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Abstract
Liver cancer is one of the most common malignancies, and various pathogenic
factors can lead to its occurrence and development. Among all primary liver
cancers, hepatocellular carcinoma (HCC) is the most common. With extensive
studies, an increasing number of molecular mechanisms that promote HCC are
being discovered. Surgical resection is still the most effective treatment for
patients with early HCC. However, early detection and treatment are difficult for
most HCC patients, and the postoperative recurrence rate is high, resulting in
poor clinical prognosis of HCC. Although immunotherapy takes longer than
conventional chemotherapy to produce therapeutic effects, it persists for longer.
In recent years, the emergence of many new immunotherapies, such as immune
checkpoint blockade and chimeric antigen receptor T cell therapies, has given
new hope for the treatment of HCC.
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Core tip: Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most
common and accounts for 90% of cases. Mechanisms related to HCC progression and
treatment strategies have been extensively reported. In this paper, we review the
molecular mechanisms involved in HCC progression and the latest advancements in
immunotherapy by combining the research progress and results from our laboratory in
recent years.

Citation: Jiang Y, Han QJ, Zhang J. Hepatocellular carcinoma: Mechanisms of progression
and immunotherapy. World J Gastroenterol 2019; 25(25): 3151-3167
URL: https://www.wjgnet.com/1007-9327/full/v25/i25/3151.htm
DOI: https://dx.doi.org/10.3748/wjg.v25.i25.3151

WJG https://www.wjgnet.com July 7, 2019 Volume 25 Issue 253151

https://www.wjgnet.com
https://dx.doi.org/10.3748/wjg.v25.i25.3151
http://orcid.org/0000-0001-5058-3484
http://orcid.org/0000-0002-6511-2308
http://orcid.org/0000-0001-5106-1397
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:zhangj65@sdu.edu.cn


Received: March 6, 2019
Peer-review started: March 6, 2019
First decision: April 4, 2019
Revised: April 28, 2019
Accepted: May 18, 2019
Article in press: May 18, 2019
Published online: July 7, 2019

P-Reviewer: Al-Gayyar M, Mikulic
D
S-Editor: Ma RY
L-Editor: Filipodia
E-Editor: Ma YJ

INTRODUCTION
Hepatocellular carcinoma (HCC) is predicted to be the sixth most commonly dia-
gnosed cancer  and the  fourth  leading cause  of  cancer  death worldwide in  2018,
accounting for approximately 841,000 new cases and 782,000 deaths annually. Pri-
mary liver cancer includes HCC and intrahepatic cholangiocarcinoma as well as other
rare types, with HCC accounting for 75%-85% of cases[1,2]. The main risk factors for
HCC are chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV),
aflatoxin-contaminated foodstuffs, heavy alcohol intake and type 2 diabetes[2]. Studies
on the mechanisms of HCC processes have confirmed that the inactivation of multiple
tumor suppressor genes (such as p53), abnormal activation of oncogenes (K-ras, etc.,)
and multiple signaling pathways (PI3K, MAPK, JAK/STAT, NF-κB, Wnt/β-catenin,
etc),  abnormal  regulation  of  epigenetic  events  (such  as  microRNAs),  and  even
exosomes that deliver a large number of protumorigenic molecules are all involved in
HCC development and progression[3]. The liver also acts as a special immune organ.
In addition to the above carcinogenic factors, the immunological microenvironment in
the liver is associated with HCC occurrence and development. In recent years, the
interaction between various immune cells and tumor cells has attracted extensive
attention. Many molecular mechanisms associated with the biological characteristics
of  tumor  cells  during  hepatocarcinogenesis  also  have  important  effects  on  the
immune system. Although improvements have been made in surgery, radiofrequency
ablation  and  chemotherapy  for  HCC,  the  prognosis  of  HCC  patients  remains
unsatisfactory due to the high rates of recurrence and metastasis. The emergence of
many new immunotherapies, such as immune checkpoint blockade and chimeric
antigen receptor (CAR) T-cell therapies, has given new hope for the treatment of
HCC. Here, we review the molecular mechanisms that influence HCC progression
and the latest advancements in immunotherapy by combining the latest research
progress and results from our laboratory.

MOLECULAR MECHANISMS UNDERLYING HCC

The promotive effect of HBV on HCC
Chronic  hepatitis  caused  by  HBV  infection  is  one  of  the  main  causes  of  HCC.
Numerous studies have confirmed that HBV can activate a variety of signals to pro-
mote  viral  replication  and  inflammation  progression  and  to  accelerate  hepato-
carcinogenesis[4-7].

