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Abstract

The mechanisms by which Trpm2 channels enhance mitochondrial bioenergetics and protect 

against oxidative stress induced cardiac injury remain unclear. Here, the role of proline-rich 

tyrosine kinase 2 (Pyk2) in Trpm2 signaling is explored. Activation of Trpm2 in adult myocytes 

with H2O2 resulted in 10- to 21-fold increases in Pyk2 phosphorylation in wild-type (WT) 

myocytes which was significantly lower (~40%) in Trpm2 knockout (KO) myocytes. Pyk2 

phosphorylation was inhibited (~54%) by the Trpm2 blocker clotrimazole. Buffering Trpm2-

mediated Ca2+ increase with BAPTA resulted in significantly reduced pPyk2 in WT but not in KO 

myocytes, indicating Ca2+ influx through activated Trpm2 channels phosphorylated Pyk2. Part of 

phosphorylated Pyk2 translocated from cytosol to mitochondria which has been previously shown 

to augment mitochondrial Ca2+ uptake and enhance ATP generation. Although Trpm2-mediated 

Ca2+ influx phosphorylated Ca2+-calmodulin kinase II (CaMKII), the CaMKII inhibitor KN93 

did not significantly affect Pyk2 phosphorylation in H2O2-treated WT myocytes. After ischemia/

reperfusion (I/R), Pyk2 phosphorylation and its downstream pro-survival signaling molecules 

(pERK1/2 and pAkt) were significantly lower in KO-I/R when compared to WT-I/R hearts. 

After hypoxia/reoxygenation, mitochondrial membrane potential was lower and superoxide level 
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was higher in KO myocytes, and were restored to WT values by the mitochondria-targeted 

superoxide scavenger MitoTempo. Our results suggested that Ca2+ influx via tonically activated 

Trpm2 phosphorylated Pyk2, part of which translocated to mitochondria, resulting in better 

mitochondrial bioenergetics to maintain cardiac health. After I/R, Pyk2 activated pro-survival 

signaling molecules and prevented excessive increases in reactive oxygen species, thereby 

affording protection from I/R injury.
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1. Introduction

Transient receptor potential (Trp) channels are involved in many fundamental cell functions 

and associated with many disease states (Nilius, Owsianik et al. 2007). Trpm channels are 

a subgroup of Trp channel superfamily. Trpm2 is expressed in many tissues including heart, 

vasculature, hematopoietic cells and brain (Hecquet, Ahmmed et al. 2008, Miller and Zhang 

2011). Trpm2 is activated by adenosine diphosphate-ribose (ADPR) and H2O2 and mediates 

Ca2+ influx into the cell (Sumoza-Toledo and Penner 2011). Trpm2 has an essential 

role in susceptibility to oxidative stress (Sano, Inamura et al. 2001, Hara, Wakamori et 

al. 2002, Miller and Zhang 2011). The classical paradigm is that activation of Trpm2 

induces cell death by sustained increases in intracellular Ca2+ concentration ([Ca2+]i) (Hara, 

Wakamori et al. 2002, Sumoza-Toledo and Penner 2011), or mediates enhanced chemokine 

production in hematopoietic cells thereby aggravating inflammatory response and tissue 

injury (Takahashi, Kozai et al. 2011). Quite unexpectedly, our recent data demonstrated that 

Trpm2 is essential in cellular bioenergetics maintenance in both the heart (Miller, Hoffman 

et al. 2014, Hoffman, Miller et al. 2015) and neuroblastoma cells (Chen, Hoffman et al. 

2014); and that Trpm2 protects the heart (Miller, Wang et al. 2013, Hoffman, Miller et al. 

2015) and neuroblastoma (Chen, Zhang et al. 2013) from oxidative-stress induced injury.

Trpm2 is expressed in the sarcolemma and transverse (t) tubules in adult mouse ventricular 

myocytes (Miller, Wang et al. 2013). In adult cardiac myocytes, Trpm2 is activated by 

H2O2 and intracellular ADPR, inhibited by clotrimazole and flufenamic acid, does not 

inactivate, and has a conductance for Ca2+ that is approximately 50% of that for Na+ 

(Miller, Wang et al. 2013, Miller, Hoffman et al. 2014). By expressing wild-type (WT) 

Trpm2 or loss of function Trpm2 mutants in Trpm2-knockout (KO) cardiac myocytes, 

we demonstrated that Ca2+ influx through activated Trpm2 is required for bioenergetics 

maintenance and mitochondrial oxidants homeostasis (Hoffman, Miller et al. 2015). In this 

context, it is important to note that low levels of H2O2 emission which occurs during 

respiration in normal cardiac mitochondria (Stanley, Sivakumaran et al. 2011) may tonically 

activate Trpm2 channels. Physical sarcoplasmic reticulum (SR)/endoplasmic reticulum 

(ER)-mitochondria tethering by mitofusin-2 (de Brito and Scorrano 2008, Chen, Csordas 

et al. 2012) may provide the pathway by which Ca2+ entered via Trpm2 channels reaches 

the mitochondria via the SR. Constitutive, low level mitochondrial Ca2+ uptake is essential 
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in maintaining cellular bioenergetics (Cardenas, Miller et al. 2010) through stimulation 

of Ca2+-sensitive Krebs cycle dehydrogenases (McCormack and Denton 1980), thereby 

increasing the availability of NADH and FADH2 for the electron transport chain (Chen, 

Csordas et al. 2012). Because regeneration of anti-oxidative NADH is coupled to the Krebs 

cycle, mitochondrial Ca2+ uptake plays an important role in assuring efficient electron flow 

during oxidative phosphorylation, both for bioenergetics maintenance and to ensure that 

physiological but not toxic levels of ROS are generated (Kohlhaas, Liu et al. 2010).

