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Abstract

Purpose: To introduce a combined machine learning (ML) and physics-based image 

reconstruction framework that enables navigator-free, highly accelerated multishot echo planar 

imaging (msEPI), and demonstrate its application in high-resolution structural and diffusion 

imaging.

Methods: Singleshot EPI is an efficient encoding technique, but does not lend itself well to high-

resolution imaging due to severe distortion artifacts and blurring. While msEPI can mitigate these 

artifacts, high-quality msEPI has been elusive because of phase mismatch arising from shot-to-

shot variations which preclude the combination of the multiple-shot data into a single image. We 

employ deep learning to obtain an interim image with minimal artifacts, which permits estimation 

of image phase variations due to shot-to-shot changes. These variations are then included in a Joint 

Virtual Coil Sensitivity Encoding (JVC-SENSE) reconstruction to utilize data from all shots and 

improve upon the ML solution.

Results: Our combined ML + physics approach enabled Rinplane × MultiBand (MB) = 8×2-fold 

acceleration using 2 EPI-shots for multi-echo imaging, so that whole-brain T2 and T2* parameter 

maps could be derived from an 8.3 sec acquisition at 1×1×3mm3 resolution. This has also allowed 

high-resolution diffusion imaging with high geometric fidelity using 5-shots at Rinplane × MB = 

9×2-fold acceleration. To make these possible, we extended the state-of-the-art MUSSELS 

reconstruction technique to Simultaneous MultiSlice (SMS) encoding and used it as an input to 

our ML network.

Conclusion: Combination of ML and JVC-SENSE enabled navigator-free msEPI at higher 

accelerations than previously possible while using fewer shots, with reduced vulnerability to poor 

generalizability and poor acceptance of end-to-end ML approaches.
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INTRODUCTION

Slow image encoding has constrained clinical MRI scans to use 2-dimensional encoding and 

thick slices, often with slice gaps, so that whole-brain exams can be completed within 

acceptable time frames. In addition to the information loss, such inefficient acquisition poses 

a barrier to MRI evaluation of hospitalized patients who are critically ill and can neither hold 

still nor tolerate long scans. Low patient throughput due to inefficient imaging also increases 

the time from symptom onset to diagnosis, thereby delaying treatment.

To overcome the slow image encoding barrier, recent screening protocols have moved to 

singleshot Echo Planar Imaging (ssEPI) to provide multi-contrast information (1,2). 

Unfortunately, the reduced geometric fidelity of these protocols may confound/obscure 

localization of salient imaging findings. The problem arises from severe distortion and 

blurring artifacts in ssEPI at high in-plane resolutions, where a large area of k-space has to 

be covered within a single readout in the presence of B0 inhomogeneity and T2* signal 

decay. These effects are only partially mitigated at relatively high in-plane acceleration (e.g. 

Rinplane=3).

While multishot EPI (msEPI) can mitigate blurring and distortion, high-quality msEPI has 

been elusive because combining the multiple-shot data into a single image is prohibitively 

difficult, especially at high in-plane acceleration. Image phase mismatches between the shots 

caused by physiological variations (respiration, cardiac pulsation) or motion under the 

influence of diffusion encoding gradients lead to severe ghosting artifacts. To date, the 

application of msEPI has been restricted to diffusion imaging, where two types of solutions 

have been proposed to combine the shots: (i) navigator-based approaches that require 

additional data acquisition to capture shot-to-shot phase variations (3–7), and (ii) navigator-

free techniques that estimate these variations from the data itself (8–11). In (ii), multiplexed 

sensitivity encoding (MUSE) (9) and its extensions (12,13), rely on parallel imaging to 

reconstruct an intermediate image for each shot independently to estimate the physiological 

variations before jointly reconstructing all multishot data together. This limits the achievable 

distortion and blurring reduction to 4 to 6-fold, since parallel imaging with modern RF 

receive coil arrays breaks down beyond such acceleration in the phase-encoding direction. 

MUSSELS, on the other hand, does not explicitly estimate the phase of each shot image, but 

employs sensitivity encoding and similarities across multishot data in the form of structured 

low-rank matrix completion (11,14). This has allowed MUSSELS to undersample the k-

space of each shot by Rinplane=8-fold to reduce distortion and blurring artifacts as well as the 

echo time (TE). Images could be successfully reconstructed using 4-shots of data, so that the 

net acceleration factor became Rnet = 8/4 = 2-fold. It is important to note another class of 

navigator-free multishot diffusion imaging techniques, which utilize non-Cartesian 

trajectories that allow for estimation of low-resolution image phase information from the 
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densely sampled portion of each shot (15,16). Such self-navigation property may come at 

the cost of blurring/distortion in the resulting images.

In this contribution, we introduce a new reconstruction framework that utilizes a synergistic 

combination of machine learning (ML) and physics (or forward-model) based 

reconstruction, and demonstrate its application in structural and diffusion msEPI with high 

geometric fidelity. We term our combined ML + physics approach Network Estimated 

Artifacts for Tempered Reconstruction (NEATR), and incorporate Simultaneous MultiSlice 

(SMS) for extra efficiency. To this end, we have extended MUSSELS to SMS encoding, and 

utilized the readout extended FOV concept (17) to seamlessly integrate slice acceleration 

into this framework. We start from SMS-MUSSELS reconstruction of highly accelerated 

msEPI using a smaller number of acquisition shots, and pass the intermediate solution 

through our deep neural network to mitigate the reconstruction artifacts from SMS-

MUSSELS. Using this interim image with minimal artifacts allows us to solve for the image 

phase of each shot using phase-regularized parallel imaging (18). Given the phase of each 

shot, we then perform a Joint Virtual Coil Sensitivity Encoding (JVC-SENSE) 

reconstruction where we utilize the k-space data from all shots as well as virtual coil concept 

(19–21) to solve for the combined magnitude image.

We demonstrate the application of SMS-NEATR in spin-and-gradient-echo (SAGE (22)) 

msEPI acquisition at Rinplane × MultiBand (MB) = 8×2-fold acceleration using 2-shots. 