HBx  and  HCC:  We  also  found  that  HBV  further  promoted  viral  replication  by
activating signal transducer and activator of transcription 3 (STAT3) signaling in
HBV+ HCC, while blocking STAT3 can inhibit HBV replication and proliferation and
angiogenesis in HBV+ HCC[8]. The HBV genome encodes four proteins, including the
envelope protein (S/Pre-S), the core protein (C/pre-C), the polymerase (P), and the X
protein (HBx). Among them, the multifunctional HBx protein has attracted substantial
attention.  HBx can block  p53-mediated apoptosis  and activate  numerous  signal
transduction cascades (STAT, NF-κB, AP-1, etc.,) associated with cell proliferation and
survival, promoting HCC occurrence and development[9-13]. HBx mutations in HCC
patients haven been shown to be important for the development of HCC[14-16].

HBV and microRNAs: A large number of recent studies have shown that microRNAs
play  important  roles  in  the  occurrence  and  development  of  HBV-related  HCC.
Through the analysis of microRNA profiles, the expression levels of various micro-
RNAs, such as miR-150 and miR-342-3p, were found to be changed in HBV-related
HCC[17]. The analysis of a large number of clinical samples showed that microRNAs
such as miR-375, miR-25, and let-7f are specific for HBV and have potential clinical
value  for  the  prediction  and  diagnosis  of  HBV+  HCC[18-20].  Further  studies  have
demonstrated that HBV promotes HCC by intervening with Wnt, MAPK, Notch and
other signaling pathways through different microRNAs[17,21-24] (Figure 1). However,
miR-122 expression is inhibited in HBV+ HCC, which suggests that this microRNA
likely plays an inhibitory role in HCC progression[25].  Mao et  al[26]  found that the
tolerance of HBV+ HCC patients to sorafenib was significantly higher than that of non-
HBV-infected  HCC  patients,  which  was  related  to  activated  Mcl-1-mediated
inhibitory effects on miR-193b, and restoration of miR-193b expression could increase
the sensitivity of HBV+ HCC to sorafenib. These phenomena indicate that the role of
microRNAs in  the  progression  of  HBV-related  HCC is  complex  and not  simply
promotive or suppressive.

HBV and immune tolerance: In addition to the above mechanisms, HBV-induced
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Figure 1

Figure 1  Hepatitis B virus promotes hepatocellular carcinoma by intervening various signal pathways
through different microRNAs. Lines ending with arrows or bars indicate promotion or inhibitory effects, respectively.
HBV: Hepatitis B virus.

suppressive effects on innate and adaptive immune cells promote the evolution from
inflammation to tumorigenesis. In patients with chronic HBV hepatitis, the activation
and function of natural killer (NK) cells are significantly inhibited, and these impaired
NK cells cannot effectively clear HBV, which further accelerates the progression of
hepatitis to HCC[27,28]. The TGF-β-miR-34a-CCL22 signal induces regulatory T (Treg)
cell  infiltration and promotes the metastasis of  HBV+  HCC[29],  and the imbalance
between helper T (Th)-17 and Treg cells is a risk factor for patients with HBV infection
progressing to HCC[30].  In the course of chronic HBV infection,  the expression of
programmed death-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), CD244 and
other inhibitory receptors on virus-specific CD8+ T cells is increased, which mediates
T cell depletion[27,31]. Recently, Zong et al[32] showed that in HBsAg-transgenic mice, the
expression of  TIGIT,  a  promising immune checkpoint  in tumor immunotherapy,
main-tained the tolerance of CD8+ T cells to HBV, and disrupting this tolerance by
TIGIT blockade or deficiency could induce chronic hepatitis in HBsAg-transgenic
mice and eventually lead to HCC development, suggesting that immune checkpoint
therapy in HBV carriers might increase the risk of chronic hepatitis and liver cancer.

To date, the role of HBV in HCC progression has been widely studied, providing
new ideas for the effective prevention and treatment of HCC.

STAT3 and related signaling pathways
As an important member of the STAT family, STAT3 is constitutively activated in
many  tumor  and  immune  cells  in  the  tumor  microenvironment.  The  abnormal
activation of STAT3 signaling is closely related to the occurrence, proliferation, drug
resistance and stemness of various tumors,  including HCC. STAT3 also plays an
important role in the regulation of the complex network formed in the tumor micro-
environment[33-36].

