Skip to main content
. 2019 Jul 3;6:146. doi: 10.3389/fmed.2019.00146

Table 1.

Main accuracy metrics of the biological age estimates described here.

Tissue type Input features ML algorithm N (training:test) Population Pearson r R2 MAE (years) Reference
Blood 41 haemochrome markers DNN 62,419 (90:10) Russian 0.9 0.8 6.07 (20)
19 haemochrome markers DNN 65,760 (80:20) South Korean 0.7 0.49 5.59 (2)
55,920 (80:20) Eastern European 0.84 0.69 6.25
20,699 (80:20) Canadian 0.7 0.52 6.36
142,379 (80:20) All 0.8 0.65 5.94
Brain Structural MRI (normalized GM volumes) GPR 2,001 (90:10) different ancestries 0.95 0.89 4.66 (23)
Structural MRI (normalized WM volumes) 0.92 0.84 5.88
Structural MRI (normalized GM + WM volumes) 0.96 0.91 4.41
Structural MRI (raw data) 0.57 0.32 11.81
Structural MRI (normalized GM volumes) CNN 0.96 0.92 4.16
Structural MRI (normalized WM volumes) 0.94 0.88 5.14
Structural MRI (normalized GM + WM volumes) 0.96 0.91 4.34
Structural MRI (raw data) 0.94 0.88 4.65
Structural MRI (normalized GM + WM volumes) GPR 2,001 (80:10:10) different ancestries 0.94 0.88 5.02 (5)

ML, Machine Learning; MAE, Mean Absolute Error; DNN, Deep Neural Networks; GPR, Gaussian Process Regressions; CNN, Convolutional Neural Networks; MRI, Magnetic Resonance Imaging; GM/WM, gray/white matter.