Compared to the newly developed SMS-MUSSELS reconstruction, which is also used as an 

input to our network, we demonstrate ~30% improvement in root-mean-squared error 

(RMSE) in high-resolution structural images. We observe larger gains in ghosting/aliasing 

artifact mitigation in the harder problem of diffusion imaging, where SMS-NEATR allows 

for Rinplane × MB = 9×2-fold acceleration using 5-shots.

These are made possible by the deep learning step that enables phase estimations at such 

high acceleration factors. Importantly, the final use of a rigorous physics-based forward-

model reconstruction limits the role of ML in the final reconstruction. Thus, SMS-NEATR 

allows us to tap into the potential of convolutional neural networks (CNN) to solve for 

important nuisance modulations and unknowns in the forward model without treating the 

reconstruction as an end-to-end process. The result is a better harnessed sensitivity encoding 

with full utilization of the scanner hardware. Our strategy paves the way to reaping the 

benefits of ML while constraining potential damage from utilizing it on data beyond its 

training experience, and without being exposed to the vulnerabilities of not knowing exactly 

what the reconstruction is doing. Our approach of using ML to estimate nuisance parameters 

that are hard to determine could allow physics-based reconstructions to work well in other 

applications, such as retrospective motion-correction without navigation or additional 

hardware.

We provide Matlab source code and data to reproduce our diffusion msEPI results here: 

https://bit.ly/2QgBg9U
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METHODS

Reconstruction Overview

The SMS-NEATR flowchart is presented in Fig. 1. We begin by performing an SMS-

MUSSELS reconstruction on the highly-accelerated (e.g. Rinplane × MB = 8×2) msEPI data 

to obtain an initial image estimate with mitigated artifacts from the nuisance phase between 

shots. The image is further improved using U-Net processing (23) which estimates a refined 

image with minimal artifacts. Starting from this reconstruction, we estimate the phase image 

corresponding to each shot using phase-regularized parallel imaging (24). Given the 

estimated shot-to-shot phase variations, we then perform a physics-based joint 

reconstruction (JVC-SENSE) to arrive at the final solution. JVC-SENSE incorporates slice 

acceleration and uses k-space data from all shots and their conjugate symmetric counterparts 

to solve for a common magnitude image. We detail the individual steps next.

SMS-MUSSELS Formalism

The first step of SMS-NEATR is based on a MUSSELS reconstruction, where the input is 

the acquired multi-shot k-space data, and the output is an estimate of shot images which are 

further refined in the later steps. To begin with, we will ignore SMS encoding and consider 

only in-plane acceleration. In this case, MUSSELS entails the solution of the following 

optimization problem:

minx∑t = 1
Ns ‖FtCxt − dt‖2

2 + λ‖ℋ(x)‖∗ (1)

where Ft represents the undersampled discrete Fourier transform (DFT) corresponding to 

shot t, C are the coil sensitivities, xt is the unknown complex-valued image in shot t with 

size N1 × N2, and dt are the acquired k-space data in this shot. The term ‖FtCxt − dt‖2
2 thus 

represents our data consistency through sensitivity encoding (25). The operator ℋ( ⋅ ) first 

applies the DFT, and then extracts r × r × Ns patches in k-space to generate a data matrix 

ℋ(x) with block-wise Hankel structure (11,26–28). This operator acts on a 3-dimensional 

data structure x of size N1 × N2 × Ns, which is formed by concatenating the images xt from 

all Ns shots together. The nuclear norm constraint ‖ℋ(x)‖∗ thus enforces a low-rank prior on 

the block-Hankel representation of the multishot data in k-space. This prior is similar to the 

SAKE formulation (28), albeit with two differences: the coil axis is now replaced by the shot 

dimension, and sensitivity encoding is explicitly exploited. As such, we follow the SAKE 

approach and pursue a simple, POCS-SENSE like algorithm (29) to solve Equation 1 as 

detailed in the Appendix. We will show that the advanced FISTA update rules (30) improve 

convergence and image quality. We also note that the cost function being minimized differs 

from the convex optimization problem set by the original MUSSELS approach, and is more 

similar to LORAKS-type approaches (31) as they solve a non-convex problem.

Extension to SMS: We developed a new approach to allow MUSSELS to work with SMS 

encoding using the readout-extended FOV concept (17). This represents SMS as 

undersampling in the kx axis by concatenating the two slices along the readout (Fig.1a). In-
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plane and slice acceleration could thus be captured using the Fourier operator Ft in Equation 

1, now with simultaneous kx-ky undersampling.

In the next step of the SMS-NEATR reconstruction, we use the estimated shot images 

{xt}t = 1
Ns  as input to a residual CNN (32,33) with U-Net architecture (23). The network aims 

to learn and mitigate the reconstruction errors in SMS-MUSSELS and provide output shot 

images, {ut}t = 1
Ns , with minimal artifacts.

Network Architecture

We used a patch-based U-Net to learn the mapping between the initial reconstruction and its 

difference to the ground truth image in a slice-by-slice manner. The network consisted of 5 

levels (Fig. 2), and the number of convolutional filters was 64 at the highest level. As the 

size of input was reduced 2-fold by max pooling in the next level, the number of filters was 

increased 2-fold to retain the total number of kernel weights in each level. The kernels had 

size 3×3, and each dropout layer set a randomly selected 5% of its input units to zero to help 

avoid overfitting (34). Leaky ReLU was selected as the nonlinear activation function (35). 

Batch normalization (BN) was utilized to help accelerate training and avoid saturating 

nonlinearities (36).

For SAGE reconstruction, we trained a complex-valued network by separating each of the 2-

shot images into its real and imaginary components. This way we used 4 channels, 

{ℜ(x1), ℑ(x1), ℜ(x2), ℑ(x2)}, in this network configuration (Fig. 2). For DWI, we explored 

using both complex-valued and magnitude-based networks. The complex network made use 

of 10 channels (real and imaginary components from 5-shots) while the absolute value of 

each of the 5-shots, {∣x1∣, …, ∣x5∣} was used as input channels for the magnitude-based 

model. The remainder of the manuscript focuses on the magnitude-based DWI network, and 

the complex-valued U-Net results are reported in Supporting Information Fig S9 and S10.