STAT3 and microRNAs:  STAT3 deficiency prevents hepatocarcinogenesis in the
thioacetamide-induced liver injury model[37].  Constitutive activation of  STAT3 is
observed in HCC cells and tissues, and STAT3 decoy oligodeoxynucleotides (STAT3-
decoy  ODN)  can  specifically  block  the  activation  of  STAT3  signaling  in  HCC,
resulting in the inhibition of proliferation and apoptosis in tumor cells[38]. MicroRNAs
such as miR-589-5p and miR-500a-3p maintain the drug resistance and stemness of
HCC by activating STAT3 signaling[39-41]. However, some microRNAs have been found
to inhibit tumor development by interfering with STAT3. MiR-345 upregulation has
been shown to inhibit epithelial-mesenchymal transition (EMT) in HCC by targeting
interferon regulatory  factor  1  (IRF1)-mediated mTOR/STAT3/AKT signaling[42].
Furthermore, miR-451 may function as a potential suppressor of tumor angiogenesis
in HCC by targeting IL-6R/STAT3/VEGF signaling,  indicating a promising the-
rapeutic strategy for HCC[43]. Although different microRNAs have different effects on
HCC, STAT3 plays a key role in the regulation of microRNA signaling during he-
patocarcinogenesis.

TLR4 and STAT3: The relationship between inflammation and tumors has been well
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established[44]. Approximately 70% of the blood supply to the liver comes from the
outflow of intestinal veins, and the presence of the hepato-intestinal axis makes the
liver the first line of defense against enterogenous antigens. Pathogen-associated
molecular patterns (PAMPs) derived from the intestinal microbiota play a regulatory
role in liver diseases by activating Toll-like receptors (TLRs). In a liver injury-cancer
model induced by a combination of diethylnitrosamine (DEN) and the hepatotoxin
carbon tetrachloride (CCl4),  TLR4-/-  mice showed a significant decrease in tumor
number and volume formation compared to wild-type mice. Moreover, intestinal
microbiota-derived  lipopolysaccharides  (LPS)  can  activate  TLR4  signaling  in
hepatocytes to promote inflammation-induced hepatocarcinogenesis[45]. We also found
that TLR4 was constitutively expressed in HCC, and further study demonstrated that
TLR4 promoted HCC occurrence and progression depending on the activation of the
Cox-2/PGE2/STAT3  axis  and  was  associated  with  multiple  drug  resistance[46].
Significantly,  sorafenib can inhibit  HCC by blocking TLR4/STAT3/SUMO1 acti-
vation[47].

STAT3 and the  tumor  microenvironment:  With  advancements  in  research,  the
occurrence and development of tumors is thought to arise due to not only the de-
terioration and proliferation of tumor cells, but also the immunosuppressive tumor
microenvironment. As a key transcription factor, STAT3 is constitutively activated in
both tumor cells and immune cells in the microenvironment (Figure 2). We found that
blocking STAT3 in HCC cells could effectively disrupt tumor-induced immune tole-
rance and induce an antitumor reaction in  tumor-bearing mice,  which might  be
related  to  the  downregulation  of  transforming  growth  factor-beta  (TGF-β)  and
interleukin(IL)-10 and the upregulation of type I interferons (IFNs)[48,49]. Alternatively,
STAT3 could directly regulate miR-146a expression to upregulate the expression of
TGF-β, IL-17 and VEGF and downregulate the expression of type I IFNs, mediating
the inhibitory effect of NK cells on HCC[50]. More importantly, STAT3 could inhibit the
Th1 immune response and promote the formation of an immunosuppressive micro-
environment[51,52]. Studies have shown that tumor-associated macrophages (TAMs)
promote HCC progression by secreting cytokines such as IL-8 and IL-6 to activate
STAT3 in  HCC[53,54].  HCC-associated  fibroblasts  induce  the  activation  of  STAT3
pathways in neutrophils and dendritic cells (DCs), and these STAT3-over-activated
neutrophils and DCs display protumorigenic roles[55,56]. Blocking STAT3 activation in
immune cells such as TAMs and DCs can inhibit HCC progression[56,57]. Meanwhile,
blocking STAT3 not only inhibits HCC proliferation but also upregulates NKG2D
ligand  expression,  such  as  ULBPs  and  MICA/B,  in  HCC  cells  to  increase  the
sensitivity of HCC to NK cell-mediated cytolysis and enhance the anti-HCC activity of
NK cells[48,49].

In summary, STAT3 signaling can interact with multiple pathways to promote
HCC. STAT3 plays an important role in both the maintenance of HCC malignancy
and the suppression of the immune microenvironment, which makes STAT3 an ideal
target for HCC treatment. The development of STAT3 inhibitors used for clinical
application is an attractive research topic. STAT3 inhibitors, including AZD9150 and
TTI-101, have entered the clinical trial phase for HCC treatment (ClinicalTrials.gov
identifier: NCT03195699 and NCT01839604, respectively). Several drugs, which were
not initially applied for tumor treatment, have also been found to exert anticancer
effects by blocking STAT3[58-60]. Thus, the identification of new STAT3-targeted inhi-
bitors is still an important direction for drug development.

