplasia (Maxson et al., 2012; Zambetti et al., 2016).
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4.3 Tissue remodeling

In the tissue remodeling stage, MSCs regulate collagen deposition, degradation and 

rearrangement through release of MMPs and tissue inhibitors of metalloproteinases 

(TIMPs). Upon stimulation by TGF-β, IL-1, and TNFα, MSCs overexpress MMP-2, 

MMP-9, and membrane type-1 MMP (MT1-MMP) which drive ECM degradation and 

support MSC cell invasion in three-dimensional (3-D) cultures (C. Lu, Li, Hu, Rowe, & 

Weiss, 2010; Ries et al., 2007). In a rat model of myocardial infarction (MI), implanted 

MSCs promoted the expression of MMP2 by cardiac fibroblasts and reduced cardiac 

ventricular fibrosis after MI (Mias et al., 2009). On the other hand, MSCs secrete the MMP 

inhibitors-TIMPs, which may protect vascular matrix molecules and endothelial cell 

structures from MMP-induced disruption (Lozito & Tuan, 2011). Recent evidence also 

suggests that MSC-derived TIMP-1 can function as an anti-angiogenic effector molecule in 

the inflamed endothelium to reduce the inflammatory response (Zanotti et al., 2016). 

Lineage tracing of the endogenous MSCs indicate that they can directly give rise to 

myofibroblasts and contribute to dysregulated ECM remodeling leading to tissue fibrosis. 

Such roles of MSCs in fibrotic diseases have been extensively reviewed recently (El Agha et 

al., 2017) and will not be discussed here.

Overall, MSCs are not only beneficial to all steps of wound healing, but also serve as a 

facilitator for non-healing pathological processes such as fibrosis and cancer when chronic 

stresses (injury, infection, etc.) are present.

5. MSCs in wound healing response to cancer

Cancer is regarded as an “overhealing wound” and MSCs recently emerged as a new player 

in the tumor wound microenvironment. Tumor-associated MSCs (TA-MSCs), isolated from 

malignant tissues, actively participate in tumor-associated inflammation, 

immunosuppression, tumor growth, angiogenesis and tumor metastasis in various cancer 

types including breast cancer, ovarian cancer, pancreatic cancer, lymphoma, melanoma and 

others in both human and mouse tumor models (reviewed in (Y. Shi et al., 2017)). These 

isolated TA-MSCs also have multipotent differentiation capacities for mesenchymal lineages 

with an ability to generate fibroblastoid colony-forming units (Karnoub et al., 2007; McLean 

et al., 2011; Ren et al., 2012). Here we present an overview of the roles of MSCs in cancer 

progression from the point of view of cancer as a wound (outlined in Fig. 2).

Dysfunction of MSCs is thought to contribute to tumorigenesis. Indeed, mutation of 

tyrosine-protein phosphatase non-receptor type 11 (Ptpn11) in MSCs was recently shown to 

trigger a CCL-3-monocytes-IL-1β axis leading to BM inflammation and myeloproliferative 

neoplasm in a mouse model (Dong et al., 2016). Similarly, deletion of the Shwachman-
Bodian-Diamond syndrome (SBDS) gene in osterix+ mesenchymal progenitor cells caused a 

p53-S100A8/9-TLR inflammatory response which drove the development of Shwachman-

Diamond syndrome (SDS) and myelodysplastic syndrome (MDS) in mice (Zambetti et al., 

2016). In contrast to these blood malignancies elicited by abnormal BM-MSCs, it remains 

largely undefined how tissue MSCs regulate early tumorigenesis events in carcinomas.

Li et al. Page 8

Pharmacol Ther. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



If we consider cancer progression in terms of the three stages of wound healing, 

inflammation, proliferation and tissue remodeling, recent studies using exogenous MSC 

implantation models showed that MSCs exert either supportive or inhibitory effects on 

tumor development. While these studies were informative, future efforts should be directed 

toward a precise understanding of the role of endogenous MSCs in distinct steps of cancer 

progression. Below we discuss the contribution of MSCs to distinct steps of tumor “wound 

healing”, although some processes are intermingled.

5.1 Inflammation

5.1.1 TA-MSCs facilitate tumor-associated inflammation—Similar to their effects 

in wound healing, MSCs play a regulatory role in tumor-associated immune responses. First, 

TA-MSCs, thought to be derived from healthy MSCs at the tumorigenesis sites, are educated 

by the tumor inflammatory microenvironment (Ren et al., 2014; Ren et al., 2012), after 

which they have the capacity to elicit tumor-associated inflammation via secretion of 

cytokines and chemokines. The tumor and stroma-derived factors such as TNFα and IL-1 

stimulate the TA-MSCs to specifically elevate their expression of chemokines, which in turn 

induce myeloid cell infiltration to exaggerate tumor-associated inflammation (Escobar et al., 

2015; Ren et al., 2012; Yu et al., 2017). In mouse and human models of lymphoma, TA-

MSCs were shown to express CCL-2, which serves to recruit monocytes and macrophages 

into the tumor microenvironment to sustain tumor growth (Guilloton et al., 2012; Ren et al., 

2012). TA-MSCs also potently recruit neutrophils through overexpression of chemokines 

CXCL1 and CXCL2, and the neutrophils in turn stimulate primary tumor cell invasion and 

metastasis to distant organs in mice (Yu et al., 2017). In a human breast cancer xenograft 

model, the MSC-breast cancer cell interaction provoked recruitment of both macrophages 

and neutrophils through the colony stimulating factor 1 (CSF1)-CSF1 receptor signaling 

pathway, resulting in enhanced cancer cell metastases (Chaturvedi, Gilkes, Takano, & 

Semenza, 2014).