Network Implementation

Keras programming interface (37) with Tensorflow (38) backend were chosen to perform the 

training. ADAM optimizer (39) was used with learning rate = 0.001 and decay = 0.001. 

While learning rate acts as a gradient descent step size, decay parameter dampens this step 

size to take progressively smaller steps in each epoch. An ℓ2 loss function was minimized 

using 200 epochs and a batch size of 128. An NVIDIA Titan XP graphics card with 12 GB 

memory was used for training, which took ~18 hours for SAGE and ~19 hours for DWI.

For SAGE processing, slices and echoes were treated as different training instances. At the 

test stage, the patch-based network was applied in a sliding-window manner with a step size 

of 10 voxels, and the estimated residuals from overlapping patches were averaged together. 

This process took 4.5 seconds/slice. Similarly for DWI, slices and diffusion directions were 

treated as different training samples and the inference took 9 seconds/slice.
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Phase cycling

We form a magnitude estimate from the U-Net shot images by averaging, 

munet = 1
Ns

∑t = 1
Ns ∣ ut ∣. We keep this improved magnitude fixed, and solve only for the image 

phase of each EPI-shot ϕt using phase-regularized parallel imaging, or phase cycling (24):

minϕt
‖FtCmunet ⋅ e

iϕt − dt‖2
2 + α‖Wϕt‖1 (2)

Here, only the highlighted phase information ϕt is unknown, W is a wavelet operator that 

imposes sparsity prior on the shot phase via ℓ1 penalty, and α is a parameter that controls the 

degree of regularization. The solution of this problem is made easier by the fact that we are 

using sensitivity encoding to solve only for the real-valued individual shot phases rather than 

the complex-valued individual shot images. The shot phases from the complex-valued SAGE 

network, ∢ut, were used to initialize this non-convex problem. For DWI reconstruction with 

magnitude-based U-Net processing, shot phases from SMS-MUSSELS reconstruction, ∢xt, 

served as initial guess. The complex-valued DWI network was still able to provide shot 

phase information, ∢ut, to initialize phase cycling (Supporting Information Figs S9 and 

S10). SMS acceleration is again embedded in Equation 2 via the 2-dimensional 

undersampling in Ft, and the coil sensitivities of the slices concatenated in the readout 

direction as represented by C.

JVC-SENSE

Given estimates of shot-to-shot phase variations ϕt, we can now jointly solve for the 

common magnitude image m using the data from all shots, through harnessing sensitivity 

encoding for slice and in-plane acceleration (25) and the virtual coil (VC) concept (19,20) in 

JVC-SENSE. To do this, we solve a simple least squares problem:

minm∑t = 1
Ns FtCe

iϕt

F−tC
∗e

−iϕt
m −

dt

d−t
∗

2

2

+ β ⋅ ℛ(m) (3)

Here, the only unknown is the highlighted magnitude image m, and the coil sensitivities are 

modified to include the phase variation in each shot to yield the combined sensitivities Ceiϕt. 

The VC concept is enforced by augmenting the optimization with the conjugate symmetric 

k-space data d−t
∗  and the conjugate sensitivities C*e−iϕt. Conjugate symmetric k-space is 

derived from the acquired k-space data by complex-conjugation and flipping the axes in the 

kx-ky plane. We have used the shorthand notation −t to express this mirroring operation in k-

space. Joint reconstruction across all shots is performed via the summation operator 

∑t = 1
Ns ( ⋅ ). For structural imaging with SAGE, we have used total variation (TV) penalty as 
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the regularizer ℛ( ⋅ ), with the corresponding regularization parameter β. For diffusion 

imaging, we have explored using TV regularization as well as a simple Tikhonov penalty.

During the review of this paper and after public dissemination of SMS-NEATR preprint 

(40), abstract (41) and code (https://bit.ly/2QgBg9U) which introduced SMS-MUSSELS and 

its improvement using deep learning, two preprints have also appeared that describe SMS-

MUSSELS and an alternative deep learning enhanced msEPI reconstruction (42,43).

Training Data

Spin-and-gradient-echo (SAGE)—In compliance with Institutional Review Board 

(IRB) requirements, three volunteers were scanned on a Siemens Prisma 3T system with 

SAGE (22) msEPI sequence to build a training dataset. Multishot data were collected, where 

each shot was acquired at Rinplane=8-fold acceleration, and a total of 8-shots were collected 

with a Δky sampling shift between the shots. When combined, this corresponded to a fully-

encoded acquisition at Rnet=1. Relevant parameters were: field of view (FOV) = 

220×220×120 mm3, resolution = 1×1×3mm3, echo times (TEs) = 26/61/95/130/165 ms, 

repetition time (TR) = 8.3 sec, and effective echo spacing = 0.148 ms. Each shot sampled 

only 27 phase encoding lines due to Rinplane=8-fold acceleration. First two echoes were 

sampled before the 180˚ pulse, and the latter three were acquired after the refocusing pulse. 

The fifth echo was timed so that it was a spin echo image.

Coil sensitivities used in reconstructions were estimated using ESPIRiT (44,45) based on a 

FLEET acquisition (46). FLEET autocalibration signal (ACS) acquisition collects multishot 

gradient echo EPI data with low flip angles, where all the shots for a specific slice are 

acquired first. Then all shots for the second slice are sampled, and this is repeated until every 

slice in the FOV prescription are accounted for. This way, encoding of each slice is 

completed within a time frame on the order of 100 msec, and shot-to-shot variations are 

minimized. Unlike the FLEET calibration scan, the “standard mode” for ACS acquisition 

would sample the 1st shot for all the slices first, then acquire the 2nd shot again for all slice 

positions. The time frame for sampling all the shots is thus on the order seconds, which 

increases the vulnerability to shot-to-shot motion and has detrimental impact on the ACS 

data quality (46). Using FLEET acquisition has thus allowed us to improve the robustness of 

our coil sensitivity estimation. All acquisitions were made with a Siemens 32-channel head 

coil.

