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Abstract

Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen that infects macrophages 

where it avoids elimination by interfering with host defense mechanisms, including phago-

lysosome fusion. Endosomal Toll-like receptors (TLRs) generate Type I Interferons (IFNs), which 

are associated with active tuberculosis (TB).

We aimed to explore if DNA from different Mtb lineages lead to differences in the inflammatory 

response of human monocytic/macrophage cells. THP-1 cells which express two inducible 

reporter constructs for interferons (IFNs) as well as for NF-κB, were stimulated via endosomal 

delivery of Mtb DNA as a nanocomplex with PEI. DNA from different Mtb phylogenetic lineages 

elicited differential inflammatory responses in human macrophages. An initial relatively weak 

IRF-mediated response to DNA from HN878 and H37Rv increased if the cells were pre-treated 

with Vitamin D (Vit D) for 72 hrs. RNAseq of THP-1 under different transformation conditions 

showed that pre-treatment with Vit D upregulated several TLR9 variants, as well as genes involved 
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in inflammatory immune response to infection, immune cell activation, Type I IFN regulation, and 

regulation of inflammation.

Vit D appears to be important in increasing low IRF responses to DNA from certain lineages of 

Mtb. Variations in the IRF-mediated response to DNA derived from different Mtb genotypes are 

potentially important in the pathogenesis of tuberculosis since Type I IFN responses are associated 

with active disease. The role of Vit D in these responses could also translate into future therapeutic 

approaches.
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1. Introduction

Tuberculosis (TB) is one of the oldest illnesses in history and still remains a major health 

problem worldwide, with more than 8 million new cases and more than 1.8 million deaths 

occurring every year [1]. Mycobacterium tuberculosis (Mtb) mainly infects professional 

phagocytes in the lungs where it uses strategies such as prevention of phagolysosome 

maturation and subversion of host cell death pathways, to survive and replicate [2].

In order to mount an appropriate antimicrobial response, the host’s innate immune response 

first detects pathogens through pattern recognition receptors (PRRs), which recognize 

conserved pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) 
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expressed on macrophages can recognize PAMPs on Mtb [3, 4] and mediate the production 

of immune-regulatory cytokines such as tumor necrosis factor (TNF) and type I Interferons 

(IFNs). A type I IFN gene signature is associated with active TB [5, 6]. Type I IFNs (IFN-α 
and IFN-β) appear to suppress type II Interferon (IFN-γ)-triggered responses [7, 8], 

including Mtb killing by macrophages [9]. Although different isolates from Mtb have shown 

differences in invasiveness [10] and proinflammatory cytokine induction [11, 12], no study 

has evaluated differences in Type I IFN induction in humans with different Mtb strains. A 

differential induction of Type I IFNs might explain how TB manifests in some individuals, 

as type I IFNs have been demonstrated to strongly inhibit monocytes’ and macrophages’ 

responsiveness to IFN-γ, and are associated with active TB disease [7-9].

The role of Vitamin D (Vit D) in the treatment of tuberculosis has been portrayed in the 

early 20th century with the use of heliotherapy, and then continued in the form of Vit D 

supplementation in the pre-antibiotic era [13]. Vit D appears to be crucial for macrophage 

activation and early Mtb clearance [14-16]. Vit D enhances innate immunity through TLR 

and IFN-γ, reversal of phagosome maturation arrest, increased expression of various 

antimicrobial peptides, and induction of autophagy in infected cells, thus restricting Mtb 

intracellular growth in macrophages [17].

We herein show that Mtb nucleic acid of different lineages elicit differential inflammatory 

responses in human macrophages. We also investigated the effect of Vit D in these responses 

and observed that cells which initially showed a weak Interferon regulatory factor (IRF)-

mediated response to DNA from certain Mtb strains, could increase it if they were pre-

treated with Vit D. Our findings show that both, NF-κB and IRF-activation in macrophages, 

are differentially affected by the lineage of Mtb, and that Vit D appears to be important in 

increasing the IRF response when this is low.

2. Material and Methods

2.1 Human cell lines

Human monocytic cell line THP-1 (ATCC TIB-202), and dual THP-1 (Invivogen) cell lines 

were used for our experiments. The latter expresses two inducible reporter constructs for 

interferon regulatory factors (IRFs) as well as for NF-κB. The activities of these reporters 

were measured through a colorimetric assay for the secretory embryonic alkaline 

phosphatase (SEAP) reporter gene that is linked to NF-κB activation using the Quanti-blue 

substrate (InvivoGen), and a Luciferase reporter gene linked to IRFs using the QuantiLuc 

substrate (Invivogen), according to manufacturer’s instructions. Measurement of NF-kB and 

IRF activation were expressed as a response ratio for each stimulus relative to the reporter 

activity in unstimulated cells.