5.1.2 TA-MSCs reprogram innate immune cells—In the tumor microenvironment, 

TA-MSCs further convert the recruited myeloid cells from a type 1 to a type 2 phenotype by 

abolishing their phagocytic abilities while activating their “healing” potentials (Biswas & 

Mantovani, 2010; Coffelt, Wellenstein, & de Visser, 2016). In both in vivo and in vitro 

models, TA-MSCs isolated from lymphoma or pancreatic carcinoma were shown to polarize 

macrophages into an M2-like phenotype with increased expression of the alternatively 

activated macrophage markers (Guilloton et al., 2012; Mathew et al., 2016; Ren et al., 2012). 

These M2 macrophages function to support tumor growth and depletion of these 

macrophages substantially reduced TA-MSC-mediated tumor promoting effect in vivo 

(Mathew et al., 2016; Ren et al., 2012). Similar to the TA-MSC-mediated education of 

macrophages, TA-MSCs also accelerate a preferential differentiation of leukocytes into 

immunosuppressive myeloid-derived suppressor cells (MDSCs) (H. W. Chen et al., 2013; 

Giallongo, Tibullo, et al., 2016; Yen et al., 2013). In vitro, human MSCs induced a 

differentiation of human peripheral blood leukocytes (PBLs) into MDSCs through secretion 

of HGF and CXCL3 (H. W. Chen et al., 2013; Yen et al., 2013). In vivo, knockdown of HGF 

in co-injected MSCs caused a reduction of tumor-infiltrating MDSCs in a human colon 

cancer xenograft model (Yen et al., 2013). In multiple myeloma and chronic myeloid 
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leukemia, TA-MSCs isolated from the patients’ BM had an elevated ability to induce MDSC 

expansion compared to healthy donor-derived BM-MSCs (Giallongo, Romano, et al., 2016; 

Giallongo, Tibullo, et al., 2016). Together, these studies showed that TA-MSCs are a key 

regulator of the innate immune cell plasticity.

5.1.3 TA-MSCs suppress adaptive immunity—In addition to their capacity to elicit 

tumor-associated inflammation, TA-MSCs also suppress adaptive immunity in the tumor 

microenvironment. The role of MSC-mediated immunosuppression in tumor progression 

was first indicated by the finding that subcutaneous injection of B16 mouse melanoma cells 

led to tumor growth in allogeneic recipients only when MSCs were co-injected (Djouad et 

al., 2003). Subsequently, MSC-derived immunosuppressive effector molecules such as NO 

and IDO were found to ablate anti-tumor T cell and NK cell immunity and facilitate tumor 

growth (Gazdic et al., 2017; Z. Han et al., 2011; Y. Huang et al., 2014; Ling et al., 2014; 

Liotta et al., 2015). Besides the production of immunosuppressive factors, TA-MSCs also 

abrogate adaptive immunity by inducing immunoregulatory cells such as T regulatory cells 

(Treg) and regulatory CD8+ T cells in vitro and in vivo (Hof-Nahor et al., 2012; Kudo-Saito, 

Fuwa, Murakami, & Kawakami, 2013; Patel et al., 2010).

Overall, TA-MSCs accelerate tumor-associated inflammation but suppress anti-tumor 

adaptive immunity. These two mechanisms, though beneficial in a conventional wound 

healing response, are utilized by the tumor cells to enhance their progression.

5.2 Proliferation

After completion of the inflammation stage of wound healing, there is a transition into the 

proliferation stage characterized by exogenous tissue precursor cell recruitment and resident 

tissue cell differentiation and proliferation. TA-MSCs have been shown to actively 

participate in the proliferative stage in various cancers.

5.2.1 MSC homing to tumors—A preferential homing of MSCs to the tumor, a 

process equivalent to the homing of MSCs to the wound site in wound healing, is a hallmark 

of MSC biology in cancer. In both syngeneic and xenogeneic tumor models, systemically 

delivered luciferase-labeled MSCs or GFP-labeled engrafted BM-MSCs showed a persistent 

and specific co-localization at the sites of tumor progression (Y. Huang et al., 2014; Kidd et 

al., 2009). Such tumor-oriented MSC trafficking is coordinated by tumor-secreted paracrine 

factors and the autocrine BM-MSC-expressed chemoattractants. Many tumor-derived factors 

such as CCL-2, CCL-25, CXCL16, MIF, IL-6 and antimicrobial peptide LL-37 have been 

reported to be functional in recruiting MSCs in vitro and in vivo (Coffelt et al., 2009; Dwyer 

et al., 2007; Jung et al., 2013; Lourenco et al., 2015; Rattigan, Hsu, Mishra, Glod, & 

Banerjee, 2010; Xu et al., 2012). Complementary to these paracrine mechanisms, BM-MSCs 

also utilize the CXCL12/CXCR4 autocrine loop to impel their own migration towards 

tumors as shown in human colorectal cancer and mouse gastric cancer cell models (Menon 

et al., 2007; Quante et al., 2011).