To link Trpm2-mediated Ca2+ influx with cardiac bioenergetics maintenance, 4 major 

Ca2+-dependent signaling pathways in the heart are potential candidates: Ca2+-calmodulin 

kinase II (CaMKII), protein kinase C (PKC), calcineurin and proline-rich tyrosine 

kinase 2 (Pyk2). Pyk2 is a cytoplasmic enzyme activated by increased [Ca2+]i resulting 

in autophosphorylation at Y402. In H9c2 cells, α1-adrenergic stimulation results in 

phosphorylation and translocation of part of pPyk2 from the cytosol to mitochondrial 

matrix (O-Uchi, Jhun et al. 2014). Activated Pyk2 phosphorylates mitochondrial Ca2+ 

uniporter (MCU) and promotes oligomeric MCU channel pore formation, resulting in 

accelerated mitochondrial Ca2+ uptake (O-Uchi, Jhun et al. 2014). The present study was 

undertaken to: (i) determine whether the H2O2-induced [Ca2+]i increase in cardiac myocytes 

phosphorylates Pyk2 independent of CaMKII; (ii) evaluate whether part of phosphorylated 

Pyk2 translocates to the mitochondria in adult cardiac myocytes; (iii) determine whether 

Trpm2-mediated Pyk2 phosphorylation results in enhanced pro-survival signaling molecules 

in hearts subjected to ischemia/reperfusion (I/R) injury; and (iv) test whether scavenging 

the elevated mitochondrial oxidants in Trpm2-KO myocytes results in maintenance of 

mitochondrial membrane potential (ΔΨm). Our findings reveal that Ca2+ entry via Trpm2 is 

necessary and sufficient for Pyk2 phosphorylation. Part of Trpm2-mediated phosphorylated 

Pyk2 translocates to mitochondria, maintains cellular bioenergetics, reduces mitochondrial 

oxidants, enhances survival signaling molecules, and affords protection against I/R injury.

2. Materials and Methods

2.1 Generation of global and cardiac-specific Trpm2-KO mice and animal care.

Global and cardiac-specific Trpm2 KO mice were generated as described previously (Miller, 

Wang et al. 2013, Hoffman, Miller et al. 2015). At 2 mo of age, 64.0 ± 9.7% of 

floxed Trpm2 gene was deleted in cardiac-specific KO hearts as evaluated by qPCR and 

~79% knockout rate as determined by electrophysiological measurements of cardiac Trpm2 

currents (Hoffman, Miller et al. 2015). Adult mice (8 – 12 wk old) were used in this study. 

Mice were housed and fed on a 12:12h light-dark cycle at the Temple University Animal 

Facility supervised by full-time veterinarian staff members. Standard care was provided to 

all mice used for experiments. All protocols and procedures applied to the mice in this study 

were approved by the Institutional Animal Care and Use Committees of Temple University. 

For brevity, throughout this report, global Trpm2 KO and cardiac-specific Trpm2 KO are 

abbreviated as gKO and cKO, respectively, whether applied to mice, hearts or left ventricular 

(LV) myocytes.
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2.2 Isolation of adult murine cardiac myocytes.

Cardiac myocytes were isolated from the septum and LV free wall of WT, cKO and gKO 

mice (8–12 wks old) according to the protocol of Zhou et al. (Zhou, Wang et al. 2000), and 

plated on laminin-coated glass coverslips (Tucker, Song et al. 2006) or petri dishes.

2.3 Measurement of intracellular Ca2+ concentration ([Ca2+]i) in cardiac myocytes.

Fura-2 loaded (0.67 μM fura-2 AM, Molecular Probes, Eugene, OR; 15 min, 37°C) LV 

myocytes attached to laminin-coated coverslips were incubated in medium 199 containing 

1.8 mM extracellular Ca2+ concentration ([Ca2+]o) and 1 μM verapamil, and exposed to 

excitation light (360 and 380 nm) only during data acquisition. Epifluorescence (510 nm) 

was monitored at baseline and at 5, 10, 15 and 20 min after addition of H2O2 (200 μM). 

Daily calibration of fura-2 signals and [Ca2+]i analyses were performed as previously 

described (Tucker, Song et al. 2006, Song, Zhang et al. 2008, Wang, Chan et al. 2009, 

Wang, Gao et al. 2010, Wang, Gao et al. 2011, Song, Gao et al. 2012).

2.4 Subcellular fractionation.

Cytosol and mitochondrial fractionation was performed as previously described (O-Uchi, 

Jhun et al. 2014). All procedures were performed at 4°C. Briefly, LV myocytes isolated 

from WT hearts were plated on laminin-coated culture dishes (100 mm) for 2 h. Adherent 

myocytes were exposed to H2O2 (200 μM) or phosphate buffered saline for 15 min. 

Myocytes were then washed with isolation buffer (IB: 320 mM sucrose, 1 mM EDTA, 

10 mM Tris pH 7.4), scraped in 1ml IB per dish and centrifuged at 700g for 5 min. Cell 

pellets were suspended in 1 ml of IB with protease (Roche Applied Science, Indianapolis, 

IN) and phosphatase (Sigma-Aldrich, St. Louis, MO) inhibitor cocktails, and homogenized 

with Dounce homogenizer (20 strokes). Homogenate was centrifuged at 700g for 10 min. 

Supernatant was collected and kept on ice. Pellets were re-suspended in 0.5 ml IB with 

protease and phosphatase inhibitor cocktails, homogenized as before and centrifuged at 700g 

for 5 min. Supernatants were combined and centrifuged at 17,000g for 15 min. Supernatants 

were kept as cytosol, and mitochondrial pellets were suspended in 100 μl of lysis buffer and 

incubated overnight at 4°C with rotation.

2.5 Ischemia/Reperfusion (I/R) surgery in mice.

I/R surgery was performed as previously described (Gao, Lei et al. 2010, Miller, Wang et 

al. 2013, Miller, Hoffman et al. 2014). Briefly, WT, gKO and cKO mice (8–12 weeks) were 

anesthetized with 2% isoflurane, and the heart was exposed through a left thoracotomy at 

the 5th intercostal space. The slipknot was tied around the left anterior descending (LAD) 

coronary artery 2–3 mm from its origin, and the heart was immediately returned to the 

chest cavity followed by evacuation of pneumothorax and closure of muscle and skin layers. 

The slipknot was released after 30 min. of ischemia to allow reperfusion. Sham-operated 

animals were subjected to the same surgical procedure except that the slipknot was not 

tied. Animals recovered from anesthesia within 5 min. after the completion of surgery 

and received ibuprofen (10 mg/50 ml drinking water) for 48 h as post-surgery analgesia. 

Hearts were harvested on Day 3 post-surgery. We have previously demonstrated that our I/R 

procedure resulted in area at risk (including both 2,3,5-triphenyltetrazolium (TTC)-negative 
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and TTC-positve areas but excluding Evans blue dye-positive area) that ranged from 40 to 

50% of LV, and infarct sizes (TTC-negative area) ranged from 25 to 30% of area at risk in 

WT, gKO (Miller, Wang et al. 2013) and cKO (Hoffman, Miller et al. 2015) hearts.