THP-1 cells were cultured in RPMI 1640 medium supplemented with 10% FBS, 0.05 mM 

2-mercaptoethanol, 100 U/ml Penicillin and 100 μg/ml Streptomycin at 37 °C and 5% CO2. 

Differentiation and pre-treatment of THP-1 cells were done with 100 ng/mL phorbol ester 

12-O-tetradecanoylphorbol-13-acetate (PMA, Sigma-Aldrich) or 0.5μM 1,25-

dihydroxyvitamin D3 (Vitamin D3, Sigma-Aldrich) for 72 hours. For some experiments, 
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cells were also activated with 100 ng/mL LPS plus 20 ng/mL IFN-γ for 8 hrs. Reagents 

were used in working dilutions (1/100) in PBS from stock solutions in DMSO.

2.2 Bacterial nucleic acid stimulation

Genomic DNA from different Mtb lineages: Indo-Oceanic T17X strain (NR-44096) 

(Lineage 1), HN878 strain (bei NR-14867) (Lineage 2), East-African-Indian strain 

(NR-44095) (Lineage 3), and Mtb strains H37Rv (NR-14865) and H37Ra (ATCC 

25177D-5) (Lineage 4), as well as DNA from Mycobacterium bovis (ATCC BAA-935D-2) 

were acquired from ATCC / bei resources. Strains and correspondent lineages [18] are 

summarized in Table 1. CpG 2395 (Invivogen) was used as a control ligand.

Cells, at a density of 2.4×104 cells/well, were stimulated for 24 hours with 100ng of DNA 

delivered with the use of the cationic polymer polyethilenimine (PEI) according to 

manufacturer instructions (Polyplus, France). PEI is a transfection reagent that wraps 

negatively charged RNA and DNA with subsequent transport of the PEI/nucleic acid 

nanoparticle complex to early and late endosomes [19]. We have previously utilized this 

endo-lysosomal delivery system for bacterial nucleic acid to evaluate endosomal TLR 

activation and cytokine induction, including type I IFN in human phagocytic cells [20].

2.3 RNA-Sequencing library preparation

After removing the medium, THP-1 cells were washed twice with cold PBS and 

centrifugation to get rid of floating cells. Afterwards, total RNA was isolated using RNesay 

Kit together with QIAshredder (Qiagen). Residual DNA was removed by 30-min DNase 

treatment (TURBO DNA-free Kit, Ambion) at 37 °C. Subsequently, RNA was purified with 

RNA Clean and Concentrator (Zymo Research), and its concentration and integrity was 

checked using ribogreen assay and bioanalyzer (Agilent Technologies 2100 Bioanalyzer). 

Only RNA samples with RIN number above 8 were further processed. RNA library 

preparation was carried out using the TruSeq Stranded mRNA Library Prep Kit (Illumina). 

HiSeq 2500 System Rapid mode (Illumina) was used for RNA-sequencing, giving rise to 

paired-end reads of 101 bp. A total number of reads per sample was obtained in the range of 

123-189×106, with 85.8-91.0% mapped reads.

2.4 RNA-Seq data analysis

The original read quality of our RNA-Seq data was first confirmed by FastQC (Simon 

Andrews, Babraham Bioinformatics). For gene expression analysis, the paired-end reads 

were aligned to human genome (UCSC-hg19) using Tophat2 [21] with Bowtie2 [22]. In 

RNA-Seq data analysis, the default parameters for each tool were used unless otherwise 

stated. For Tophat2, a maximum of 2 mismatches were allowed and two parameters as --

library-type=fr-firststrand and --read-realign-edit-dist=0 were set. Cufflinks, Cuffmerge and 

Cuffdiff [23] were used for transcripts assembly and quantification of the Tophat2 output. 

Annotated transfer RNA, ribosomal RNA and mitochondrial transcripts were masked out in 

Cuffdiff analysis by using the parameter –mask-file with corresponding GTF file. The 

common FPKM (fragments per kilobase of transcript per million fragments mapped) were 

used as the expression-levels measure for each gene or transcript.
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2.5 Polymerase chain reaction (PCR)

2.5.1 Semi-quantitative PCR—Characterization of expression of TLR-9 and 

inteferon-1beta was done by semi-quantitative PCR, as described before (Chhabra et al. 