When arriving at the tumor sites newly recruited MSCs, together with resident MSCs, 

cooperatively accelerate tumor “wound” healing. The TA-MSCs themselves undergo 

proliferation and differentiation into myofibroblasts to build a collagen network. Moreover, 
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TA-MSCs support the survival and growth of cancer cells as well as cancer stem cells, and 

supply angiogenic factors for neovascularization. Again, these natural mechanisms in wound 

healing are well exploited by malignant cells to support their own progression.

5.2.2 TA-MSC transdifferentiation to myofibroblasts—Myofibroblasts, or tumor-

associated fibroblasts (TAFs), are one of the major populations of the tumor stromal cells. 

They exert diverse effects at distinct steps during cancer progression (Kalluri, 2016). 

Resident and distant tissue (such as BM)-derived MSCs have been reported as precursors of 

TAFs. In a syngeneic mouse model of ovarian cancer, the origins of TAFs in the tumor 

microenvironment have been quantitatively assessed in vivo (Kidd et al., 2012). It was 

shown that ~40% of tumor stromal cells are BM-derived. Among the TAFs, most fibroblast 

specific protein (FSP) positive and fibroblast activation protein (FAP) positive TAFs 

originate from BM-MSCs, whereas α-SMA+ TAFs and perivascular stromal cells (pericytes) 

are mainly derived from the adipose tissue adjacent to the tumor (Kidd et al., 2012). In 

various syngeneic and xenograft tumors such as gastric cancer, breast cancer, glioma, 

pancreatic cancer, ovarian cancer and prostate cancer, exogenously implanted BM-MSCs 

were shown to differentiate into α-SMA+ vimentin+ myofibroblasts in the tumor 

microenvironment. This process was largely dependent on the TGFβ/Smad signaling axis 

(Barcellos-de-Souza et al., 2016; Mishra et al., 2008; Quante et al., 2011; Shangguan et al., 

2012; Spaeth et al., 2009; Spaeth et al., 2013). Together, these experiments demonstrate that 

myofibroblasts are a major MSC-derived cell lineage in the tumor microenvironment.

5.2.3 Trophic effects of TA-MSCs on tumor cells and cancer stem cells—In 

addition to transitioning into myofibroblasts to sustain cancer progression, TA-MSCs also 

directly release trophic factors to epithelial and hematologic malignant cells. In particular, 

TA-MSCs provide survival and pro-proliferative signals to cancer stem cells (CSCs) and 

tumor-initiating cells (TICs), leading to therapeutic resistance and early relapse (Y. Shi et al., 

2017). In the tumor microenvironment, TA-MSCs facilitate tumor initiation and cause an 

increase in the numbers of aldehyde dehydrogenase (ALDH) positive CSCs in xenograft 

models of breast cancer, ovarian cancer, colorectal cancer and glioma. These effects were 

mainly exerted through TA-MSC-derived pro-survival signals such as IL-6, IL-8, CXCL1 

CXCL7, and bone morphogenetic protein (BMP) (Hossain et al., 2015; Li, Reinhardt, 

Herschman, & Weinberg, 2012; S. Liu et al., 2011; McLean et al., 2011; Tsai et al., 2011). 

In a breast carcinoma xenograft model, cell-cell contact between TA-MSCs and tumor cells 

led to induction of miR-199a and subsequent repression of FOXP2, a transcriptional 

regulator inhibiting CSC associated factor.

Thereby, TA-MSCs elicited a propagation of breast CSCs through the miR-199a-FOXP2 

axis (Cuiffo et al., 2014). In accordance with these pre-clinical results, extensive 

bioinformatic and immunohistochemical analyses of human colorectal cancer patient 

specimens suggested that stromal gene expression is associated with a high frequency of 

CSCs and disease relapse (Calon et al., 2015). Thus, TA-MSCs directly function to nourish 

the tumor cells and CSCs in the tumor microenvironment.

5.2.4 TA-MSCs support angiogenesis—In normal wound healing, MSCs release 

angiogenic factors such as VEGF to foster growth of neovascular vessels for angiogenesis. 
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This mechanism is also executed by TA-MSCs. In syngeneic models of melanoma, lung 

cancer and colorectal cancer, administration of mouse BM-MSCs promotes tumor growth 

through increased angiogenesis via the hypoxia-inducible factor 1 (HIF1)-VEGF signaling 

pathway (Y. Liu et al., 2011; Suzuki et al., 2011). In a human pancreatic cancer xenograft 

model, GFP-labeled human BM-MSCs, when systemically administered, were found to 

attach onto the tumor vessel endothelium to induce neovascular sprouting without directly 

differentiating into endothelial cells in vivo (Beckermann et al., 2008). In addition to MSC-

derived VEGF, in a human colorectal cancer xenograft model, TA-MSCs also produce IL-6 

which in turn stimulates cancer cells to express endothelin 1 (ET-1) for angiogenesis (W. H. 