2.6 Immunoblot analysis.

Heart homogenates from WT, cKO and gKO mice (both sham operated and 72h post-I/R) 

(Tucker, Song et al. 2006) and LV myocyte lysates (Song, Zhang et al. 2002, Song, 

Zhang et al. 2008) were prepared as previously described. Proteins were separated by SDS-

PAGE (10, 12 or 15%) followed by transfer to Hybond-C Extra nitrocellulose (Amersham, 

Piscataway, NJ). Blots were blocked for 1 h with 5% milk and probed overnight with 

anti-pPyk2 (1:500; Invitrogen, Carlsbad, CA), anti-Pyk2 (1:250; Cell Singaling Technology 

Inc., Boston MA), anti-calsequestrin (1:2,000; Fitzgerald, Acton, MA), anti-pCaMKII 

(CaMKII phosphorylated at Thr287; 1:500; Cell Signaling Technology Inc.), anti-oCaMKII 

(CaMKII oxidized at Met281/282; 1:800; Genetex, Irvine, CA), anti-MCU (1:500; Dr. 

Madesh laboratory at Temple University), anti-GAPDH (1:2,000; Cell Signaling Technology 

Inc.), anti-pERK1/2 (1:1,000; Cell Signaling Technology Inc.), anti-ERK1/2 (1:2,000; 

Cell Signaling Technology Inc.), anti-pAkt (1:1,000; Cell Signaling Technology Inc.), or 

anti-Akt (1:5,000; Cell Signaling Technology Inc.) antibodies. Blots were washed and 

incubated with the appropriate secondary antibody conjugated to horseradish peroxidase. 

Enhanced chemiluminescence (Thermo Scientific, Rockford, IL) was used for the detection 

of signals. Intensity of the bands was quantitated with densitometry and normalized to that 

of calsequestrin or GAPDH (loading control).

2.7 Measurement of mitochondrial membrane potential (ΔΨm).

Adult WT and gKO LV myocytes were pre-incubated with the mitochondria-targeted 

superoxide (O2
.−) scavenger MitoTempo (50 nM, Sigma-Aldrich)(Dikalova, Bikineyeva et 

al. 2010, Liang, Sedlic et al. 2010) or the non-mitochondria-targeted Tempol (100 μM, 

VWR, Bridgeport, NJ) or vehicle for 60 min. To simulate I/R in vitro, myocytes were 

exposed to either 21% O2-5% CO2 (normoxia) or 1% O2-5% CO2 (hypoxia) for 30 min 

followed by 30 min of reoxygenation (Miller, Hoffman et al. 2014, Hoffman, Miller et 

al. 2015). Myocytes were incubated in Krebs-Henseleit bicarbonate (KHB) buffer (1.2 

mM [Ca2+]o) containing 5 mM pyruvate as substrate (Cheung, Thompson et al. 1982). 

Following gentle centrifugation, cardiac myocytes were transferred to an intracellular-like 

medium (ICM) containing (in mM): KCl 120, NaCl 10, KH2PO4 1, HEPES–Tris 20, 

thapsigargin (2 μg/ml), digitonin (80 μg/ml), pH 7.2; and protease inhibitors (EDTA-free 

complete tablets, Roche Applied Science). Permeabilized myocytes were supplemented 

with succinate (10 mM) and gently stirred. JC-1 (800 nM; Molecular Probes) was used 

to measure ΔΨm. Fluorescence signals were monitored in a temperature-controlled (37°C) 

multiwavelength-excitation and dual wavelength-emission spectrofluorometer (Delta RAM, 

Photon Technology International, Birmingham, NJ), using 490-nm ex/535-nm em for 

the monomer and 570-nm ex/595-nm em for the J-aggregate of JC-1. At 450s, 10 μM 

Ca2+ pulse was added and ΔΨm (calculated as the ratio of the fluorescence of the JC-1 

oligomeric to monomeric forms) was monitored. At 800s, the uncoupler carbonyl cyanide 

m-chlorophenyl hydrazone (CCCP; 2 μM) was added and ΔΨm measured.
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2.8 Confocal mitochondrial superoxide (O2
.−) measurements.

Adult WT and gKO LV myocytes were pre-incubated with MitoTempo (50 nM) or Tempol 

(100 μM) or vehicle for 60 min before subjected to 30 min of normoxic or hypoxic exposure 

followed by 30 min of reoxygenation. During reoxygenation, myocytes were loaded with the 

mitochondrial O2
.− sensitive fluorophore MitoSOX Red (22 μM, Invitrogen) in extracellular 

media (ECM) containing 2% bovine serum albumin (BSA), 0.06% pluronic acid and 20 

μM sulfinpyrazone at 37°C for 30 min. Myocytes were then washed, resuspended in ECM 

containing 0.25% BSA, and imaged using a Carl Zeiss Meta 510 confocal microscope (Carl 

Zeiss, Thornwood, NJ) with a 40x oil objective with 1.7x digital zoom at 561 nm for 

MitoSOX Red (Mukhopadhyay, Rajesh et al. 2007, Miller, Hoffman et al. 2014, Hoffman, 

Miller et al. 2015).

2.9 Statistics.

All results are expressed as means ± SE. For analysis of protein abundance as a function 

of group (WT vs. gKO or cKO) and treatment (e.g., H2O2 or I/R), two-way or three-way 

(group, H2O2 ± BAPTA) ANOVA was used. For analysis of O2
.− levels, [Ca2+]i, and ΔΨm, 

one-way ANOVA was used. A commercially available software package (JMP Pro 13; 

SAS Institute, Cary, NC) was used. In all analyses, p<0.05 was taken to be statistically 

significant.

3. Results

3.1 Trpm2 activation by H2O2 phosphorylates Pyk2 and CaMKII in adult cardiac myocytes.

In adult WT LV myocytes, phosphorylation of Pyk2 was very low under basal conditions 

(Fig. 1). Exposure to H2O2 (200 μM) for 15 min resulted in ~21-fold increase in Pyk2 

phosphorylation which was reduced by ~54% with the Trpm2 inhibitor clotrimazole 

(50 μM, 10 min) pre-treatment (Fig. 1B), suggesting Trpm2 activation resulted in Pyk2 

phosphorylation. There were no changes in total Pyk2 after 15 min of H2O2 exposure (Fig. 

1C). Activation of Trpm2 channels also resulted in phosphorylation of CaMKII (Fig. 1), 

which was partially blocked by clotrimazole and the CaMKII inhibitor KN93 (2 μM; 30 

min pre-treatment)(Fig. 1D). Importantly, inhibiting CaMKII with KN93 did not result in 

statistically significant (p=0.089) changes in Pyk2 phosphorylation (Fig. 1B). Oxidative 

stress induced by H2O2 also resulted in oxidation of CaMKII (Fig. 1E), as expected.