2017, JI). In brief, cDNAs were prepared from mRNAs derived from THP-1 cells stimulated 

with DNA from different MTB strains, using the SuperScript cDNA synthesis kit (Invitrogen 

Inc.), cDNAs were quantified and 2.5ng cDNA was used for each PCR reaction of 50 ul 

volume. GAPDH gene amplified as the loading control. PCR conditions included 1 cycle of 

denaturation step at 94C for 5 min, followed by 40 cycles of amplification step comprised of 

denaturation at 94C for 30sec, annealing at 56C for 30sec and extension at 72C for 30 sec., 

followed by one cycle at 72C for 10 min. (PCR Primers: TLR-9 F: 5‘-

GAATGCCAGTTGGTTCCGTG-3‘, TLR-9 R: 5‘-TTCAGAGCTGGGAGTGTCCA-3‘, 

IFN-1b F: 5‘-GCCGCAGTGACCATCTATGA-3‘, IFN-1b R: 5‘-

CAGTGACTGTCCTCCTTGGC-3‘, GAPDH F: 5‘-GAAGGTGAAGGTCGGAGTC-3, 

GAPDH R: 5‘-GAAGATGGTGATGGGATTTC-3‘).

2.5.2 Real-Time quantitative PCR—RT-qPCR analysis was also performed for TLR9 

using the previously described cDNA as template. Complementary DNA samples were 

diluted 1:10 (vol:vol) in deionized water, samples were stored at −20°C. Amplification 

reactions were performed in triplicate for each tested gene. Each reaction contained 1 μl of 

cDNA, 5 μl of iQ™ SYBR® Green Supermix (Bio-Rad), 3.7 μl of water and 150 nM of 

each primer to a final volume of 10 μl. Primer sequences for TLR9, and GAPDH, have been 

published elsewhere[24, 25]. Non-template controls (NTC) were included in triplicate for 

each primer pair confirming for the absence of contamination. Amplification reactions were 

performed on a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad). PCR 

conditions were performed as follows, denaturation at 95°C for 3 min, 40 cycles of 

denaturation at 95°C for 10 sec and annealing/extension at 60°C for 30 sec. To ensure the 

presence of a single amplicon, a melting curve analysis was performed at the end of each 

PCR run. Cycle threshold (Ct) values for each gene were used to calculate the transcript 

levels of TLR9 in reference to the endogenous control GAPDH. The relative changes in 

gene expression generated were calculated using the 2−ΔΔCt method [26].

2.6 Endosomal TLR Blocking.

A specific immunoregulatory DNA sequence (IRS869: 5’-TCCTGGAGGGGTTGT-3’) [27] 

(Integrated DNA Technologies) was used to block TLR9 signaling. IRS869 was used at a 

concentration of 1.4 μM, as it has shown previously to result in optimal effectiveness and 

specificity of the inhibitory sequences [27, 28]. The ODN was added 1 hour prior to cell 

stimulation.

2.7 Statistical Analysis

General statistical analysis was performed using GraphPad Prism 7.01 (GraphPad Software, 

San Diego, CA). For comparison or response between Untreated vs. Vitamin D-treated for 

each stimulus a t-test or a non-parametric test (Mann-Whitney) was used, depending on if 

the data followed a normal distribution or not. p values of <0.05 were considered significant. 

A two-way ANOVA was performed to assess the interaction of Vit D with the responses 
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upon stimulation with the different Mtb DNAs. For RNAseq, a transcript change consistent 

in all the three replicates was considered as significant at the statistic level if the q-value was 

less than 0.05.

3. Results

3.1 DNA from different M.tuberculosis phylogenetic lineages elicits differential 
inflammatory response in human macrophages

We first aimed to evaluate TLR9 activation by DNA from well characterized Mtb species 

belonging to different genotypes [18] (available on ATCC) on human macrophages. 

Utilizing endosomal delivery of Mtb DNA as a nanocomplex with PEI [19, 20], we 

evaluated differences in pro-inflammatory cytokines and interferon induction in THP-1 cells 

by nucleic acids belonging to distinct Mtb genotypes. We observed that different genotypes 

are able to elicit different NF-κB and different IRF-mediated responses after stimulation 

with the distinct Mtb DNAs (Figure 1, white bars).

No apparent relationship was observed between genetic distance between lineages and the 

strength of the elicited NF-kB or IRF-mediated-responses. East-African-Indian (Lineage 3), 

and Indo-Oceanic (Lineage 1), show the highest response (over 15 and 50 fold, compared to 

unstimulated). Despite their relative closeness to Lineage 3 [18], DNA from HN878 

(Lineage 2), and H37Rv (Lineage 4), showed a relatively weak response (below 5 fold, 

compared to unstimulated).