Huang et al., 2013).

Therefore, at the proliferation stage, TA-MSCs exert multifaceted functions to sustain tumor 

cell survival and proliferation. Several key MSC-regulating signaling pathways such as 

CXCL12/CXCR4, TGFβ/Smad, IL-6 and VEGF could be potential candidates for 

developing novel MSC-targeting adjuvant therapeutics.

5.3 TA-MSCs in tissue remodeling

In the last stage of wound healing, host tissues including MSCs evolve self-restricting 

mechanisms to prevent over-proliferation of different types of tissue cells. Although such 

capabilities are largely dampened in the tumor microenvironment, MSC-mediated inhibition 

of epithelial tumor cell outgrowth, driving tumor cells to enter dormancy, as well as 

suppression of tumor angiogenesis, were indeed observed in many types of cancers. In 

addition, in response to a hypoxic tumor environment, TA-MSCs modulate the primary 

tumor ECM, and support tumor cell invasion and metastasis into distant organs. Although 

such mechanisms are beneficial for the host to accomplish tissue remodeling in wound 

healing, they instigate cancer progression and metastasis.

5.3.1 TA-MSC-mediated suppression of tumor growth and angiogenesis—It is 

unclear whether TA-MSC-elicited tumor suppression is a reflection of the self-defending 

(antibacterial) capacity of MSCs in the early inflammation stage, or a self-restraining 

mechanism exerted in the tissue remodeling stage of wound healing. Studies of various 

hematopoietic and non-hematopoietic cancers suggest that TA-MSCs potently inhibit tumor 

growth. Such inhibition was mediated by MSC-expressed TNF-related apoptosis-inducing 

ligand (TRAIL), dickkopf-related protein 3 (DKK-3), or cell-cell contact-dependent 

mechanisms causing tumor cell apoptosis or cell cycle arrest (Khakoo et al., 2006; R. H. 

Lee, Yoon, Reneau, & Prockop, 2012; Qiao et al., 2008; Ramasamy et al., 2007; Sun et al., 

2009).

In human breast carcinoma xenograft models, TA-MSCs also serve to protect tumor cells 

from stress-induced cell apoptosis and facilitate proliferating tumor cells to enter dormancy 

and acquire cancer stem cell capabilities in vitro and in vivo. Such a cancer dormancy status 

is mainly achieved by MSC-released exosomes containing microRNAs such as miR 23b, 

127, 197, 222, and 223 which repress the cell cycling regulatory genes, myristoylated 

alanine-rich C-kinase substrate (MARCKS) and CXCL12, as well as the cell cycle genes, 

cyclin-dependent kinase 4 (CDK4), cyclin D1 and p21WAF1 (Bliss et al., 2016; Lim et al., 
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2011; Ono et al., 2014). In an elegant three-dimensional MSC-human breast tumor cell co-

culture system, MSCs were observed to be gradually internalized (cannibalized) by cancer 

cells and such a cannibalism led to the functional alteration of the cancer cells from active to 

dormant status in vitro and in vivo (Bartosh, Ullah, Zeitouni, Beaver, & Prockop, 2016). In 

addition to directly restraining the growth of epithelial tumor cells, TA-MSCs were also 

found to inhibit angiogenesis. In a syngeneic mouse melanoma model, co-administration of 

MSCs induced endothelial cell apoptosis through MSC-released ROS (Otsu et al., 2009). In 

a human glioma xenograft model, TA-MSCs suppressed endothelial cell growth by 

inhibiting the PDGF/PDGFR signaling axis (Ho et al., 2013). Taken together, the role of 

MSCs in limiting tumor growth could be a reflection of their modulatory effects to terminate 

the excessive tissue proliferation occurred in a regular wound healing process.

5.3.2 TA-MSCs accelerate tumor cell invasion and metastasis—At the 

remodeling stage, the final stage in wound healing, the originally disorganized collagen 

fibers synthesized during the proliferation stage undergo rearrangement, cross-linking and 

alignment, which are regulated by MMPs, TIMP3, TGFβ and other cytokines (Xue & 

Jackson, 2015). In the tumor microenvironment, such a remodeling process is more 

complicated as the driving forces of remodeling are always affected by the earlier 

inflammation and proliferation processes, resulting in non-healing or over-healing wounds. 

TA-MSCs have been widely investigated for their potency to accelerate tumor cell invasion 

and metastasis through remodeling of the ECM (N. Z. Kuhn & Tuan, 2010). Three 

mechanisms have been proposed in TA-MSC-elicited tumor cell invasion and metastasis, 

and are outlined below.