To obtain clean reference data, MUSSELS reconstruction was performed using all of the 8-

shots at Rinplane=8 acceleration, which yielded “fully-sampled” ground-truth images. To 

enable higher acquisition efficiency, only 2-shots out of the 8-shot data were selected for 

subsampled reconstructions. The 2-shots were acquired with a k-space shift of Δky=4 

samples to provide complementary coverage. These were further collapsed in the slice 

direction to simulate MB=2-fold acceleration, so that the total acceleration factor per shot 
became Rinplane × MB =8×2. This highly undersampled msEPI data were then reconstructed 

using SMS-MUSSELS. Due to the very high acceleration rates, SMS-MUSSELS algorithm 

incurred reconstruction artifacts. These errors with respect to the clean reference image were 

used as the training target in our residual learning approach (Fig. 2).
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We extracted 57600 overlapping patches of size 64×64 with a step size of 16 voxels from the 

training data. The 2-shots decomposed into real and imaginary components in the SAGE 

acquisition were treated as input channels, and were concatenated to create 64×64×4 patches 

that were fed to the network to enable joint reconstruction across shots. The training dataset 

was enriched by 16-fold using augmentations including scaling (0.5×, 1×, 2×), flipping the 

axes (left-right, anterior-posterior and echo dimension) and rotations (±135, ±90, ±45 

degrees).

Diffusion Weighted Imaging (DWI)—Three volunteers were scanned on a 3T Prisma 

system to build up a DWI training dataset, consisting of 9-shot data acquired at Rinplane=9-

fold acceleration. The parameters were: field of view (FOV) = 224×224×120 mm3, 

resolution = 1×1×3mm3, TE/TR = 54/5100 ms, and effective echo spacing = 0.13 ms. Each 

shot sampled only 24 phase encoding lines due to Rinplane=9-fold acceleration. In addition to 

a b=0 image, six diffusion directions at b=1000s/mm2 were collected. FLEET calibration 

data were used to estimate ESPIRiT coil sensitivity maps.

Reference “fully-sampled” images were obtained using all 9-shots in MUSSELS 

reconstruction. Subsampled acquisitions were obtained by selecting 5-shots out of this 9-

shot dataset. The 5-shots were shifted by Δky={0,2,4,6,8} samples to provide 

complementary information. These were further undersampled by collapsing two slices that 

are 60 mm apart to simulate MB=2 slice acceleration. The highly subsampled diffusion 

msEPI data (Rinplane×MB=9×2) were reconstructed using SMS-MUSSELS. Reconstruction 

errors with respect to the “fully-sampled” reference data were learned using a deep network. 

Similar patch extraction and augmentation steps were performed.

Reconstruction Experiments

SMS-MUSSELS parameter optimization: We explored the dependence of the 

reconstruction performance of SMS-MUSSELS on the k-space window size r, as well as the 

rank constraint enforced by the number of singular values, k. For the SAGE dataset, we 

evaluated the RMSE metric on a slice group from a training subject, and considered a range 

of window sizes r ∈ {2,3,4,5,6,7}. To control the rank of the data matrix ℋ(x) which has Ns 

× r × r columns in an intuitive manner, we varied the “effective number of shots (Neff)” 

between Neff ∈ {0.75, 1, 1.25, 1.5}. For instance, using a window size r = 6 and enforcing 

Neff = 1.25 would imply that the number of singular values K = Neff × r × r = 45 is used 

during the reconstruction. This way, Neff gives us a handle on the rank constraint in terms of 

the effective number of shots we allow the msEPI data to have. The optimal parameter 

setting turned out to be r = 5 and Neff = 1 for the 2-shot SAGE reconstruction at 

Rinplane×MB=8×2. Termination criterion was less than 0.1% update between image 

estimates from successive iterations. This analysis is presented in Supporting Information 

Figure S1.

Using DWI dataset from a training subject, a similar analysis revealed that the optimal 

parameter setting is r = 7 and Neff = 1.25 for a 5-shot reconstruction at Rinplane×MB=9×2. 

Best RMSE was obtained by terminating the SMS-MUSSELS iterations when the update in 

the image estimate between iterations was less than 0.3%.
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POCS versus FISTA updates: To improve the convergence rate and image quality of 

our POCS-like optimization algorithm for SMS-MUSSELS, we have explored FISTA 

update rule, which makes use of a combination of the current and previous iterates to form 

the next image estimate (as detailed in the Appendix). FISTA was previously used in the 

context of diffusion msEPI with local low rank constraint in image-space (47). A 

comparison on one of the SAGE training datasets indicated that FISTA provided substantial 

reduction of aliasing/ghosting artifacts as well as RMSE improvement, when other 

parameters were held constant (r = 5 and Neff = 1). As such, we have used FISTA iterations 

for the remaining SMS-MUSSELS reconstructions reported herein. Convergence analysis is 

provided in Supporting Information Fig S11.

SAGE reconstruction @ Rinplane×MB=8×2 with 2-shots: msEPI SAGE data were 

acquired on a 4th subject (not seen during the training of the network). This acquisition was 

then reconstructed with SMS-MUSSELS using FISTA iterations and the optimized 

parameter setting in Matlab, running on a workstation with 64 CPU processors and 256 GB 

memory.

SMS-MUSSELS shot images were then processed with the trained U-Net, which allowed 

improved estimation of shot-phases using phase cycling. We used 500 iterations and “db4” 

wavelets in phase cycling, and set the regularization parameter to α=10−5 for optimal 

RMSE. Having estimated the phase of each shot, JVC-SENSE with total variation penalty 

(β=3·10−4) was used to compute the final magnitude image. For all the remaining 

experiments, we used these reported parameter values without further optimization.