3.2 Global Trpm2-KO myocytes have lower pPyk2 after H2O2 treatment.

Under basal conditions, phosphorylation of Pyk2 was very low in both WT and gKO 

myocytes (Fig. 2). Exposure to H2O2 resulted in ~11-fold increase in pPyk2 in WT but 

only ~6-fold increase in pPyk2 in gKO myocytes (Fig. 2). The differences in pPyk2 

between H2O2–treated WT and gKO myocytes are statistically significant (p=0.0012, group 

x H2O2 interaction effect). These observations indicate that Pyk2 was phosphorylated by 

both Trpm2-dependent signaling and ROS-dependent mechanisms (Frank and Eguchi 2003). 

Total Pyk2 tended to be higher in gKO myocytes although the differences did not reach 

statistical significance (p=0.0756).
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3.3 Tprm2-mediated [Ca2+]i elevation phosphorylates Pyk2.

We have previously demonstrated that exposure to H2O2 (200 μM) resulted in significant 

increases in [Ca2+]i but no changes in intracellular Na+ concentration (Na+]i) in WT LV 

myocytes, and that the [Ca2+]i increase was blocked by pre-treatment with the Trpm2 

inhibitor clotrimazole or by removal of extracellular Ca2+ (Miller, Wang et al. 2013, 

Hoffman, Miller et al. 2015), suggesting Trpm2-mediated Ca2+ influx resulted in the 

observed [Ca2+]i elevation with H2O2 treatment. In the present series of experiments, H2O2 

treatment for 20 min resulted in [Ca2+]i increase by ~2.2-fold in WT myocytes (Fig. 3A). 

The [Ca2+]i increase was completely blocked by pre-incubating the myocytes with 50 but 

not 10 μM of the membrane-permeable acetoxymethyl (AM) ester of the Ca2+ chelator 1,2-

bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) for 30 min (Fig. 3A). As a 

group, pPyk2 was higher in WT when compared to cKO myocytes (Fig. 3B & C; p=0.0034, 

group effect). H2O2 significantly increased pPyk2 (p<0.0001, H2O2 effect). BAPTA-AM 

pre-incubation had no detectable effect in basal Pyk2 phosphorylation but significantly 

reduced Pyk2 phosphorylation after H2O2 exposure (p=0.0032, H2O2 X BAPTA interaction 

effect). Ater H2O2 treatment, pPyk2 levels (with and without BAPTA-AM pre-incubation) 

were significantly lower in cKO when compared to WT myocytes (p=0.0068, group x H2O2 

interaction effect). BAPTA significantly decreased pPyk2 in H2O2-treated WT (p=0.033) but 

not in H2O2-treated cKO (p=0.1057) myocytes. Taken together, these observations (Figs. 

1, 2 and 3) strongly indicate that on activation, Trpm2-mediated Ca2+ influx increases 

[Ca2+]i, resulting in phosphorylation of Pyk2 in WT but not cKO myocytes. Neither H2O2 

(p=0.6297) nor BAPTA (p=0.3753) had any effects on total Pyk2, but cKO myocytes had 

significantly (p=0.0020, group effect) higher total Pyk2 levels than WT myocytes (Fig. 3).

3.4 Trpm2 activation by H2O2 results in translocation of phosphorylated Pyk2 into 
mitochondria.

In H9c2 cells, α1-adrenergic stimulation promoted translocation of part of pPyk2 from 

the cytosol to mitochondrial matrix and accelerated mitochondrial Ca2+ uptake via pPyk2-

dependent mitochondrial Ca2+ uniporter (MCU) phosphorylation and oligomeric MCU 

channel pore formation (O-Uchi, Jhun et al. 2014). To evaluate whether Trpm2-mediated 

Pyk2 phosphorylation also resulted in pPyk2 translocation into the mitochondria in adult 

cardiac myocytes, we first demonstrated our ability in separating total myocyte lysate into 

cytosolic (GADPH) and mitochondrial (MCU) fractions (Fig. 4A). In the absence of H2O2, 

pPyk2 levels were undetectably low in WT myocytes (Fig. 4B). After H2O2 treatment, 

pPyk2 levels were higher in the mitochondrial fraction when compared to cytoplasmic 

fraction, indicating part of pPyk2 translocated into the mitochondria (Fig. 4B).

3.5 Loss of Trpm2 results in less pPyk2 and its downstream pro-survival signaling 
targets after ischemia/reperfusion injury.

In the heart, both reactive oxygen species (ROS)(Tsutsui, Kinugawa et al. 2011, Miller, 

Wang et al. 2013, Miller, Hoffman et al. 2014, Hoffman, Miller et al. 2015) and cyclic 

adenosine diphosphate ribose (cADPR)(Xie, Rah et al. 2003) production are increased after 

I/R. Since both ROS and cADPR can activate Trpm2, we measure pPyk2 and Pyk2 in WT 

and cKO hearts subjected to sham operation or I/R injury. Compared to their respective 
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sham-operated controls, pPyk2 levels were significantly increased after I/R in both WT 

(p=0.015) and cKO (p=0.0125) hearts (Fig. 5A). More importantly, pPyk2 levels were 

significantly (p=0.0236) higher in WT-I/R when compared to cKO-I/R hearts, suggesting 

Trpm2 activation after I/R enhanced Pyk2 phosphorylation. There were no differences 

in total Pyk2 among WT-sham, WT-I/R, cKO-sham and cKO-I/R hearts. Significantly 

higher fractional Pyk2 phosphorylation (pPyk2/Pyk2) was also observed in gKO-I/R when 

compared to WT-I/R hearts (Fig. 5B). Downstream pro-survival signaling targets such as 

extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and protein kinase B (Akt) 

were less phosphorylated in gKO-I/R compared to WT-I/R hearts (Fig. 5B).