First, TA-MSCs secrete chemokines to direct tumor cell invasion. In syngeneic mouse 

melanoma and human breast carcinoma xenograft models, CCL-2, CCL-5, CCL-9 and 

CXCL10 are released from TA-MSCs to activate tumor cell migration and invasion which 

facilitate primary tumor cell metastases to lung, bone and lymph nodes (Chaturvedi et al., 

2013; Karnoub et al., 2007; Kudo-Saito et al., 2013; Luo et al., 2014; Swamydas, Ricci, 

Rego, & Dreau, 2013). As certain chemokines were shown to activate MMPs, the MSC-

derived chemokines may also play a role in MMP-mediated ECM remodeling (Swamydas et 

al., 2013).

Second, TA-MSCs serve as potent drivers for tumor cells to undergo an epithelial-

mesenchymal transition (EMT) which in turn stimulates the invasion and metastasis of 

tumor cells. In a human breast cancer xenograft model, MSCs induced breast tumor cells to 

undergo EMT via a LOX-Twist signaling pathway. This, in turn, resulted in an elevated 

capability for tumor cells to metastasize to lung and bone (El-Haibi et al., 2012). Direct 

contact between MSCs and cancer cells is regarded as a mechanism for upregulation of the 

EMT-related genes (Martin et al., 2010; Takigawa et al., 2017). In human cancer specimens, 

the typical EMT markers were found to be expressed at higher levels at the stroma-epithelial 

invasive edge (Takigawa et al., 2017).

Third, in human breast cancer xenograft and tongue cancer models, human MSCs were 

shown to modulate collagen deposition through their expression of collagen receptor 

discoidin domain receptor 2 (DDR2), or to increase collagen I expression in cancer cells. 
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Such ECM modulation further favors tumor cell migration and invasion thus supporting 

metastases (Gonzalez et al., 2017; Salo et al., 2013).

Therefore, TA-MSCs impede the outgrowth of the primary tumors in the tumor “wound” 

remodeling stage. On the other hand, through secretion of chemokines and cytokines, TA-

MSCs potently drive the primary tumor cells to undergo EMT and metastasize into distant 

organs.

5.4 TA-MSCs and cancer therapeutic resistance

MSCs were recently identified as a key tumor microenvironmental component that elicits 

tumor cell resistance to various therapies (Houthuijzen, Daenen, Roodhart, & Voest, 2012). 

Such a capability is mainly attributed to the pro-survival and cancer stem cell-promoting 

effects of TA-MSCs, as mentioned above. Following chemotherapy, MSCs are capable of 

retaining their “stemness” characteristics, proliferative rate and differentiation potential, in 

part because of their elevated apoptotic threshold (Mueller et al., 2006). Similarly, MSCs 

were also shown to be radioresistant since they could develop multiple, atypical DNA 

damage response mechanisms to offset effects of radiation-induced DNA damage (Sugrue, 

Brown, Lowndes, & Ceredig, 2013).

MSCs themselves are relatively resistant to conventional cancer therapies compared to tumor 

cells, and more importantly, they can further protect tumor cells from therapy-induced 

cytotoxicity. In a chronic lymphocytic leukemia model, TA-MSCs were shown to directly 

interact with leukemia cells to prevent drug-induced cleavage of myeloid cell leukemia 1 

(Mcl-1) and poly ADP ribose polymerase (Parp) resulting in drug resistance (Kurtova et al., 

2009). In a human ovarian cancer model, a paracrine hedgehog-BMP4 positive feedback 

loop between ovarian cancer cells and TA-MSCs was defined as the mechanism for drug 

resistance (Coffman et al., 2016). In response to treatment with the chemotherapeutic drug 

cisplatin, TA-MSCs also are induced to produce certain fatty acids and the cytokines IL-6 

and IL-8 leading to drug resistance in a mouse colon cancer model and a human breast 

cancer model, respectively (Roodhart et al., 2011; Skolekova et al., 2016). Although there is 

little experimental evidence showing MSCs directly participate in resistance to the currently 

promising immunotherapeutics particularly the immune checkpoint blockade, the 

mesenchymal lineage cells such as myofibroblasts have been revealed to mediate 

immunotherapy failure via autocrine and paracrine TGFβ signaling and their secretion of 

CXCL12, MMP9 and ECM proteins in multiple pre-clinical tumor models (Chakravarthy, 

Khan, Bensler, Bose, & De Carvalho, 2018; Feig et al., 2013; Mariathasan et al., 2018; Zhao 

et al., 2018). Moreover, when epithelial tumor cells undergo EMT, their “mesenchymal” 

status favors the development of resistance to immune checkpoint blockade in treatment of 

breast tumors in mice (Dongre et al., 2017). In human cancer patients, the EMT signature is 

associated with unique tumor microenvironment and therefore could be a potential 

biomarker for selecting patients who will benefit from immunotherapeutics (Lou et al., 

2016; Mak et al., 2016; L. Wang et al., 2018).