3.2 Vitamin D increases the IRF-mediated response to Mtb DNA in cells that were initially 
poorly reactive

As macrophage activation by Vit D is important in Mtb recognition and clearance [15, 16], 

we then evaluated the effect of Vit D activation on the response upon Mtb-DNA stimulation. 

Although pre-treatment of THP-1 cells with Vit D did not substantially affect the overall 

NF-kB-mediated response (Figure 1B), it did increase the secretion of TNF-α (Figure 2). 

With respect to the IRF-mediated response, Vit D increased the IRF-mediated response to 

Mtb-DNA of HN878 and H37Rv (Fig. 1A, gray bars). A two way ANOVA analysis was 

performed to assess the interaction of Vit D with the responses upon stimulation with the 

different Mtb DNAs. Vit D treatment constituted a factor that impacted the IRF-mediated 

responses to Mtb DNA stimuli (p= 0.01). This did not occur in respect to NF-κB-mediated 

responses (p=0.37). Vit D also increased the IRF-mediated response to other TLR ligands 

(Figure 3A). In fact, Vit D was the only condition that increased this response. Neither IFN-

γ nor IFN-γ + LPS showed any difference compared to untreated or PMA-treated cells 

(Suppl 1). Overall, treatment of THP-1 cells with Vit D induced upregulation of genes 

involved in inflammatory immune response to infection, immune cell activation, recruitment 

of effector cells to site of inflammation, antigen presentation and recognition, Type I IFN 

regulation, and regulation of inflammation (Suppl 2 and Table 2).

3.3 Vitamin D promotes upregulation of TLR9 splicing variants in THP-1 cells

To address the question if the effect of Vit D was due to upregulation of TLR9 in THP-1 

cells, RNAseq was carried on these cells, comparing different activation conditions. 
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Transcriptome analysis showed that Vit D treatment of cells lead to upregulation of a cluster 

of TLR genes, including TLR5, TLR8, and certain splicing variants of TLR9, although the 

latter where not statistically significant (Fig. 3). This set of TLR genes were observed to be 

downregulated with the other cell treatment conditions such as PMA or IFN-γ + LPS 

(Figure 3B). PMA led to the known differential expression (DE) of TLR2 [29] while IFN-γ 
+ LPS-treatment lead to upregulation of a different set of TLRs, namely TLR3, 4, 7, and 8.

Semi-quantitative PCR on Mtb-DNA stimulated cells, showed a minimal increase in the 

transcription of IFN-β, after stimulation with DNA of certain Mtb-strains, and an increase in 

TLR9 transcript in THP-1 cells pre-treated with Vit D, for all Mtb-DNA, except Indo-

Oceanic (Suppl 3A-C). Even though the RT-PCR could not confirm these results, it did show 

a prominent increase in TLR9 expression on Vit D-treated cells after stimulation with DNA 

from M. bovis (Suppl 3D). To further examine the involvement of TLR-9 in the responses to 

Mtb DNA, we performed TLR9 inhibition utilizing a specific immunoregulatory sequence 

(IRS). Although a reduction was observed for the NF-kB mediated response, and not for the 

IRF-mediated one, this was only observed for certain Mtb lineages (Suppl 4).

4. Discussion

Little is known about nucleic acid signaling in tuberculosis or its role in susceptibility to the 

disease. It has been reported that stimulation of human alveolar macrophages with DNA 

from attenuated mycobacteria (H37Ra or BCG) vs. generates a greater TNF-α response, 

compared to stimulation with DNA from a virulent mycobacteria (H37Rv or M.bovis) [30]. 

In this study, we observed that DNA from hypervirulent HN878 strain (Lineage 2) showed 

both low NF-kB and IRF-mediated responses. HN878 is genetically close to virulent Mtb 

Beijing strain [31], which induces a diminished inflammatory production [12]. Our findings 

demonstrate that DNA from different Mtb phylogenetic lineages elicits differential IRF-

mediated responses in human macrophages. This suggests that variations in Type I IFN 

responses correlate with differences in Mtb nucleic acids. This is of outmost importance as 

type I IFNs are mediators implicated in host resistance to TB [32].