3.6 MitoTempo reduces O2
.− levels and improves ΔΨm post-H/R injury.

If Trpm2 deficiency results in less pPyk2 translocation to the mitochondria (Fig. 4) and 

reduced mitochondrial Ca2+ uptake (Miller, Hoffman et al. 2014), less efficient electron flow 

during oxidative phosphorylation and increased O2
.− levels would be expected (Kohlhaas, 

Liu et al. 2010, Chen, Csordas et al. 2012). Although gKO myocytes tended to have 

higher O2
.− levels than WT myocytes under normoxic conditions (Fig. 6, top panel), the 

differences did not reach statistical significance. After H/R, O2
.− levels were much higher 

in gKO-H/R myocytes compared to WT-H/R myocytes (p<0.001), and the mitochondria-

targeted O2
.− scavenger MitoTempo reduced O2

.− in gKO-H/R myocytes to levels not 

different (p=0.760) than those measured in WT-H/R myocytes (Fig. 6, bottom panel). The 

non-mitochondria-targeted ROS scavenger Tempol was also effective in reducing O2
.− levels 

in gKO-H/R myocytes (p<0.001 compared to WT-H/R; Fig. 6, bottom panel). Effective 

scavenging of O2
.− by MitoTempo in gKO-H/R myocytes was associated with improvement 

in mitochondrial function as indicated by restoration of Δψm (Fig. 7). In this experiment, 

addition of Ca2+ (10 μM) collapsed Δψm in gKO normoxic (Fig. 7E) but not WT normoxic 

(Fig. 7A) myocytes. Addition of the mitochondrial uncoupler CCCP totally collapsed Δψm, 

as expected. After H/R, Δψm in both WT-H/R (Fig. 7B) and gKO-H/R (Fig. 7F) myocytes 

were low. Tempol restored Δψm in WT-H/R myocytes (Fig. 7C). Although Tempol reduced 

O2
.− levels in gKO-H/R myocytes (Fig. 6), it did not restore Δψm in gKO-H/R myocytes 

(Fig. 7G). Only MitoTempo succeeded in reducing O2
.− levels in gKO-H/R myocytes (Fig. 

6) and in restoring Δψm in both WT-H/R (Fig. 7D) and gKO-H/R (Fig. 7H) myocytes. These 

observations suggest that scavenging excess O2
.− may provide a therapeutic maneuver to 

protect hearts in which Trpm2 channels are inhibited.

4. Discussion

Trpm2 is expressed in many tissues including the heart, brain, hematopoietic cells and 

vasculature. The physiological and pathological significance of Trpm2 is just beginning 

to be elucidated. In organs other than the heart, Trpm2 has been implicated in bipolar 

disorder Type I (patients have high basal [Ca2+]i in B-lymphoblasts)(Xu, Macciardi et al. 

2006, Xu, Li et al. 2009), in diabetes mellitus by affecting insulin secretion mediated 

by increase in [Ca2+]i (Herson and Ashford 1997, Uchida, Dezaki et al. 2011), and in 

oxidative stress-induced inhibition of autophagy and decreased cell viability mediated 

by Ca2+-CaMKII-Beclin1 signaling pathway in mouse hepatocytes (Wang, Guo et al. 

2016). In a murine model of human inflammatory bowel disease, Trpm2 -mediated Ca2+ 
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influx stimulates chemokine production in monocytes, contributing to inflammation and 

tissue damage (Yamamoto, Shimizu et al. 2008). These observations support the classical 

paradigm that increased Ca2+ entry with Trpm2 activation results in cytokine production, 

inflammation, autophagy inhibition and cell death (Sumoza-Toledo and Penner 2011, Wang, 

Guo et al. 2016). More recent reports, however, suggest a novel paradigm that Ca2+ entry 

via Trpm2 channels is protective in pathophysiological conditions. For example, in WT 

mice subjected to intraperitoneal injection of endotoxin, survival is ~5x higher than Trpm2 

KO mice. This is due to Ca2+ entry via Trpm2 channels, thereby depolarizing plasma 

membrane and resulting in decreased NADPH oxidase (NOX)-mediated ROS production 

in WT phagocytes (Di, Gao et al. 2012). In pyramidal neurons subjected to oxidant 

injury, inhibition of Trpm2 results in enhanced cellular damage (Bai and Lipski 2010), 

confirming that Trpm2 can protect from oxidative stress. We reported that Trpm2 enhances 

neuroblastoma xenograft growth and reduces sensitivity to doxorubicin (Chen, Hoffman 

et al. 2014). Finally, a Trpm2 mutant (P1018L) was found in a subset of Guamanian 

amyotropic lateral sclerosis and Parkinsonism dementia patients (Hermosura, Cui et al. 

2008). Unlike WT Trpm2 which does not inactivate, the P1018L mutant inactivates after 

channel opening by ADPR, thereby effectively limiting Ca2+ entry. In the heart, Trpm2 

was reported to be protective against I/R injury by ameliorating mitochondrial dysfunction, 

maintaining cellular bioenergetics and reducing ROS levels (Miller, Wang et al. 2013, 

Miller, Hoffman et al. 2014, Hoffman, Miller et al. 2015) although another report suggested 

that Trpm2 aggravated cardiac ischemic injury by increasing neutrophil adhesion during 

reperfusion (Hiroi, Wajima et al. 2012). Trpm2 also ameliorated doxorubicin-induced 

cardiac dysfunction and prolonged survival of animals treated with doxorubicin (Hoffman, 

Miller et al. 2015). Finally, the recent observation that Trpm2 expression is significantly 

reduced in human failing hearts when compared to non-failing hearts (Morine, Paruchuri 

et al. 2016) provides indirect support of the hypothesis that Trpm2 is cardiac protective. 

Thus Ca2+ influx via Trpm2 channels in disease states can either be friend (decreased 

phagocyte NOS-mediated ROS production, maintained mitochondrial function, enhanced 

ATP generation and reduced mitochondrial O2
.− levels)(Bai and Lipski 2010, Di, Gao et al. 

2012, Miller, Wang et al. 2013, Chen, Hoffman et al. 2014, Miller, Hoffman et al. 2014) 

or foe (autophagy inhibition, Ca2+ overload and mitochondrial permeability transition pore 

(mPTP) opening, enhanced neutrophil adhesion)(Zhang, Chu et al. 2003, Yang, Chang et 

al. 2006, Zhang, Hirschler-Laszkiewicz et al. 2006, Yamamoto, Shimizu et al. 2008, Hiroi, 

Wajima et al. 2012, Wang, Guo et al. 2016), depending on the tissue, experimental model 

and conditions.

Recently Trpm2 was observed to be overexpressed in many tumors (Park, Chun et al. 

2016) including melanoma (Orfanelli, Wenke et al. 2008), breast cancer, and neuroblastoma 

(Chen, Zhang et al. 2013, Chen, Hoffman et al. 2014). In some tumors, level of Trpm2 

overexpression correlated with decreased patient survival (Alptekin, Eroglu et al. 2015) and 

increased propensity for metastasis (Li, Abuarab et al. 2016). We demonstrated that Trpm2 

protected neuroblastoma cells from moderate oxidative stress, whereas cells in which Trpm2 

was inhibited by the dominant-negative splice variant Trpm2-S showed increased ROS and 

susceptibility to cell death (Chen, Zhang et al. 2013). In vivo, growth of neuroblastoma 

xenografts was also inhibited by Trpm2-S (Chen, Hoffman et al. 2014). Similar to our 
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observations in Trpm2-KO hearts (Miller, Hoffman et al. 2014), Trpm2 inhibition in 

neuroblastoma resulted in increased ROS, reduced mitochondrial function, ATP production, 

cell viability and tumor growth, especially after doxorubicin treatment (Chen, Zhang et al. 