SAGE reconstruction without ML: To assess the contribution of the ML step to SMS-

NEATR, we performed an additional reconstruction without U-Net processing. We used the 

same undersampling setup from the first experiment, namely Rinplane×MB=8×2 acceleration 

with 2-shots. Starting from the SMS-MUSSELS magnitude estimate mmussels, we employed 

phase cycling to solve:

minϕt
‖FtCmmussels ⋅ e

iϕt − dt‖2
2 + α‖Wϕt‖1 (4)

Having obtained refined shot-to-shot phase estimates ϕt, we went on to use JVC-SENSE and 

arrive at a refined magnitude solution. This way, we followed the flowchart outlined in Fig. 

1, except that we by-passed the U-Net processing step.

SAGE reconstruction using BM3D instead of U-Net: We have also explored 

replacing the deep network with a conventional denoiser, BM3D (48), to help improve the 

SMS-MUSSELS output. After decomposing the shot images into real and imaginary 

components, we processed each of these images separately, and normalized their intensity to 

be within [0,1]. We optimized the BM3D filter width σ for the best RMSE. The resulting 

shot images were used to initialize phase-cycling and JVC-SENSE reconstructions, i.e. we 

again followed the flowchart in Fig. 1, but replaced U-Net with BM3D.
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T2 and T2* parameter fitting using SAGE data: The five echo images produced by 

SMS-MUSSELS and SMS-NEATR algorithms were used in a Bloch-equation based model 

fit (22) to estimate T2 and T2* parameter maps. As supplementary information, we have also 

explored parameter fitting to the reconstructions obtained from U-Net and BM3D denoisers.

DWI reconstruction @ Rinplane×MB=9×2 with 5-shots: DWI data at six directions 

were acquired on a 4th subject (not seen during the training). Two of these directions were 

reconstructed with SMS-MUSSELS. These images were refined using the deep diffusion 

network, and were processed with phase-cycling and JVC-SENSE to compute SMS-NEATR 

results. In this case, 50 phase-cycling iterations with α=10−3, and Tikhonov regularized 

JVC-SENSE with β=10−2 yielded optimal RMSEs. We have also explored BM3D 

denoising, again with complex-valued processing for each shot separately, and optimized for 

the filter width σ.

DWI analysis: Six direction diffusion data reconstructed by the algorithms under 

comparison were registered using MCFLIRT (49). Diffusion tensor fitting was performed 

using the DTIFIT function in FSL, which also produced fractional anisotropy (FA) and mean 

diffusivity (MD) maps.

RESULTS

SAGE reconstruction @ Rinplane×MB=8×2 with 2-shots:

The left column of Fig. 4 shows SMS-MUSSELS reconstructions, where only the first and 

last echoes and root-sum-of-squares error map calculated over the entire 5 echoes are 

displayed. U-Net processing mitigated some of the noise amplification and improved the 

RMSE from 10.8% to 8.3%. Starting from this, SMS-NEATR was able to provide a small 

error reduction (8.1%), with similarly high image quality.

SAGE reconstruction without ML:

Supporting Information Fig S2 demonstrates the effect of not using U-Net denoising in the 

SMS-NEATR pipeline. In this case, there was still some gain from refining the shot-phase 

estimates using phase-cycling and joint parallel imaging reconstruction (RMSE went from 

10.8% to 9.2%), but the improvement over SMS-MUSSELS was yet higher when ML was 

included (8.1%).

SAGE reconstruction using BM3D instead of U-Net:

Using a conventional BM3D denoiser could still provide RMSE reduction (9.3%) but the 

learned U-Net model was more successful in refining the SMS-MUSSELS output (8.3%). 

Supporting Information Fig S3 also explores using BM3D to replace U-Net in the SMS-

NEATR flowchart, which appeared to be slightly less effective (8.4% with BM3D 

initialization versus 8.1% with U-Net jumpstart).

T2 and T2* parameter fitting using SAGE data:

Parameter maps from a slice group reconstructed using SMS-MUSSELS and SMS-NEATR 

are depicted in Fig. 4, corresponding to an 8.3sec acquisition with whole-brain coverage at 
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1×1×3mm3 resolution. SMS-NEATR was able to mitigate noise amplification and image 

artifacts mainly affecting the middle of the FOV in the SMS-MUSSELS maps. T2 and T2* 

fits after BM3D and U-Net denoising are compared in Supporting Information Fig S4. U-

Net estimates again appeared to have higher quality than the BM3D results, and were similar 

to the SMS-NEATR maps.

Supporting Information Figs S12 and S13 show parameter maps from fully-sampled 

MUSSELS reconstruction as well as error maps from the accelerated reconstructions.

DWI reconstruction @ Rinplane×MB=9×2 with 5-shots:

Fig. 6 shows DWI slice groups from one diffusion direction. These lower slices with poor B0 

uniformity were selected to demonstrate the effect of high in-plane acceleration in avoiding 

distortion and voxel pile-up artifacts. Regardless, SMS-MUSSELS did suffer from residual 

ghosting and noise amplification in these difficult reconstruction tasks. BM3D and U-Net 

processing helped denoise the data, but failed to eliminate the structured artifacts (indicated 

by white arrows). BM3D results appeared over-smooth, whereas U-Net provided a better 

trade-off between over-smoothing and denoising. SMS-NEATR did not suffer from over-

smoothing, and could mitigate noise amplification and structured artifacts. We anticipate that 

RMSE values have contributions from both noise and reconstruction error since the ground 

truth data are also noisy. As such, RMSE is likely to be partially indicative of reconstruction 

performance (U-Net consistently had the best performance).

Using complex-valued or magnitude-based U-Net processing led to similar SMS-NEATR 

results in DWI (Supporting Information Fig S10). TV-regularizer could provide further 

RMSE reduction than Tikhonov penalty, but this came at the cost of some over-smoothing 

(Supporting Information Fig S8). Reducing the TV regularization parameter led to 

comparable RMSEs and image sharpness as ℓ2-penalty using both complex- and magnitude-

valued U-Net initialization (Supporting Information Fig S8 and S9).