Homeobox genes
Homeobox genes were first discovered in the fruit fly Drosophila, which are divided
into many subfamilies (Hox, PAX, NKX, etc.,) on the basis of the level of similarity
among them[61]. Homologous homeobox genes have been found in mammals. Most
homeobox genes are involved in regulating the expression of genes related to embr-
yonic development and cell  differentiation. Mutations in these genes can lead to
abnormal organ development in eukaryotes[61-64]. In addition, in recent years, a variety
of homeobox genes have been found to be involved in the occurrence and deve-
lopment of  tumors[64,65],  and different  homeobox genes have been shown to play
different roles in the progression of cancer such as HCC.

Hox and HCC:  The Hox gene,  an important member of  the homeobox family,  is
abnormally expressed in multiple malignant solid tumors[65]. The role of Hox has also
been studied in HCC over the years. Among HOX genes, HOXA13 has been reported
to be the most deregulated in HCC. HOXA13 overexpression in HCC cell lines results
in increased colony formation and migration but reduced sensitivity to sorafenib[66-68].
Knockdown of endogenous HOXA7 results in decreased proliferation of HCC cells by
inhibiting cyclin E1/cyclin-dependent kinase-2[69].  HOXB7 can promote EMT and
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Figure 2

Figure 2  STAT3 signaling contributes to form an immunosuppressive microenvironment in hepatocellular
carcinoma. Long lines ending with arrows or bars indicate activating or inhibitory effects, respectively. Short arrows
pointing up or down indicate up-regulated or down-regulated, respectively. TAMs: Tumor-associated macrophages;
CAFs: Cancer-associated fibroblasts; NK cell: Natural killer cell; DCs: Dendritic cells; NE: Neutrophil elastase; HCC:
Hepatocellular carcinoma.

stemness formation by upregulating the expression of c-Myc and Slug in HCC[70].

HMBOX1 and HCC: Homeobox containing 1 (HMBOX1), a novel human homeobox
gene, was first isolated from the human pancreatic cDNA library. HMBOX1 belongs
to the HNF homeobox class of the homeobox family[63,71]. The expression of HMBOX1
is reported to be up- or downregulated in some tumors[72-75]. Our previous study re-
vealed that the expression level of HMBOX1 in liver cancer was lower than that in
adjacent noncancerous tissues[74]. Further study showed that HMBOX1 expression was
negatively correlated with the differentiation and clinical stage of HCC, and HMBOX1
overexpression could inhibit HCC by promoting autophagy, inhibiting the cancer
stem cell phenotype and increasing tumor cell sensitivity to NK cell-mediated cyto-
lysis. The underlying mechanisms may be related to changes in the expression of Fas
and programmed cell death ligand 1 (PD-L1) in HCC cells mediated by HMBOX1
overexpression[76]. Additionally, HMBOX1 expression in hepatocytes has been shown
to prevent inflammation and liver injury by reducing macrophage infiltration and
acti-vation, thereby blocking inflammation-related tumor development[77].

Other homeobox genes and HCC: Prospero-related homeobox 1 (PROX1) is closely
related to proliferation, differentiation and prognosis in HCC. PROX1 can upregulate
IL-8  expression  and  activate  NF-κB  and  β-catenin  signals  to  promote  HCC
angiogenesis and sorafenib resistance[78-80]. NK3 homeobox 1 (NKX3.1) was initially
found to play an important role in the regulation of prostate development and tumo-
rigenesis[81]. Recently, NKX3.1 expression was shown to be decreased in HCC tissues,
and NKX3.1 overexpression induced G1/S phase arrest in HCC cells through up-
regulation of FOXO1[82].  HLXB9 is highly expressed in poorly differentiated HCC
samples[83].

From the above, different homeobox genes exhibit different functions via related
mechanisms to promote or inhibit HCC progression (Table 1). Because the homeobox
family has a large number of genes, its role in HCC and other tumors remains to be
further explored.

Wnt signaling
As a  highly  conserved  signaling  pathway during  biological  evolution,  the  Wnt
signaling pathway plays an important role in a variety of physiological and path-
ological processes[84]. With advancements in research, the regulatory role of the Wnt
signaling pathway in cancer progression and the emergence of stemness has attracted
widespread attention. According to the different mechanisms of signal tran-sduction,
the Wnt pathway is generally divided into the canonical Wnt/β-catenin and non-
canonical β-catenin-independent pathways.

Wnt signaling and HCC: Aberrant activation of the Wnt/β-catenin signaling path-
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Table 1  Homeobox genes show different roles in the progression of hepatocellular carcinoma

Homeobox genes Involvement in HCC process Target genes Ref.