Therefore, TA-MSCs are highly anti-apoptotic and can further help tumor cells to evade 

different types of cancer therapeutics. A deeper understanding of the robust pro-survival 

potency of TA-MSCs, as well as the mechanisms underlying MSC-promoted tumor cell 
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dormancy, will benefit development of MSC-targeting approaches to overcome therapeutic 

resistance and prevent cancer recurrence.

6. Concluding Remarks

Considering tumors as an unresolvable wound, the diverse functions of MSCs in the three 

stages of regular wound healing and cancer progression are compared (Table 1). MSCs 

indeed play similar roles in cancer progression, as they do in wound healing, however, such 

beneficial effects to repair a wound are fully utilized by the tumor cells for further 

progression and evolution of resistance towards different therapeutics. Increased knowledge 

of the biology of MSCs in tissue regeneration would highly accelerate a deeper and more 

comprehensive understanding of the contribution of MSCs to cancer progression. Several 

questions remain to be answered to achieve the goal of targeting MSCs and mesenchymal 

lineages as new strategies in clinical cancer research.

First, the tumor modulating effects mediated by TA-MSCs are largely controversial. The 

conflicting results could be due to the variance in MSC cell isolation and culture 

maintenance methods, MSC cell passages, species, cancer models utilized, adoptive cell 

transplantation time, and doses or duration. From the analysis of the function of MSCs in 

both wound healing and cancer contexts, it is clear that MSCs are a type of regulatory cell 

and can function by either enhancing or suppressing distinct steps of the healing process. For 

example, MSCs can be potently immunosuppressive, but can also enhance inflammation 

depending on the immune environment in which they reside. Moreover, MSCs are able to 

both accelerate and inhibit epithelial cell and endothelial cell growth at the proliferation 

stage and tissue remodeling stage, respectively. In accordance, many feedback loops have 

been identified in studies of MSCs in both wound healing and cancer (Caplan, 2017; Le 

Blanc & Davies, 2015; Prockop, 2013; Y. Wang et al., 2014). The functions of MSCs are 

usually “licensed” upon activation by external stimuli (Krampera, 2011), and MSCs have 

been proposed to possess an MSC1 or MSC2 status based upon their activation by different 

TLR ligands (Waterman, Tomchuck, Henkle, & Betancourt, 2010). Such concepts would 

inspire us to further deliberate the endogenous functions of MSCs in a systematic and 

dynamic view in the growth, metastasis and drug resistance of various cancers and in other 

disease processes.

Second, there is currently a lack of well-accepted standards for MSC identification 

particularly for the identification of endogenous MSCs (da Silva Meirelles, Caplan, & Nardi, 

2008; Sacchetti et al., 2016). The distinctions among MSCs, perivascular cells (pericytes) 

and fibroblasts are still ambiguous (Guimaraes-Camboa et al., 2017; Murphy, Moncivais, & 

Caplan, 2013). What has been observed or concluded thus far may be from studies of mixed 

types of mesenchymal cells in vitro and in vivo. Furthermore, the research in the field has 

mainly relied on exogenous MSC adoptive transfer or ex vivo systems in which conclusions 

may be less physiologically relevant. Recent efforts have been made to explore endogenous 

MSCs in pathological contexts, such as fibrotic diseases (El Agha et al., 2017). In the future, 

well-recognized endogenous markers and transcriptional factors for endogenous MSCs need 

to be tested and established in both human and experimental animals.

Li et al. Page 15

Pharmacol Ther. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lastly, it is time to consider harnessing the properties of MSCs for cancer therapy(Marofi, 

Vahedi, Biglari, Esmaeilzadeh, & Athari, 2017). There are already a few pre-clinical studies 

in which the homing capacity MSCs to tumors is exploited to utilize MSCs as an excellent in 

vivo vehicle for delivering tumoricidal agents such as IFNα, IFNβ and TRAIL (Shah, 2012; 

Stuckey & Shah, 2014). In consideration of the complicated roles of MSCs in cancer 

progression, especially their function to support tumor dormancy (Bartosh et al., 2016), a 

more careful and specific tailoring of engineered MSCs need to be conducted for designing 

future clinical application. Approaches to insert certain suicide genes or genetic modulation 

to deplete known tumor-promoting genes in engineered MSCs would help develop safer and 

more efficacious cell-based cancer therapeutics. Furthermore, following the concept of 

vascular normalization in cancer treatment (Goel et al., 2011), new avenues for conversion 

of malignancy-facilitating MSCs back to their normal malignancy-inhibitory status, could be 

a promising direction for future MSC-targeting cancer research. Such an MSC or 

mesenchymal normalization may also benefit the promising vascular normalization 

strategies owing to the essential vascular gatekeeper role of endogenous MSCs.