2013, Chen, Hoffman et al. 2014). The importance of Trpm2 in promoting malignant growth 

and the therapeutic potential of Trpm2 inhibition are being recognized in an increasingly 

wide range of tumors (Miller 2012, Park, Chun et al. 2016). For example, targeting Trpm2 

was recently shown to promote cell death in T cell leukemia (Klumpp, Misovic et al. 

2016). Although Trpm2 inhibition can enhance the therapeutic effect of chemotherapy (e.g., 

doxorubicin)(Chen, Zhang et al. 2013, Chen, Hoffman et al. 2014), it may inadvertently 

disturb mitochondrial energy metabolism and redox balance and as such, aggravate existing 

ischemic heart disease (Miller, Wang et al. 2013) and doxorubicin-induced cardiomyopathy 

(Hoffman, Miller et al. 2015). Elucidation of mechanisms by which Trpm2 protects the heart 

is thus timely and will significantly contribute to the nascent field of onco-cardiology.

Trpm2 activation results in increases in [Ca2+]i (Miller, Wang et al. 2013) and enhances 

mitochondrial Ca2+ uptake (Miller, Hoffman et al. 2014) in cardiac myocytes. Of the 4 

major Ca2+ dependent signaling pathways (CaMKII, Pyk2, PKC and calcineurin) in the 

heart, only Pyk2 and CaMKII have been shown to directly enhance mitochondria Ca2+ 

uptake in cardiac cells (Joiner, Koval et al. 2012, O-Uchi, Jhun et al. 2014). Thus the 

first major finding is that Trpm2 activation phosphorylates both Pyk2 and CaMKII in the 

heart. In addition, inhibiting CaMKII did not significantly affect Pyk2 phosphorylation, 

suggesting that CaMKII had little effect on Pyk2 phosphorylation. In this study, we chose 

to focus on Pyk2 because: (i) Pyk2 is activated after cerebral (Tian, Litvak et al. 2000) 

and limb muscle (Matsui, Okigaki et al. 2007) ischemia by autophosphorylation at Y402; 

(ii) fractional Pyk2 phosphorylation (pPyk2/Pyk2) is increased in end-stage human non-

ischemic cardiomyopathy and has been postulated to protect against arrhythmias (Lang, 

Glukhov et al. 2011); (iii) Ca2+ influx through Trpm2 activates Pyk2 and amplifies 

pro-survival ERK signaling in human U937 cells (Yamamoto, Shimizu et al. 2008); 

(iv) pPyk2 activates c-Jun N-terminal kinase (JNK) and reduces apoptosis in neonatal 

cardiomyocytes (Dougherty, Kubasiak et al. 2004); (v) Pyk2 is pro-survival as evidenced 

by its overexpression in many cancers (Lipinski and Loftus 2010); and (vi) Pyk2 inhibition 

decreases survival and proliferation of small cell lung cancer (Roelle, Grosse et al. 2008), 

breast cancer (Wendt, Schiemann et al. 2013), ovarian clear cell cancer (Yoon, Choi et al. 

2014), multiple myeloma (Zhang, Moschetta et al. 2014) and prostate cancer (Hsiao, Huang 

et al. 2016). By contrast, published literature largely supports the concept that CaMKII 

activation (phosphorylation or oxidation) promotes myocyte death, cardiac hypertrophy, 

heart failure, and increased arrhythmogenesis (Anderson, Brown et al. 2011, Joiner, Koval et 

al. 2012, Luczak and Anderson 2014, Anderson 2015, Mattiazzi, Bassani et al. 2015).

The second major finding is that H2O2 treatment resulted in significantly less Pyk2 

phosphorylation in both gKO (~40%) and cKO (~50%) myocytes when compared to WT 

myocytes, confirming the important role of Trpm2 in Pyk2 activation. In addition, buffering 

Trpm2-mediated [Ca2+]i increase by BAPTA significantly reduced Pyk2 phosphorylation in 

WT but not cKO myocytes. These two observations indicate that Ca2+ influx via activated 

Trpm2 channels mediated Pyk2 phosphorylation. An unexpected finding is that total Pyk2 

tended to be higher in gKO and significantly higher in cKO compared to their respective 
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WT controls. This suggests that after exposure to H2O2, the fractional Pyk2 phosphorylation 

is lower in KO compared to WT myocytes. Indeed, fractional Pyk2 phosphorylation was 

~5-fold lower in cKO when compared to WT myocytes exposed to H2O2 (p=0.0036, group x 

H2O2 interaction effect).

Following phosphorylation, part of pPyk2 translocated to the mitochondria and enhanced 

mitochondrial Ca2+ uptake (Miller, Hoffman et al. 2014). We hypothesized the mechanism 

is similar to what we reported for H9c2 cardiomyocytes after α-adrenergic stimulation 

(O-Uchi, Jhun et al. 2014). Maintenance of physiological mitochondrial Ca2+ uptake is 

indispensable in cellular bioenergetics (Cardenas, Miller et al. 2010) and mitochondrial 

oxidant homeostasis (Kohlhaas, Liu et al. 2010).

The third major finding is that Pyk2 activation was much less robust in cKO compared to 

WT hearts after I/R injury. Similarly, post-I/R, fractional Pyk2 phosphorylation was much 

less in gKO compared to WT hearts. Downstream pro-survival signaling targets such as 

ERK1/2 and Akt were less phosphorylated in gKO-I/R compared to WT-I/R hearts. Our 

results in the heart are in agreement with those observed in human U937 cells, in which 

Trpm2-mediated Ca2+ influx phosphorylates Pyk2 and amplifies pro-survival signaling ERK 

pathways (Yamamoto, Shimizu et al. 2008). These results suggest that Trpm2 may protect 

against oxidative injury not only by maintenance of cellular bioenergetics and reducing toxic 

levels of oxidants, but also by activating pro-survival signaling pathways in the heart.