HOXA13 Colony formation (+), migration (+), Drug resistance (+) —
[65,67]

HOXA7 Proliferation (-) Cyclin e1/cdk2
[68]

HOXB7 Stemness (+), EMT (+) c-Myc, slug
[69]

HMBOX1 Autophagy (+), Stemness (-), Immunosuppression (-) PD-L1, Fas
[75]

PROX1 Drug resistance (+), angiogenesis (+) IL-8, NF-κB, β-catenin
[77-79]

NKX3.1 Proliferation (-) FOXO1
[80]

(-): Inhibit; (+): Promote; -: Unavailable; HCC: Hepatocellular carcinoma.

way has been observed in HCC patients, and various molecules, such as the protein
components of HBV and HCV, as well as hypoxia-induced factor (commonly known
as HIF),  can activate the Wnt/β-catenin pathway in HCC[5,85-88].  The activation of
Wnt/β-catenin signaling is closely related to the occurrence and development of
HCC, the formation of stemness and drug resistance[79,89-91] (Figure 3). In addition, Wnt
signals regulate HCC progression by interacting with Hippo and Notch signaling
pathways[92-94].  In  addition  to  mutations  in  CTNNB1,  AXIN1  and  other  related
genes[95-98],  epigenetic regulation is involved in the aberrant activation of the Wnt
signaling pathway. For instance, the long noncoding RNA lncTCF7 promotes stem-
ness and dissemination in HCC by activating Wnt signaling[99]. In HBV-related HCC,
HBx  silences  secreted  frizzled-related  proteins  (SFRPs)  by  mediating  DNA
methylation to activate Wnt signaling[100]. Many microRNAs regulate the activation of
Wnt signaling at the posttranscriptional level to affect HCC progression. For example,
miR-542-3p can target the frizzled 7/Wnt signaling pathway to inhibit HCC[101], while
Octamer 4/miR-1246 promotes stemness by inhibiting AXIN2 and GSK3 and thereby
activating Wnt/β-catenin signaling in HCC[102].

Wnt signaling and the tumor microenvironment: In addition to the effect on tumor
cells themselves, Wnt signaling has recently been found to play an important role in
the formation of a tumor immunosuppressive microenvironment. β-catenin activation
in DCs can inhibits the process of antigen cross presentation at CD8+ T cells[103,104] and
participates  in the differentiation and activation of  Treg cells[105].  Wnt/β-catenin
activation in TAMs facilitates M2 polarization, which promotes HCC[106]. TAMs also
activate β-catenin by secreting CCL17 to promote EMT in HCC[107]. Although many
studies have demonstrated that Wnt activation plays an immunosuppressive role, the
mechanism of Wnt activation in the tumor microenvironment remains to be further
explored. A better understanding of the role of Wnt signaling in HCC progression is
thus essential for the prevention and treatment of HCC.

Role of exosomes in HCC
Exosomes can be released by all cell types, including cancer cells and immune cells,
and play important roles in intercellular communication[108].  As carriers and tran-
sporters, exosomes deliver a variety of biological molecules, including proteins, lipids,
and nucleic acids. Exosomes have been shown to play important roles in most cancer-
associated processes.

Exosomes promote HCC:  We have reported that exosomes present in the sera of
chronic hepatitis B patients contain both HBV-derived nucleic acids and HBV proteins
and can transfer HBV to hepatocytes in an active manner. Moreover, exosomes med-
iate the transmission of HBV into NK cells, resulting in the impairment of NK cell
functions[109]. This may contribute to the progression of chronic HBV infection to HCC.
Exosomes  derived  from  metastatic  HCC  cell  lines  carry  a  large  number  of
protumorigenic RNAs and proteins, such as MET protooncogenes and S100 family
members.  These exosomes promote metastasis  by triggering the PI3K/AKT and
MAPK signaling pathways in hepatocytes and increasing the secretion of active ma-
trix metalloproteinase (MMP) 2 and MMP-9[110].