Overall, a deeper exploration of MSC biology from a regenerative perspective will expand 

our understanding of the multiple functions of MSCs in cancer progression and response to 

therapy, thereby supporting development of more precise MSC targeted therapy for clinical 

translation.
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Abbreviations

BM bone marrow

BMP bone morphogenetic protein

CSC cancer stem cell

ECM extracellular matrix

EMT epithelial-mesenchymal transition

HGF hepatocyte growth factor

IDO indoleamine 2,3-dioxygenase

IL-1 interleukin-1

iNOS inducible nitric oxide synthase

MIF macrophage migration inhibitory factor

MMP matrix metalloproteinase

Li et al. Page 16

Pharmacol Ther. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MSCs mesenchymal stem cells

PDGF platelet-derived growth factor

PGE2 prostaglandin E2

TAF tumor-associated fibroblasts

TA-MSCs tumor-associated MSCs

TGFβ transforming growth factor beta

TIMP tissue inhibitors of metalloproteinase

TNFα tumor necrosis factor alpha

TSG-6 TNFα-stimulated gene-6

VEGF vascular endothelial growth factor
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Figure 1. Participation of MSCs in distinct steps of wound healing
MSCs are involved in all stages of wound healing. (A) After tissue damage, perivascular 

MSCs are activated. (B) At the inflammation stage, MSCs recruit both innate and adaptive 

immune cells via secretion of chemokines. (C) Through negative feedback loops, MSCs 

regulate the immune response (immunoregulation) by suppressing excessive innate and 

adaptive immune cell activities through release of prostaglandin E2 (PGE2), TSG-6, nitric 

oxide (NO), indoleamine 2, 3-dioxygenase (IDO) and others. In the meantime, chemokines 

produced by immune cells and stromal cells further recruit BM- and other tissue-derived 

MSCs (MSC homing). (D) MSCs then differentiate into myofibroblasts via transforming 

growth factor beta (TGFβ) signaling and also produce a series of trophic factors to support 

tissue cell proliferation to accomplish re-epithelialization, fibroplasia and revascularization. 

(E) At the tissue remodeling stage, MSCs express matrix metalloproteinases (MMPs) as 

well as tissue inhibitor of metallopeptidases (TIMPs) to re-organize the extracellular matrix 

(ECM) structures leading to scar formation and wound repair. (F) In the cases of chronic 

inflammation and infection, the dysregulated MSC differentiation program can result in 

uncontrolled myofibroblast generation, causing tissue fibrosis.
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Figure 2. Roles of tumor-associated MSCs (TA-MSCs) in the tumor “wounds”
TA-MSCs are essential for distinct steps of cancer progression from the view of cancer as 

“wounds”. (A) During tumorigenesis, perivascular MSCs are activated. (B) Inflammatory 

cytokines stimulate TA-MSCs to produce myeloid cell chemokines which recruit 

inflammatory cells to the tumor microenvironment causing an aggravated inflammation. (C) 

TA-MSCs suppress anti-tumor adaptive immunity through immunosuppressive effector 

molecules IDO, NO, and others. Guided by the chemotactic cues, circulating MSCs home to 

the tumor sites. (D) TA-MSCs are further differentiated into myofibroblasts (or CAFs), and 

both TA-MSCs and myofibroblasts produce trophic factors to support tumor cell 

proliferation and angiogenesis. (E) At the tissue remodeling stage, TA-MSCs may suppress 

the outgrowth of tumor cells while impelling them to enter dormancy. Such a dormant 

cancer stem cell status plays a key role in tumor recurrence and therapeutic resistance. (F) 

TA-MSCs secrete multiple chemokines and also stimulate the tumor cells to undergo 

epithelial–mesenchymal transition (EMT) which instigates tumor cell invasion and 

metastasis to distant organs such as lung, liver and bone.
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Table 1

MSCs in wound healing responses to injury and cancer

Wound healing response to injury Wound healing response to Cancer

Functions Mechanisms Functions Mechanisms

Blood clotting Anti-bacterial

MSCs promote blood 
clotting MSCs are self-
defending by elimination of 
the invading bacteria

TFs; FVIII Secretion of anti-
microbial peptides LL-37, 
hepcidin, (β-defensin 2 and 
lipocalin-2 etc.

Not known
It is unclear whether the tumor-
suppressive effects of MSCs are related 
to such a self-defending capacity by 
MSCs

Inflammation Myeloid cell recruitment
MSCs drive myeloid cell 
migration from BM to 
inflamed tissues

Chemokines CCL-2, CCL-3, 
CCL-4, CXCL1, IL-8, MIF; 
adhesion molecules ICAM-1, 
etc.

TA-MSCs recruit 
monocytes, 
macrophages and 
neutrophils to the 
tumor 
microenvironment

Chemokines and 
cytokines CCL-2, 
CCL-7, CCL-12, 
CXCL1, CXCL2, 
CSF1 etc.

Myeloid cell and other 
innate immune cell 
suppression

MSCs suppress myeloid cell 
functions upon stimulation 
by TNFα, IL-1 and ROS

COX-2, PGE2, TSG-6, SOD3, 
etc.

TA-MSCs 
polarize the M1 
macrophages to 
an M2 phenotype; 
TA-MSCs also 
stimulate MDSC 
differentiation

CXCL3, HGF etc.

Myeloid cell reprogramming
MSCs convert M1 
macrophages to an M2-like 
type

PGE2, TSG-6, etc.