Mtb is fundamentally a bacterium that remains in the phagosome [33], inhibiting 

phagosomal acidification and recruitment of lysosomal proteins in order to maintain a 

hospitable niche within macrophages [2]. Reports of escape of Mtb from its vacuole into the 

cytosol [34, 35] appear to have been generated by the experimental technique used [36, 37], 

and occurred in a limited percentage of cells when they are infected ex vivo [38] but not in 
vivo [39]. Furthermore, cytosolic Mtb-strain dependent DNA-recognizing receptor activation 

observed in mice, is associated with host’s DNA release, and not with that one from 

mycobacteria [40]. The phagosome could then be considered the platform from where 

components of Mtb are recognized by PRRs present at this site, as it has been shown to 

occur with other pathogens [41-43].

The importance of TLR signaling in the recognition of Mtb components is underlined by the 

fact that TLR-adaptor molecule MyD88 pathway in macrophages is needed for an adequate 

innate and adaptive immune response, mycobacterial clearance [44-46], and confining Mtb 

within phagolysosomes [38]. The subcellular localization of endosomal TLRs guarantees 
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release of ligands, like nucleic acids, from the pathogen in a natural occurring immunity-

promoting manner [47]. Endosomal TLR signaling may play an important role in the 

outcome of infection, as these receptors are involved in the generation of Type I IFNs. TLR9 

is the endosomal TLR receptor able to recognize mycobacterial DNA in humans [4], and 

mice [48]. Several studies have demonstrated an association between specific endosomal 

TLR polymorphisms of TLR9, with susceptibility to tuberculosis [49, 50].

It is well known that TLR9-mediated recognition of the unmethylated CpG motifs can lead 

to distinct signaling responses depending on the sequence of oligodeoxynucleotide (ODN)s 

that express CpG motifs [51]. Newer and more reliable phylogenetic analysis of MTBC 

strains through the use of Whole Genome Sequencing (WGS) has shown that there exists 

more genetic diversity between strains, with genetic distance sometimes comparable to that 

one existing between Mtb and M. bovis [52]. So it is possible that genetic differences 

between Mtb strains could be sufficient to elicit different responses after PRR recognition.

We here observed that Vit D rescued low IRF-mediated response to stimulation with DNA 

from certain Mtb genotypes. That fact that Vit D increases the response to DNA from some 

of the strains that were initially “weak”, rules out the possibility that the initial differential 

response is due to differences in DNA preparation, as the same amount of the same DNA 

preparations was able to elicit an increase. In fact, Mtb DNA preparations were fairly pure, 

with 260/280 ratios in the range of 1.7-188 (data not shown). Also, we have previously 

observed that the degree of bacterial DNA fragmentation did not alter the degree of cell 

activation, nor the size or PEI-DNA complex particle [20].

Pretreatment of THP-1 cell with Vit D also increased secretion of TNF-α after stimulation 

with Mtb DNA. This is concordant with a previous study showing increased secretion of 

TNF-α and other cytokines upon Mtb infection of Vit D-treated THP-1 cells [53]. Vit D has 

also been shown to rescue impaired TNF-α response from U937 and alveolar macrophages 

after infection with Mtb and BCG [54]. Our transcriptome findings on Vit D activation of 

THP-1 cells are concordant with previous studies showing that Vit D-stimulated top-ranking 

genomic regions and genes related to the anti-microbial response and other immunity-related 

pathways [55, 56]. Only Vit D pretreatment induced upregulation of TLR9, while other 

forms of cell activation upregulated other TLRs. An increase in TLR 9 expression was 

observed upon Mtb-DNA stimulation in Vit D pre-treated cells. Besides being useful model 

to study Mtb infection and persistence [57], using THP-1 cell line helped to avoid the 

potential bias of the presence of TLR variants which could affect the amount of TLR which 

they generate [58].

Interaction of different TLRs appears to have important regulatory and cooperative effects 

against Mtb infection [48, 59]. TLR9-TLR2 crosstalk could be important in promoting 

vaccine enhancing responses, as the evidence of the benefits of using endosomal agonists as 

adjuvants for TB vaccines is increasing [60, 61].

Tissue destruction and pathogenesis during Mtb infection is not mediated by pathogens 

alone but induced by an immunopathological inflammatory response of the host. Differences 

in the inflammatory cytokine induction, especially type I and type II IFNs after recognition 
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of Mtb nucleic acids could account for differences in the severity of the disease 

manifestation. Further studies could elucidate the role of the different PRRs in the response 

after Mtb-DNA recognition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DNA from different M.tuberculosis phylogenetic lineages elicits differential 
inflammatory response in human macrophages.
Dual THP-1 cells were stimulated for 24 hours with 100ng of DNA from several different 

phylogenetic lineages of Mtb. Response from IRF (A) or an NF-kB (B) reporters are shown. 