Exosomes and chemoresistance: HCC is highly resistant to chemotherapy. Qu et al[111]

found that exosomes derived from HCC cells  can induce sorafenib resistance by
activating the HGF/c-Met/Akt signaling pathway. Moreover, exosomes derived from
highly invasive HCC cells have greater efficacy than exosomes derived from less
invasive cells[111]. Exosomal miR-32-5p can induce multidrug resistance in HCC by
activating the PI3K/Akt pathway[112]. Therefore, HCC cell-derived exosomes might be
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Figure 3

Figure 3  Aberrant activation of the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. A: Wnt signaling is inactive in the absence of Wnt ligands
(OFF); B: Wnt signaling can be activated by various molecules in HCC (ON). HBV and HCV can active Wnt/β-catenin signaling by activating TCF or inhibiting GSK3β;
HBx can silence SFRPs to activate Wnt signaling; LncTCF7 triggers Wnt7a and TCF7 expression to activate Wnt signaling. Lines ending with arrows or bars indicate
activating or inhibitory effects, respectively. HIF1α: Hypoxia-inducible factor 1α; LEF: Lymphoid enhancer-binding factor; LRP: Low-density lipoprotein receptor-related
protein; TCF: T cell factor; FZD: Frizzled; E-cad: E-cadherin; SFRPs: Secreted frizzled-related proteins; CTGF: Connective tissue growth factor; WISP2: Wnt1
inducible signaling pathway protein 2.

an important target for reversing chemoresistance.

Exosomes and the tumor microenvironment:  As carriers,  exosomes play an im-
portant role in cell-cell interactions in the tumor microenvironment. Anticancer drugs
induce the release of exosomes containing heat shock proteins (HSPs) from HCC cells,
which elicit effective NK cell-mediated antitumor responses[113].  However, 14-3-3ζ
proteins  delivered  by  exosomes  can  be  transmitted  from  HCC  cells  to  tumor-
infiltrating T cells, impairing the functions, proliferation and activation of T cells[114].
Additionally, HCC-derived exosomes containing lncRNA TUC339 can be taken up by
macrophages to play important roles in macrophage activation and regulation of
M1/M2 polarization[115]. Additionally, highly metastatic HCC cell-secreted exosomal
miR-1247-3p directly targets B4GALT3, leading to the activation of β1-integrin-NF-κB
signaling  in  fibroblasts,  which  converts  normal  fibroblasts  to  cancer-associated
fibroblasts.  Activated  cancer-associated  fibroblasts  further  promote  cancer  pro-
gression. Clinical data also show that high serum exosomal miR-1247-3p levels are
correlated with lung metastasis in HCC patients[116].

Therefore, exosomes play important roles in the development of HCC (Figure 4).
Nevertheless,  more studies on how exosomes mediate HCC progression are still
needed to promote the clinical utilization of exosomes.

HCC IMMUNOTHERAPY
Clinical  treatment  of  HCC  includes  liver  transplantation,  surgical  resection,
chemotherapy,  radiotherapy,  interventional  therapy and immunotherapy.  Liver
transplantation is  the only treatment option for  HCC patients  with unresectable
tumors or cirrhosis[117]. The 5-year survival rates can reach 60%–70% in patients with
HCC after liver transplantation[118]. However, the number of patients that need liver
transplantation exceeds the number of available donor organs[119]. Therefore, HCC
patients must be selected very carefully in terms of tumor size and number of tumor
nodules[120]. Surgical resection of early HCC is still the first choice for treatment, but
the recurrence rate within five years is as high as 70%[2]. The multikinase inhibitor
sorafenib is recognized as the most effective molecular targeted drug for the treatment
of advanced HCC worldwide. Despite advancements in molecular therapy with the
multikinase inhibitor sorafenib, the prognosis of advanced HCC cases remains poor,
with five-year survival rates of 3%-11%[121]. The immune system plays a key role in
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Figure 4

Figure 4  Exosomes play important roles in the development of hepatocellular carcinoma. Exosomes deliver a variety of biological molecules that have been
proven to play important roles in hepatocellular carcinoma progression and immunosuppression. Lines ending with arrows or bars indicate activating or inhibitory
effects, respectively. HCC: Hepatocellular carcinoma.

controlling and eradicating cancer. Therefore, immunotherapy has received much
attention in recent years. Additionally, although immunotherapy takes longer than
conventional chemotherapy to produce a therapeutic effect, it persists for longer. Ear-
lier immunotherapy mainly included cytokine-mediated immunotherapy, oncolytic
virus therapy, TLR agonist therapy and DC vaccine. In recent years, emerging im-
munotherapies, such as immune checkpoint blockade and CAR T cell therapies, have
shown better therapeutic effects on some tumors, thus giving us new hope for the
treatment of HCC.

Immune checkpoint blockade
Checkpoint blockade, currently the top candidate in immunotherapy, has been shown
to be effective for the treatment of many cancers, especially for chemotherapy re-
sistant malignant tumors. Among the available immune checkpoint inhibitors, CTLA-
4 and PD-1 display the most pronounced effects and have shown remarkable efficacy
in the treatment of malignant melanoma[122,123].  Nivolumab, pembrolizumab (PD-1
inhibitor) and tremelimumab (CTLA-4 inhibitor) have been demonstrated to be safe
and effective in clinical trials[124-126], and nivolumab has been approved by the U.S.
Food and Drug Administration (commonly known as the FDA) as a second-line trea-
tment for HCC[127].