Fig. 7 shows SMS-NEATR results from the six direction acquisition, as well as the average 

DWI image, color FA and MD maps, and the root-sum-of-square combination of error 

images across all directions. A similar analysis is presented for the fully-sampled, SMS-

MUSSELS and U-Net reconstructions in Supporting Information Figs S14 – S16.

DISCUSSION

We presented SMS-NEATR, a synergistic ML and physics-based reconstruction approach, 

that allowed up to Rnet=8-fold accelerated msEPI with high image quality. This was made 

possible by taking advantage of phase-cycling algorithm, the newly developed SMS-

MUSSELS, deep learning, and joint parallel imaging reconstruction. Our residual CNN 

learned to predict and mitigate the errors in highly accelerated SMS-MUSSELS 

reconstruction, which then permitted phase-cycling to estimate shot-to-shot phase variations. 

Including this information as additional sensitivity variations then allowed JVC-SENSE to 

solve for a common magnitude image using the entire multishot k-space data and VC 

concept.
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Partial Fourier sampling was not performed during any of the acquisitions. While this would 

have helped achieve shorter TE and higher SNR in DWI, it would not affect the geometric 

fidelity of the acquisition. Our motivation in employing high in-plane acceleration rates was 

to reduce distortion and T2*-related blurring, as well as enabling shorter TE. Particularly 

with the SAGE scan, our aim was to replace the currently inefficient spin-warp imaging with 

the much faster, msEPI-based acquisitions for rapid clinical imaging, while minimizing 

ghosting, blurring and distortion artifacts that plague EPI.

CNNs can represent very complicated and non-linear input/output relations. While this 

makes them very powerful, such a complex mapping between input and output causes the 

network to be difficult to characterize. Since its direct application may lead to unpredictable 

errors, end-to-end CNN reconstruction in clinical settings is likely to raise acceptance issues. 

A ML reconstruction approach that can overcome this issue was proposed in the Variational 

Network (VN) (50) formulation. This allows a transparent deep learning reconstruction of 

accelerated acquisition where both the kernel weights and nonlinear activation functions are 

learnt and can be visualized at any layer. VN also utilizes sensitivity encoding and enforces 

consistency to the acquired k-space data. Similarly, model based deep learning (MoDL) is 

powerful in its ability to combine data consistency and convolutional layers (51). These 

ideas treat the iterations in gradient-descent type reconstructions as unrolled networks to 

retain fidelity to acquired data via a forward model, while learning model parameters that 

map the reconstruction to a reference image (52). Importantly, such combination of a 

forward-model and learned filtering provided further improvement than a model-based 

reconstruction followed by U-Net denoising (53).

SMS-NEATR also taps into the potential of CNN without treating it as an end-to-end tool, 

while fully harnessing the encoding provided by the scanner hardware. We achieved this by 

using CNN to obtain an interim image with minimal artifacts, while utilizing a rigorous 

physics-based approach to validate and improve upon this solution in the final step of 

reconstruction. Our goal in SMS-NEATR is to capture shot-to-shot phase variations 

accurately, since when they are known, a JVC-SENSE reconstruction that solves for the 

magnitude image is capable of outperforming alternative approaches. Synergistic 

combination of ML and physics-based reconstruction proved to be powerful, leading to 

~30% RMSE reduction over our SMS-MUSSELS implementation (Figs. 4 and 6). In the 

absence of deep learning initialization, the subsequent phase cycling and JVC-SENSE steps 

provided a smaller, <20% improvement over the SMS-MUSSELS reconstruction 

(Supporting Information Fig. S2). A conventional BM3D denoiser also proved to be 

effective in jumpstarting SMS-NEATR, but the performance was consistently better using a 

learned denoiser tailored for the specific application (Figs. 6, Supporting Information Figs. 

S3 and S4). We anticipate further gains from advanced models that could simultaneously 

enforce data consistency and perform learned filtering (54–56). This would also streamline 

the SMS-NEATR pipeline and reduce the number of steps.

Application of msEPI in structural imaging is made difficult by ghosting artifacts from hard-

to-estimate physiologic signal changes between shots. This is particularly true for gradient 

echo imaging at late TEs. To illustrate, we performed a “sliding window” combination of 8-

shots of SAGE data acquired at Rinplane=8 acceleration to obtain “fully-sampled” data 
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(Supporting Information Fig. S5). The ghosting artifacts that stem from physiological noise 

is especially strong in the 2nd and 3rd echoes due to increased phase accrual at long TEs (the 

last echo is in fact a spin echo, which refocuses most of the phase evolution and results in 

the cleanest image). Using a standard forward-model based reconstruction for structural 

msEPI would thus necessitate the simultaneous estimation of the image content and the 

phase variations in each shot. Since both the clean image and the phase information used in 

the forward-model are unknown, this would entail the solution of a computationally 

prohibitive, non-convex optimization problem that could get stuck at local minima. As such, 

existing msEPI techniques circumvent this difficulty by dividing the reconstruction into two 

separate parts: shot-phase estimation, and combination of multishot given the estimated 

phase information. Navigator-based approaches derive this phase information from 

additional calibration acquisitions made for each shot (3–7). Diffusion imaging with MUSE 

and its extensions (9,12,13) operate without a navigator, and perform the phase estimation 

step using parallel imaging to reconstruct a complex image for each shot. Smoothing the 

phase of each intermediate image then yields an estimate of shot-to-shot variations, which 

allows joint reconstruction of all multishot data together.

msEPI reconstruction is indeed harder in diffusion imaging, since the phase variations 

amplified by diffusion gradients can be much stronger than the physiologic noise in 

structural imaging, as demonstrated in the “sliding window” combination in Supporting 