Pretreatment of cells with Vitamin D (gray bars) show increase the response to DNA from 

HN878 and virulent strain H37Rv (A). * p<0.05 Unpaired t test.

Cervantes et al. Page 13

Tuberculosis (Edinb). Author manuscript; available in PMC 2020 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Pre-treatment of human macrophages with Vitamin D increases secretion of TNF-α 
after stimulation with DNA from different M.tuberculosis phylogenetic lineages.
Dual THP-1 cells were pre-treated (or not) with Vitamin (VD) for 72 hours, and then 

stimulated for 24 hours with DNA from several different phylogenetic lineages of Mtb. Two 

way ANOVA p<0.05
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Figure 3. Vitamin D promotes upregulation of TLR9 splicing variants in THP-1 cells THP-1 cells 
were pre-treated with Vit D or PMA for 72 hrs, this latter with or without LPS plus IFN-γ for 8 
hrs.
Heatmap shows upregulation of a set of TLR genes by Vit D that includes specific TLR9 

splicing variants. Data for A and B excludes and includes, respectively, the data with PMA 

followed by LPS and IFN-γ treatment. Each of the three columns per condition indicate a 

biological replicate (different cell preparation). PMA and LPS/IFN-γ treatments induced 

upregulation of other TLRs that do not include TLR9.

a Comparison between THP-1 vs. PMA

b Comparison between THP-1 vs. Vit D

c Comparison between PMA vs. LPS/IFN-γ
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Table 1.

Mtb Genomic DNA used in this study

Strain ATCC Lineage

Indo-Oceanic T17X NR-44096 Lineage 1

HN878 NR-14867 Lineage 2

East-African-Indian NR-44095 Lineage 3

H37Rv NR-14865
Lineage 4

H37Ra 25177D-5

M. bovis BAA-935D-2
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Table 2

Genes upregulated by Vit D treatment of THP-1 cells

Function Gene name Role in TB

CXCL8 Stimulator of phagocytosis

Mediators of inflammatory response IL1B Caspase-1 activation. Stimulator of MIP-I alpha production

CCL22 Lung inflammation through CCR4 activation

 

Transcription Factor for Type I IFNs IRF5 Necessary for Type I IFN in response to Mtb

 

Recruitment of effector immune cells to site of 
inflammation

CXCL8 Neutrophil chemoattractant

CCR1 Receptor for CCL-3, −4, −5, and MIP-1 alpha

CD38 M1 polarization inflammatory marker in Mtb infection

 

T cell chemoattractant
IL16 Increased in TB pleural effusion

CCL22 Lung inflammation through CCR4 activation

 

CD86 M1 polarization marker in Mtb infection

T cell activation CD84 Increased in B cell precursors in Mtb infection

IL27RA Involved in resolution of inflammation. Induced by Type I IFNs in 
Mtb infection

 

Neutrophil and NK-mediated bacterial killing
CXCR1 Oxidative defense in active TB

CD244 Increased in lymphocytes of TB patients

 

Antigen presentation HLA-B,HLA-C Restricting alleles for TB CD8 antigens

 

Pathogen Recognition Receptor

TLR8 Enhances the innate and adaptive immune response

TLR5 Expressed on myeloid cells in TB granulomas

P2RX7 Induces cell death and subsequent loss of intracellular bacterial 
viability in human macrophages infected with mycobacteria

CD14 Facilitates the uptake of non-opsonized Mtb

 

Intracellular PRR
NOD2 Enhances the innate response of alveolar macrophages to Mtb

AIM1 IL-1β and IL-18 production and Th1 responses to Mtb

 

TLR adapter TIRAP Influences disease susceptibility by modulating the inflammatory 
response

 

Regulated by Type I IFNs and MyD88 IL10RA Anti-inflammatory cytokine expressed in chronic Mtb granulomas
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Function Gene name Role in TB

Serine protease inhibitors

SERPINB9 Inhibits apoptosis and promotes survival of Mtb-infected 
macrophages

SERPING1 Component of active TB signature

SERPINB1 Critical for neutrophil survival

 

Complement degradation CD46 Bactericidal activity of macrophages and granuloma formation

 

Regulation of Inflammation
SIGLEC10 Increased in CD14+CD16++ monocytes upon Mtb infection

SIGLEC14,SIGLEC5 Involved in Mtb replication in monocytes
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