Although  good  results  have  been  achieved  in  the  treatment  of  HCC  with
checkpoint blockade, the response rate to the treatment is relatively low due to the
formation  of  an  immunosuppressive  microenvironment.  The  combination  of
checkpoint blockade inhibitors and other methods may enhance the efficacy[128,129].
Recently, Zhou et al[130]  found that the combined use of checkpoint inhibitors and
myeloid-derived suppressor cell infiltration blockers can augment the therapeutic
effect  of  anti-PD-L1 antibody in HCC. The use of  tremelimumab combined with
radio-frequency ablation to treat advanced HCC promoted the accumulation of CD8+

T cells in tumor tissues, suggesting that this combined treatment might be a new
therapeutic method[131].  The combined use of anti-CTLA-4 antibodies,  anti-PD-L1
antibodies and the histone deacetylase inhibitor belinostat completely eliminated tu-
mor load in HCC tumor-bearing mice[132]. An increasing number of researchers are
investigating the therapeutic effect of combination therapy when immune checkpoint
blockade alone is not effective. Thus, combined therapy may be a new strategy for the
future application of checkpoint blockade in solid tumors, including liver cancer, but
large amounts of clinical trial data are still needed to support the development of
specific treatment strategies.

Adoptive transfer of genetically modified lymphocytes
Adoptive cell transfer is the most representative tumor immunotherapy at present,
and it is mediated by cytolytic activity against tumor cells by the transfer of lym-
phocytes from the patient themselves or from donors. Before the emergence of CAR T
cells,  adoptive  transfer  therapy  in  HCC  mainly  focused  on  tumor-infiltrating
lymphocytes and cytokine induced killer cells[133-135]. With the recent discovery of CAR
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T cells and their amazing therapeutic effect on hematological tumors[136], the effect of
CAR T cell therapy in solid tumors such as HCC has attracted increasing attention.

CAR T cells: CARs provide T cells with the ability to directly recognize tumor anti-
gens independent of the human leukocyte antigen. This allows CAR engineered T
cells to recognize a wider range of targets than natural T cells. At present, the most
widely used CAR structure consists of a single-chain antibody extracellular domain
that recognizes and binds specific antigens, an extracellular hinge region, a tran-
smembrane region,  and an intracellular  domain that  provides  proliferation and
activation signals. Throughout the entirety of the immunotherapy process, the design
and integration of CARs into T cells to generate CAR T cells are the most critical
steps[137]. Multiple studies have demonstrated that glypican 3 (GPC3) is an attractive
liver cancer-specific target, because its expression is high in HCC tissues but limited
in normal tissues[138].  GPC3-specific CAR T cell therapy for HCC exhibits a strong
killing effect on GPC3-positive HCC cells both in vivo and in vitro[139]. Furthermore, a
relevant phase 1 clinical trial study (ClinicalTrials.gov identifier: NCT02395250) sh-
owed that autologous T cells bearing GPC3-specific CARs were safe and effective in
patients with relapsed or refractory HCC. Meanwhile, another phase 1 clinical trial
(ClinicalTrials.gov identifier: NCT02541370) involving CD133-directed CAR T cells for
advanced HCC demonstrated feasibility, controllable toxicities and effectiveness[140].
However, immunosuppressive microenvironments can hinder the infiltration of CAR
T cells into tumor tissues, thereby reducing CAR T cell-mediated antitumor effects[141].
In-terestingly, Guo et al[142] showed that further inhibition of PD-1 expression in GPC3-
specific CAR T cells can enhance the killing effect of CAR T cells on HCC cells.

Treatment of HCC based on NK cells: Similar to T cells, NK cells can be modified
with CARs that recognize antigens expressed by tumors and combine with signaling
components that enhance NK cell activity. At present, clinical studies on CAR NK
cells mostly focus on the treatment of lymphoma and hematological tumors, and only
a few studies exist regarding the treatment of solid tumors such as HCC. Yu et al[143]

found that GPC3-specific CAR NK cells constructed with NK-92 cells could effectively
inhibit proliferation and promote apoptosis in HCC cells. Furthermore, CAR NK cells
display lower toxicity than CAR T cells and do not need patient matching, which
makes  CAR  NK  cells  more  promising  for  cancer  treatment[144].  Previously,  we
constructed gene-modified NK cells to augment NK cell activity and found that IL-15-
or IFN-α-gene modification increased the production of TNF-α and IFN-γ by NK-92
or NKL cells, promoting apoptosis in HCC cells by upregulating the expression of
NKG2D ligands and Fas on HCC cells. These NK cells also exerted enhanced anti-
tumor effects in vivo[145-147].