Information Fig. S6. The final Supporting Information Fig. S7 shows a similar sliding 

window data combination, but this time without any diffusion gradients (b=0). Even in this 

case where one would not expect any artifacts, there are minor ghosts that may be stemming 

from patient motion. Given that the TR was 5.1sec, msEPI acquisitions are indeed 

susceptible to motion artifacts since it took ~46sec to sample these 9-shots. A side benefit of 

highly accelerated msEPI could be an improvement in motion robustness. We have seen 

similar gains in the final SMS-NEATR diffusion reconstructions using either magnitude- or 

complex-valued deep learning. We expect this was because the magnitude network could 

provide higher quality magnitude priors which helped phase-cycling to better solve for the 

shot-phase data, whereas the complex network provided an overall gain in both magnitude 

and phase estimates – but the magnitude output was improved to a lesser extent (as can be 

seen in the RMSE values in Supporting Information Fig S10). Having obtained similar 

SMS-NEATR results may indicate that there is flexibility in the blocks in the pipeline, as 

long as the shot-phase estimates are improved beyond those of SMS-MUSSELS.

MUSSELS exploits similarities between the shot-images using a low-rank prior on the 

block-Hankel representation of their k-space (11,14), so that it can perform msEPI 

reconstruction without explicit shot-phase estimation. MUSSELS has allowed Rinplane=8-

fold acceleration per each shot in msEPI diffusion imaging using as few as 4-shots (Rnet=2). 

Unlike earlier navigator-based (5–7) or navigator-free approaches (8–10) where the number 

of acquired shots was equal to the in-plane acceleration factor (Ns=Rinplane), MUSSELS 

could thus perform in the (Ns<Rinplane) regime to improve acquisition efficiency. With SMS-

NEATR, we pushed the efficiency gain even further to enable Rnet=8-fold acceleration 

(Rinplane×MB=8×2 with 2-shots) in structural imaging, and Rnet=3.6-fold (Rinplane×MB=9×2 

with 5-shots) in diffusion imaging. Although SMS-MUSSELS had some residual artifacts at 

such high accelerations, it provided a good initial guess for our residual network to further 
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clean up the shot-images. Starting from these estimates, we could then solve for the phase 

variations using phase cycling, which constituted an easier problem since the unknown 

information was a real-valued phase image. This provided a 2-fold reduction in the number 

of unknowns compared to a complex-valued SENSE solution.

The best RMSE performance for structural imaging was obtained with r × r = 5×5 windows 

and with Neff=1, whereas the optimal parameters were r × r = 7×7 windows and with 

Neff=1.25 for DWI. The increased window size and rank constraint should help capture 

greater shot-to-shot variations, which are more likely to be observed in diffusion imaging 

than the SAGE scan. Further relaxing the rank constraint and using larger windows could 

help represent more spatially varying phases differences between the shots, but relaxing 

these priors beyond their optimal values would come at the potential cost of RMSE 

performance. Indeed, using Neff = Ns would be a non-informative prior and the outcome 

would be identical to a shot-by-shot SENSE reconstruction.

Limitations and their mitigation:

SMS-NEATR uses ML to provide an initial estimate to a difficult image reconstruction 

problem, thereby avoiding the vulnerability of poor generalization of “direct” ML 

reconstruction. In addition to this, we have augmented our training dataset size by 16-fold to 

subject the network to greater variation. Using a patch-wise representation with overlapping 

patches helped further increase the available number of training samples. Finally, we have 

provided the network with different contrasts (echoes or diffusion directions) as training 

samples to help improve generalization. Despite these precautions, the network would 

benefit from re-training if large changes in sequence parameters are desired to be made, or if 

they are dictated by hardware limitations of other scanners. We also anticipate that having 

the subsequent physics-based reconstruction will mitigate some of the generalization 

concerns, as the ML output is used for initializing this model based step. Exploring unrolled 

networks with data consistency layers (50–53,55) or using conventional denoisers could 

provide additional robustness. Using smoothness priors embedded in the MUSSELS 

reconstruction with the SR-MUSSELS formalism rather than relying on learned or 

conventional denoisers would also be an elegant solution.

Another consideration is the selection of the reconstruction technique that provides the 

initial solution to U-Net. We have developed a FISTA-based solver for SMS-MUSSELS, but 

other advanced reconstruction strategies such as MUSE (9) or POCS-MUSE (10) could also 

be utilized to provide this initial estimate.

Qualitatively, SMS-NEATR provided greater gains in the more challenging multishot DWI 

reconstruction than the SAGE application. It has better mitigated ghosting/aliasing artifacts 

and noise amplification than SMS-MUSSELS, but the RMSE metrics remained above 20%. 

We think that this is because the ground truth diffusion data is also corrupted by noise, 

which makes it difficult to disentangle reconstruction artifacts from the noise contribution. 

As such, other measures of fidelity to reference data could better gauge the improvement in 

DWI reconstruction.
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For Nyquist ghost correction, we have used a simple 1-dimensional navigator in a slice-

specific manner. Especially in oblique acquisitions, more involved ghost correction 

techniques such as Dual Polarity Grappa (57) and LORAKS (31) should allow for improved 

suppression of these errors. To ensure that the residual ghosts seen in presented results stem 

only from reconstruction errors due to acceleration, we have included fully-sampled 

MUSSELS reconstructions and FLEET calibration data that do not exhibit ghosting in the 

Supporting Information Figs S17 and S18.

Extensions:

We have demonstrated the applications of SMS-NEATR in msEPI SAGE and DWI 

acquisitions. Enabling Rinplane=8 or 9-fold acceleration in other pulse sequences could help 

create a multi-contrast msEPI clinical protocol with high geometric fidelity. This would 

minimize the distortion and blurring artifacts that hamper image quality and achievable 

resolution in the recently developed singleshot EPI protocols (1,2). Employing msEPI 

readout in multi-inversion T1 mapping (58,59) and FLAIR (60) acquisitions with SMS-

NEATR reconstruction could enable a rapid MR exam with similar table time as a CT scan. 