We have previously demonstrated that Trpm2 deficiency resulted in reduced levels of 

Complex I [NADH dehydrogenase (ubiquinone) 1α subcomplex 4-like 2 (NDUFA4L2)]

(Miller, Hoffman et al. 2014, Hoffman, Miller et al. 2015) and Complex IV (Miller, 

Hoffman et al. 2014) in cardiac mitochondria, especially after ischemia/reperfusion. We 

have also shown by patch-clamp that the intrinsic MCU activity was significantly lower 

in gKO mitoplasts (Miller, Hoffman et al. 2014). Decreased levels of respiratory electron 

transport complexes and reduced intrinsic MCU activity due to less pPyk2 translocation 

to the mitochondria are two independent mechanisms that conspired together to reduce 

mitochondrial Ca2+ uptake and electron transport activity to account for the observed lower 

oxygen consumption rate and mitochondrial membrane potential, reduced ATP levels, and 

elevated ROS levels in Trpm2 deficient hearts (Miller, Hoffman et al. 2014, Hoffman, Miller 

et al. 2015).

Since Trpm2 facilitates mitochondrial Ca2+ uptake in the heart (Miller, Hoffman et al. 2014), 

one major consequence of Trpm2 deficiency or inhibition would be inefficient electron 

flow during oxidative phosphorylation, resulting in increased ROS levels. This is what we 

previously reported (Miller, Hoffman et al. 2014, Hoffman, Miller et al. 2015). From a 

therapeutic standpoint, it would be useful to test if ROS scavengers could alleviate some 

of the mitochondrial dysfunction brought on by Trpm2 deficiency or inhibition, under both 

basal and post-I/R conditions. Thus the final major finding is that the mitochondria-targeted 

O2
.− scavenger MitoTempo, but not the cytoplasmic ROS scavenger Tempol, reduced O2

.− 

levels and restored ΔΨm towards normal in gKO myocytes after hypoxia/reoxygenation. 

This observation suggests that mitochondrial O2
.− is the major ROS species affected by 

Trmp2 deficiency or inhibition, and that mitochondria-targeted O2
.− scavengers (MitoTempo 
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and oral MitoQ)(Mercer, Yu et al. 2012) may be useful in protecting hearts from therapeutic 

Trpm2 inhibition in cancer patients (Miller 2012).

In summary, Trpm2-mediated Ca2+ influx regulated mitochondrial Ca2+ uptake in the heart 

by Pyk2 phosphorylation followed by its translocation to the mitochondria resulting in 

enhanced mitochondrial Ca2+ uptake (Fig. 8). Trpm2-mediated Pyk2 activation protected 

the heart from oxidative injury not only by assuring efficient electron flow during oxidative 

phosphorylation and thereby maintaining cellular bioenergetics and minimizing toxic levels 

of mitochondrial superoxide, but also by activating downstream pro-survival signaling 

pathways such as Akt and ERK1/2 (Fig. 8). Finally, mitochondria-targeted superoxide 

scavengers might have a beneficial role in protecting the heart from therapeutic Trpm2 

inhibition.
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Figure 1. Trpm2 activation results in Pyk2 and CaMKII phosphorylation.
LV myocytes isolated from WT hearts were incubated in Media 199 (containing 1 μM 

verapamil) and exposed to vehicle (CTL) or 200 μM H2O2 for 15 min before harvest for 

immunoblotting. In some experiments, myocytes were pre-incubated with Trpm2 inhibitor 

clotrimazole (Clot; 50 μM, 10 min), the CaMKII inhibitor KN93 (2 μM, 30 min) or 

its inactive control KN92 (2 μM, 30 min) before H2O2 exposure. A: representative blot 

of an experiment. B: summary of pPyk2/GAPDH of 5 separate myocyte preparations. 

*p<0.004, H2O2 vs.clotrimazole or CTL. C: summary of total Pyk2/GAPDH of 3 

myocyte preparations. D: summary of pCaMKII (phosphorylated at Thr287) of 3 myocyte 

preparations. *p<0.02, H2O2 vs. CTL or clotrimazole or KN93 or KN92. D: summary of 

oCaMKII (oxidized at Met281/282) of 3 myocyte preparations. *p<0.05, H2O2 vs. CTL or 

KN92.
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Figure 2. H2O2 exposure results in less Pyk2 phosphorylation in global Trpm2 KO myocytes.
LV myocytes isolated from WT and gKO hearts were incubated in Media 199 (containing 1 

μM verapamil) and exposed to vehicle (Media 199) or 200 μM H2O2 for 15 min before 

harvesting for immunoblotting. Top: Western blots of pPyk2 and Pyk2. Calsequestrin 

(CLSQ) was used as a loading control. Bottom: summary of pPyK2/CLSQ for 3 WT (open 

bars) and 3 gKO (gray bars) myocyte preparations. Two-way ANOVA showed significant 

group (p=0.0012), H2O2 (p<0.0001) and group x H2O2 interaction (*p=0.0012) effects. 

Total Pyk2/CLSQ tended to be higher in gKO myocytes although the difference did not 

reach statistical significance (p=0.0756).
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Figure 3. BAPTA buffers H2O2 induced [Ca2+]i increase and reduces Pyk2 phosphorylation in 
WT but not in cardiac-specific Trpm2 KO myocytes.
A. LV myocytes isolated from WT hearts were loaded with the Ca2+ indicator fura2 (0.67 

μM fura-2 AM, 15 min, 37°C) before exposure to vehicle (■, n=4) or H2O2 (200 μM; ♦, 

n=4) and [Ca2+]i followed for 20 min. Some myocytes were pre-incubated with either 10 

(•. n=4) or 50 μM (▲, n=4) of BAPTA-AM for 30 min before H2O2. B. LV myocytes 

isolated from WT and cKO hearts were treated with vehicle (CTL) or H2O2 (200 μM) for 

15 min, with or without pre-incubation with BAPTA-AM (50 μM, 30 min), before harvest 

for immunoblotting. Representative blot of pPyk2, Pyk2 and calsequestrin (CLSQ; loading 

control) of 1 of 5 separate myocyte preparations. C. Summary of pPyk2/CLSQ and Pyk2/

CLSQ for 4 WT (open bars) and 5 cKO (gray bars) myocyte preparations under control 

(C), H2O2 (H), H2O2 + BAPTA (H + B) and BAPTA (B) conditions. BAPTA significantly 

decreased pPyk2/CLSQ in WT (*, p=0.033) but not in cKO (p=0.1057) myocytes after 

H2O2 treatment. Total Pyk2/CLSQ in cKO was significantly higher (#, p=0.0020) than WT 

myocytes.
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Figure 4. Trpm2 activation results in pPyk2 translocation to the mitochondria in adult cardiac 
myocytes.
A. LV myocytes from WT hearts were separated into cytosolic (GAPDH) and mitochondrial 