T cell recruitment

MSCs augment T-cell 
infiltration and activities in 
a low-level inflammatory 
environment

Chemokines CXCL9, 10, 11; 
adhesion molecules ICAM-1, 
VCAM-1

Not known

T cell suppression

MSCs exert a robust 
suppression of T-cells upon 
stimulation by IFNγ 
together with other 
inflammatory cytokines

NO, IDO, PGE2, PD-L1, 
HO-1, LIF, IL-6, galectin 1, 
FasL, TGFβ, Treg, etc.

MSCs suppress 
anti-tumor 
immunity

NO, IDO, Treg, 
regulatory CD8+ 

T cells, etc.

Wound healing response to injury Wound healing response to Cancer

Functions Mechanisms Functions Mechanisms

Proliferation MSC homing MSCs efficiently home to 
tissue injurysites

Chemokines CXCL12, CCL-2, 
CCL27 and CCL21; VCAM-1; 
MMPs; etc.

Exogenously 
implanted and 
endogenous 
MSCs efficiently 
migrate into the 
tumor 
environment

CXCL12, CCL-2, 
CCL-25, 
CXCL16, MIF, 
IL-6, LL-37 etc.

MSC differentiation and 
fibroplasia

MSCs can be differentiated 
into osteoblasts, adipocytes 
and myofibroblasts at the 
injury sites

TGFβ, BMPs, Notch, Wnt, 
Hedgehogs, etc.

BM-MSCs or 
adjacent tissue-
derived MSCs 
give rise to 
distinct types of 
tumor-associated 
myofibroblasts

TGFβ etc.

Re-epithelialization MSCs promote epithelial 
cell growth

Growth factors EGF, HGF, 
KGF, PDGF, IGF etc.

TA-MSCs support 
survival of cancer 
stem cells and 
proliferation of 
tumor cells

IL-6, IL-8, 
CXCL1, CXCL7, 
BMPs, miRNAs

Angiogenesis MSCs enhance angiogenesis Pro-angiogenic factors VEGF, 
FGF, PDGF, TGFβ, etc.

TA-MSCs 
facilitate tumor-
associated 
angiogenesis

VEGF, IL-6, etc.

Tissue remodeling Inhibition of proliferation MSCs inhibit tissue cell 
proliferation TGFβ, cell-cell contact, MMPs

TA-MSCs 
suppress 
epithelial tumor 

TRAIL, DKK-3, 
cell-cell contact, 
cannibalization, 
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Wound healing response to injury Wound healing response to Cancer

Functions Mechanisms Functions Mechanisms

growth but drive 
them to enter 
dormancy

miR-23b, 127, 
197, 222, 223

Inhibition of angiogenesis
MSCs suppress 
angiogenesis during tissue 
remodeling

TIMPs, MMPs
TA-MSCs can 
inhibit 
angiogenesis

ROS, inhibition 
of PDGF 
signaling

Collagen rearrangement MSCs promote ECM 
remodeling MMPs, TIMPs, TGFβ

TA-MSCs 
modulate 
collagen 
organization

DDR2, MMPs

Tissue cell invasion MSCs stimulate tissue cell 
invasion MMPs, collagen rearrangement

TA-MSCs 
accelerate tumor 
cell invasion and 
metastasis

Chemokines 
CCL-2, CCL-5, 
CCL-9, CXCL10 
etc.; TA-MSCs-
induced EMT

Abbreviations: TFs, Tissue factors; FVIII, Factor VIII; MIF, Macrophage migration inhibitory factor; ICAM-1, Intercellular adhesion molecule 1; 
CCL, CC motif chemokine ligand; CXCL, C-X-C motif chemokine ligand; IL, Interleukin; CSF1, Colony stimulating factor 1; COX-2, 
Cyclooxygenase-2; PGE2, Prostaglandin E2; TSG-6, Tumor necrosis factor (TNF)-stimulated gene-6; SOD3, Superoxide dismutase 3; HGF, 
Hepatocyte growth factor; VCAM-1, Vascular cell adhesion molecule 1; NO, Nitric oxide; IDO, Indoleamine 2,3-dioxygenase; PD-L1, 
Programmed death-ligand 1; HO-1, Heme oxygenase 1; LIF, Leukemia inhibitory factor; FasL, Fas ligand; Treg, Regulatory T cell; EGF, 
Epidermal growth factor; KGF, Keratinocyte growth factor; PDGF, Platelet-derived growth factor; IGF, Insulin-like growth factor; BMP, Bone 
morphogenetic protein; miRNA, microRNA; VEGF, Vascular endothelial growth factor; FGF, Fibroblast growth factors; PDGF, Platelet-derived 
growth factor; TGFβ, Transforming growth factor beta; MMP, Matrix metalloproteinase; TRAIL, TNF-related apoptosis-inducing ligand; DKK-3, 
Dickkopf WNT Signaling Pathway Inhibitor 3; TIMP, Tissue inhibitor of metalloproteinase; ROS, Reactive oxygen species; DDR2, Discoidin 
domain receptor 2; EMT, Epithelial–mesenchymal transition.
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