Other advanced encoding strategies such as wave-EPI (61) could provide additional 

efficiency gain and/or in-plane acceleration capability.

We believe that the strategy of utilizing ML to estimate unknown nuisance parameters in 

physics-based forward model reconstructions can be impactful in solving other prohibitively 

difficult problems. We have recently demonstrated this concept in prospective motion 

correction (62), where we used residual deep learning to provide an interim image with 

largely reduced motion artifacts. This interim CNN reconstruction provides an initial image 

and motion parameter estimate thus jumpstarting the physics-based TAMER algorithm (63), 

which uses the extra degrees of freedom in multi-coil data to jointly estimate motion 

parameters and the clean image. Having access to a good initial guess helped the non-convex 

TAMER optimization converge 30× faster to the final solution. Other venues that might 

benefit from this synergistic approach could be in navigator-free Nyquist (N/2) ghost 

correction, calibrationless parallel imaging and reference-free k-space trajectory estimation.

CONCLUSION

We demonstrated the ability of SMS-NEATR, a combined ML and physics-based 

reconstruction algorithm, in providing high quality reconstructions from up to 8-fold 

accelerated msEPI acquisitions using 2–5 shots of data. The ability to acquire high in-plane 

resolution images with minimal distortion and blurring could enable an msEPI-based MRI 

exam with multiple contrasts, while matching the table time of a CT scan.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

We pursue a POCS-like solution to the optimization problem posed in the MUSSELS 

formalism (Equation 1), and follow the steps below:

y1 = x0 % initial guess from e.g. SMS‐SENSE reconstruction

τ1 = 1

for i = 1: Niter
% Low‐rank constraint:
A = ℋ(yi)

UΣVH = svd(A)

A = UΣkVH % Σk is obtained via hard thresholding by keeping the k largest singular values

xi = ℋ∗(A) % ℋ∗ is a transposed mapping that inserts Hankel matrix elements into multi‐shot k‐space

for t = 1: Ns
xt = xi(: , : , t)

% Generate coil images by multiplication with sensitivities:
xc = Cxt
% Resubstitute acquired k‐space:

xc = xc + FH(dt − Ftxc)

% Coil combination:

xt = (CHC)−1CHxc
xi(: , : , t) = xt

end
if use_ f ista

τi + 1 =
1 + 1 + 4τi

2

2

yi + 1 = xi +
τi − 1
τi + 1

(xi − xi − 1)

else
yi + 1 = xi

end
end

The flag “use_fista” toggles between conventional POCS-like update rule and FISTA 

iteration, which has earlier iterates to form the next image estimate. Niter denotes the 

maximum number of iterations, which we have taken to be 200. x0 is an initial guess for the 

msEPI images, and were estimated using an SMS-SENSE reconstruction for each of the 

shots independently.
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Fig 1. 
SMS-NEATR is a combined machine learning and physics-based reconstruction technique 

for highly-accelerated msEPI acquisition. We developed SMS-MUSSELS algorithm to 

provide an initial solution, which may suffer from artifacts due to high acceleration 

(Rinplane×MB=8×2 with 2-shots). Starting from this, residual learning with U-Net 

architecture provides an interim image with minimal artifacts. Given this solution, phase 

cycling algorithm is used for estimating shot-phases, which are then utilized as sensitivity 

variations in a final joint virtual coil (JVC) SENSE reconstruction.
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Fig 2. 
U-Net architecture is used to learn the mapping between patches of shot-images 

reconstructed with SMS-MUSSELS, and their difference to reference data. Both the input 

and output have been decomposed into real and imaginary components to enable complex-

valued processing for SAGE reconstruction. 64×64 patches from all the shots are presented 

as input to a 5-level network, where the first level uses 64 convolutional filters. To help 

provide scale invariance, max pooling operators downsample the patches after each layer. At 

the same time, the number of filters are doubled to retain the total number of kernel weights 

at each level.
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Fig 3. 
Rinplane×MB=8×2-fold accelerated SAGE msEPI acquisition with 2-shots from a training 

dataset. One SMS slice group and two echoes out of a total of five are depicted. Using a 

POCS-like solver for SMS-MUSSELS optimization led to residual aliasing/ghosting 

artifacts (arrows). FISTA update rules improved convergence and image quality of SMS-

MUSSELS, and mitigated these structured errors.
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Fig 4. 
SAGE test dataset at Rinplane×MB=8×2-fold acceleration using 2-shots. The first and last 

echoes are shown for a single SMS slice group. SMS-MUSSELS with FISTA (left) was 

successful in reconstructing images despite the high acceleration with 10.8% error. The 

bottom row shows root-sum-of-squares combination of error images across the five echoes. 

U-Net denoising of SMS-MUSSELS reconstruction provided improvement (8.3%, middle), 

and was used for initializing SMS-NEATR for additional quality gain (8.1%, right).
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Fig 5. 
T2 and T2* parameter maps obtained by Bloch equation fitting to the five-echo SAGE 

reconstruction. This 2-shot acquisition at Rinplane×MB=8×2-fold acceleration provides 

whole-brain coverage in 8.3 sec with low geometric distortion. While SMS-MUSSELS 

parameter maps appeared noisy (left), these artifacts were mitigated in the SMS-NEATR 

estimates (right).

Bilgic et al. Page 25

Magn Reson Med. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 6. 
Diffusion msEPI acquisition at Rinplane×MB=9×2 acceleration with 5-shots from the test 

subject. One SMS slice group is shown for this whole-brain acquisition. SMS-MUSSELS 

suffered from aliasing/ghosting artifacts in this harder reconstruction problem. BM3D and 

U-Net denoising could mitigate noise, but the structured artifacts persisted (arrows). SMS-

NEATR was able to further mitigate these errors to improve image quality, while avoiding 

potential over-smoothing BM3D and U-Net may suffer from.
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Fig 7. 
SMS-NEATR reconstruction for six direction diffusion data, as well as average DWI, color 

FA and MD maps and root-sum-of-squares error across the directions are presented.
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