TLR agonists
The role of TLR agonists as a vaccine adjuvant and tumor immunotherapeutic agent
has been recently noted[148-150]. As a vaccine adjuvant, TLR agonists trigger antigen
presentation by promoting the maturation of DCs. Multiple TLRs, such as TLR3 and
TLR9, have been confirmed to be expressed on HCC cells[151-153], and the role of TLR
agonists in tumor therapy has received much attention. The TLR2/4 agonist OM-174
has potential roles in the prevention of invasion and metastasis in HCC[154]. We also
found that  both TLR3 agonist  poly (I:C)  and TLR9 agonist  ODN M362 can exert
antitumor effects on HCC cells.  Surprisingly,  we found that simultaneous trans-
fection of poly (I:C) and ODN M362 exhibits a lower proapoptotic effect on HCC than
transfection of poly (I:C) alone. Further investigation demonstrated that ODN M362
blocks the entrance of poly (I:C) when simultaneously used to treat HCC cells and
then decreases the activation of poly (I:C)-triggered cellular apoptosis; however, poly
(I:C)-mediated proapoptotic effects could be enhanced by pretreating HCC cells with
CpG ODN[155]. TLR agonists can also work as adjuvants to stimulate the immune sy-
stem during tumor treatment, but their effects on tumor cells cannot be ignored. These
therapeutic effects may thus be the overall outcome of various mechanisms.

Tumor vaccine
DCs are central regulators of the adaptive immune response and are thus necessary
for T-cell-mediated antitumor immunity. DC vaccines have the characteristics of low
complication rates and good tolerance, and DC-based tumor vaccines have been used
for a variety of solid tumors[156]. Currently, there are many clinical studies on the use
of DC vaccines for HCC treatment.  The injection of DCs prestimulated by HCC-
specific antigens can increase the number of CD8+ T cells, promote antitumor immune
responses and improve liver function[157-159]. The combined use of DC vaccines and
other treatments, such as radiotherapy, can induce immunogenic death of tumor cells,
which can prolong the overall survival of patients[160].
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Exosomes display an array of HCC antigens. Rao et al[161] demonstrated that tumor
cell-derived exosomes could trigger a stronger DC-mediated immune response than
cell lysates and improve the HCC tumor microenvironment. Exosomes derived from
α-fetoprotein (AFP)-expressing DCs (DEXAFP) elicited strong antigen-specific immune
responses, resulting in significantly delayed tumor growth and prolonged survival
rates in mice with HCC tumors[162]. Therefore, DEXAFP might be a promising vaccine
for HCC immunotherapy. AFP, a carcinoembryonic antigen, is highly expressed in
HCC and  serves  as  an  important  marker  in  the  diagnosis  of  HCC,  as  well  as  a
potential  immunotherapy target  for HCC. Zhang et  al[163]  prepared a mouse AFP
recom-binant vaccine by genetic engineering and found that it could induce cellular
and humoral immune responses in tumor-bearing mice and show obvious antitumor
effects. Additionally, with the use of HCC cell lysates derived from STAT3-inhibited
HCC cells to immunize healthy mice, we found that a variety of immune cells, such as
T cells and NK cells, were significantly activated after challenge with murine HCC
cells in these immunized mice, showing effective inhibition characteristics against the
transplanted tumor and resulting in the formation of immune memory[164]. Therefore,
as a target for HCC treatment and prevention, blocking STAT3 not only prevents
tumor growth but also exerts an important effect on immune system activation.

Although immunotherapy for HCC has made significant progress,  the clinical
efficacy still needs to be further improved. Finding new targets for the treatment of
HCC is still the direction of scientific researchers in the next few years. In recent years,
studies about the roles of epigenetics and metabolomics on HCC progression have
also become hot spots. Related drug development is also ongoing. A single treatment
may not bring satisfactory therapeutic effect. Individual differences need to be more
considered.  Combined therapy and individualized therapy may be  a  promising
option in HCC treatment.

CONCLUSION
The development of HCC results from the accumulation of many factors and the
interaction  among  many  mechanisms.  Exploring  the  molecular  mechanisms
underlying the occurrence and development of HCC is important for us to obtain a
more comprehensive understanding of  the disease process  and to identify more
effective  therapeutic  targets  and  strategies.  With  continuous  breakthroughs  in
research, in addition to traditional therapies, immunotherapies have shown good
efficacy for HCC in both preclinical and clinical trials, offering hope for curing this
disease. Thus, the combination of drugs acting on various pathways, targets and
treatment methods might be effective strategies to achieve greater clinical benefits for
the treatment of HCC.
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