(MCU, mitochondrial Ca2+ uniporter) fractions (Materials and Methods). B. LV myocytes 

isolated from WT hearts were exposed to vehicle or H2O2 (200 μM) for 15 min before 

subcellular fractionation. Representative blot of pPyk2, Pyk2 and MCU in homogenate 

(total), cytosolic (cyto) and mitochondrial (mito) fractions of 1 of 3 separate myocyte 

preparations.
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Figure 5. Trpm2 deficiency results in less pPyk2, pERK1/2 and pAkt after ischemia/reperfusion.
WT, cKO and gKO mice underwent sham operation or I/R surgery (30 min LAD ischemia, 

72h reperfusion) (Materials and Methods) before heart homogenates were prepared for 

immunoblotting. A. Western blots of pPyk2, Pyk2 and GAPDH (loading control) from 3 

WT-sham, 3 WT-I/R , 3 cKO-sham and 4 cKO-I/R (only 2 are shown) hearts. For pPyk2/

GAPDH, *p<0.025, WT-sham vs. WT-I/R, cKO-sham vs. cKO-I/R, or WT-I/R vs. cKO-I/R. 

There are no statistically significant differences in total Pyk2/GAPDH among the 4 groups. 

B. Western blots of pPyk2, Pyk2, pERK1/2, ERK1/2, pAkt and Akt from 5 WT-I/R and 5 

gKO-I/R hearts are shown on left, and summaries of fractional phosphorylation are shown 

on right. *p<0.05, WT-I/R vs. gKO-I/R.
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Figure 6. MitoTempo and Tempol decreases elevated O2
.− levels in gKO myocytes after hypoxia/

reoxygenation.
Global Trpm2 KO myocytes were pre-incubated with MitoTempo (50 nM) or Tempol (100 

μM) or vehicle for 60 min before subjected to 30 min of normoxia (21% O2-5% CO2) or 

hypoxia (1% O2-5% CO2) followed by 30 min of reoxygenation. During reoxygenation, 

myocytes were loaded with the mitochondrial O2
.− sensitive fluorophore MitoSOX Red 

(Materials and Methods). Representative confocal images are shown for WT, gKO, gKO-

Tempol and gKO-MitoTempo after normoxic (upper panel) and H/R (bottom panel) 

incubations. There are 9 WT, 15 gKO, 15 gKO-Tempol and 15 gKO-MitoTempo myocytes 

incubated under normoxic conditions and 12 WT, 15 gKO, 12 gKO-Tempol and 15 

gKO-MitoTempo myocytes incubated under hypoxic conditions followed by reoxygenation. 

Under normoxic conditions, there are no statistically significant differences in O2
.− levels 

among WT, gKO, gKO-Tempol and gKO-MitoTempo myocytes although gKO myocytes 

tended to have higher O2
.− levels compared to WT myocytes (Upper panel). After H/R, 

KO myocytes had significantly (p<0.001) higher superoxide levels than WT myocytes. Both 

MitoTempo and Tempol were effective in reducing the elevated O2
.− levels in gKO-H/R 

myocyte (p<0.001 compared to gKO-H/R myocytes).
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Figure 7. MitoTempo but not Tempol restores ΔΨm in gKO myocytes after hypoxia/
reoxygenation.
Left: LV myocytes isolated from WT and gKO mice were pre-incubated with vehicle, 

MitoTempo (50 nM) or Tempol (100 μM) for 60 min, and then subjected to normoxia or 

hypoxia for 30 min followed by 30 min of reoxygenation. Myocytes were permeabilized 

with digitonin (Dg), treated with thapsigargin (Tg) and supplemented with succinate 

(Materials and Methods). The ratiometric ΔΨm indicator JC-1 was used to measure ΔΨm. 

At times indicated (arrows), Ca2+ (10 μM) and the mitochondrial uncoupler CCCP were 

added. Right: Summary of ΔΨm data from 3 separate myocyte preparations. *p<0.05; 

**p<0.01.
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Figure 8. Schematic of the influence of Trpm2 on Pyk2 phosphorylation, mitochondrial Ca2+ 

uptake and function, ROS production, and cell survival.
Trpm2 in cardiac myocytes can be activated by physiological levels of H2O2 arising from 

mitochondrial respiration (Stanley, Sivakumaran et al. 2011), ADPR (Miller, Hoffman 

et al. 2014) and oxidative stress (e.g., exogenous H2O2). Activated Trpm2 channels are 

permeable to Ca2+ and Na+ (Miller, Hoffman et al. 2014). In adult cardiac myocytes, [Ca2+]i 

(Miller, Wang et al. 2013) but not [Na+]i (Hoffman, Miller et al. 2015) is elevated with 

Trpm2 activation by H2O2. Some of the Ca2+ is taken up into the sarcoplasmic reticulum 

(SR) by SR Ca2+-ATPase (SERCA2). Trpm2-mediated [Ca2+]i increase results in Pyk2 

phosphorylation (Figs. 1, 2 and 3). Phosphorylated Pyk2 translocates to the mitochondria 

(Fig. 4), resulting in phosphorylation of mitochondria Ca2+ uniporter (MCU), thereby 

accelerating mitochondrial Ca2+ uptake (O-Uchi, Jhun et al. 2014). Mitochondrial Ca2+ 

stimulates Ca2+-sensitive Krebs cycle dehydrogenases (McCormack and Denton 1980), 

making available NADH and FADH2 for the electron transport chain (Chen, Csordas et 

al. 2012), and assuring efficient electron flow during oxidative phosphorylation, both for 

bioenergetics maintenance and to ensure that physiological but not toxic levels of ROS are 

generated (Kohlhaas, Liu et al. 2010). Mitofusin-2 (MFN-2) which tethers the mitochondria 

to SR/ER (de Brito and Scorrano 2008, Chen, Csordas et al. 2012) allows efficient transfer 

of Ca2+ from ER/SR to mitochondria. In addition, Trpm2 regulates Complex I and Complex 

IV levels in the mitochondria (Miller, Hoffman et al. 2014, Hoffman, Miller et al. 2015). 

All these diverse effects of Trpm2 act in concert to maintain mitochondrial membrane 

potential, mitochondrial Ca2+ uptake, oxygen consumption rate, ATP levels and to minimize 

toxic levels of ROS (Miller, Hoffman et al. 2014). Trpm2-mediated Pyk2 phosphorylation 

promotes downstream pro-survival signaling pathways such as Akt and ERK1/2 (Fig. 5)

(Yamamoto, Shimizu et al. 2008) and reduces apoptosis via JNK activation (Dougherty, 

Kubasiak et al. 2004).
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