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Podosomes are a singular category of integrin-mediated adhesions important

in the processes of cell migration, matrix degradation and cancer cell invasion.

Despite a wealth of biochemical studies, the effects of mechanical forces on

podosome integrity and dynamics are poorly understood. Here, we show

that podosomes are highly sensitive to two groups of physical factors. First,

we describe the process of podosome disassembly induced by activation of

myosin-IIA filament assembly. Next, we find that podosome integrity and

dynamics depends upon membrane tension and can be experimentally per-

turbed by osmotic swelling and deoxycholate treatment. We have also

found that podosomes can be disrupted in a reversible manner by single or

cyclic radial stretching of the substratum. We show that disruption of podo-

somes induced by osmotic swelling is independent of myosin-II filaments.

The inhibition of the membrane sculpting protein, dynamin-II, but not cla-

thrin, resulted in activation of myosin-IIA filament formation and

disruption of podosomes. The effect of dynamin-II inhibition on podosomes

was, however, independent of myosin-II filaments. Moreover, formation of

organized arrays of podosomes in response to microtopographic cues (the

ridges with triangular profile) was not accompanied by reorganization of

myosin-II filaments. Thus, mechanical elements such as myosin-II filaments

and factors affecting membrane tension/sculpting independently modulate

podosome formation and dynamics, underlying a versatile response of

these adhesion structures to intracellular and extracellular cues.

This article is part of a discussion meeting issue ‘Forces in cancer:

interdisciplinary approaches in tumour mechanobiology’.
1. Introduction
Podosomes are a distinct type of integrin-mediated cell–matrix adhesion typically

seen in cells of monocytic origin (dendritic cells [1,2], macrophages [3] and osteo-

clasts [4] but also found more recently in a variety of other cell types [5–8]). In early

studies, podosomes were also found in some types of cancer cells (Src-transformed

fibroblasts [9,10]). Thus, podosomes could be considered as a ubiquitous category

of integrin-based matrix adhesion structures, whose participation in cancer cell

invasion and metastasis is now well documented [11,12].

Analogous to another class of integrin-based adhesions, focal adhesions,

podosomes are membrane specializations in which clusters of integrin family
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transmembrane receptors are connected to actin filaments.

While both integrin receptors themselves and numerous pro-

teins linking the cytoplasmic domains of these receptors with

the actin cytoskeleton are similar in podosomes and focal

adhesions, the organization of the actin core is different in

these types of structures. Focal adhesions are peripheral ter-

mini of actin bundles known as stress fibres and the actin

scaffold of focal adhesions also consists of bundles of parallel

actin filaments [13–15]. Actin filaments of focal adhesions are

associated via numerous links containing talin and vinculin,

with clusters of integrins located immediately underneath

the actin filament layer [16]. The major nucleators of actin fila-

ments in focal adhesions are thought to be formins [15,17–20]

even though the Arp2/3 complex plays an important regulat-

ory role, especially at the early stage of focal adhesion

formation [21,22]. By contrast, the actin core of podosomes is

formed mainly via Arp2/3-driven branching actin polymeriz-

ation, and the Arp2/3 complex along with its activators

WASP/N-WASP are essential components of podosomes

[23–25]. In addition, podosomes contain a number of

other actin-interacting proteins missing in focal adhesions,

such as cortactin [26], gelsolin [27], cofilin [28,29] and

dynamin-II [30,31]. Unlike focal adhesions, the clusters of

integrin receptors are located not underneath the actin

core but at its periphery forming an approximately ring-

shaped structure [32–34]. Formins seem to play a less

important role in podosome formation than the Arp2/3

complex, though the radial filaments connecting

the podosome core with proteins of the adhesive ring are

postulated to be nucleated by formins [35,36].

The formation and dynamics of focal adhesions strongly

depend on physical forces developed in the course of cell inter-

actions with the extracellular matrix. Treatment of cells with

diverse inhibitors interfering with myosin-II filament assembly

or mechanochemical activity, as well as knockdown of

myosin-IIA, results in disassembly of mature (but not nascent)

focal adhesions [37–40]. Moreover, application of external

mechanical forces to focal adhesions can promote their

growth, while plating on soft or fluid substrates, which do

not support development of traction forces by cells, is not

favourable for focal adhesion formation [17,41,42]. Focal

adhesion maturation from initial nascent adhesions, as well

as their further growth, depend on myosin-IIA filament

mechanochemical and cross-linking activity as well as on

polymerization and bundling of actin filaments [19,43]. Centri-

petal traction forces required for focal adhesion growth emerge

due to the coupling of centripetal actin flow to integrin clusters

via a stick-slip clutch mechanism [44–46]. The formation of

myosin-II filament superstructures (stacks) [47] may also

play a role in organization of the actin bundles in the lamellum

and focal adhesion maturation.

The formation and maintenance of podosomes depends

on different mechanical requirements compared to focal

adhesions. In particular, podosome formation can efficiently

proceed in cells plated on fluid-supported lipid bilayer

membrane, a substrate which does not permit development

of traction forces exerted on integrin clusters [8,48]. More-

over, fibroblast-type cells, which normally form focal

adhesions on stiff matrix, switch to forming podosomes

after being plated onto fluid substrates [8]. Thus, podosomes

appear to self-assemble by default under conditions of depri-

vation of traction forces, while focal adhesions critically

depend on development of such forces.
In agreement with this premise, recent experimental

evidence shows that myosin-II filaments play an inhibitory

rather than stimulatory role in podosome formation. Acti-

vation of myosin-IIA filament formation by a number

of pathways converging to the Rho/ROCK signalling axis

[49–52] as well as depletion of the regulatory protein S100A4

[53] promote podosome disassembly. Proteins known as

supervillin and LSP-1 (lymphocyte-specific protein-1) appear

to control the disruptive effect of myosin-IIA on podosomes

by regulating the recruitment of myosin-IIA to the podosome

environment [49,50].

Last but not least, unlike focal adhesions, which are essen-

tially planar structures, podosomes are known to be small

uniform membrane protrusions. This protrusional activity

of podosomes is especially evident when cells are attached

to soft deformable substrata [8,54–56]. This means that the

processes of membrane sculpting would play an important

role in the formation and dynamics of podosomes. Indeed,

several proteins known to be potent regulators of membrane

sculpting, such as dynamin-II [30,31], and several BAR

domain proteins [30,57–60] are localized to podosomes and

often required for their formation. The effects of mechanical

deformation of membrane and factors affecting membrane

tension on podosome formation are, however, not much

studied. Furthermore, the relationship between myosin-II-

driven podosome remodelling and factors affecting

membrane sculpting has not yet been investigated.

The aim of the present study was to explore the effects of

different categories of external and internal mechanical forces

applied to podosomes. We paid special attention to factors

affecting membrane tension as well as processes of membrane

sculpting. We show that the effects of factors affecting mem-

brane tension and sculpting on podosomes are independent

of the effects of myosin-IIA filaments. We also found that,

unlike focal adhesions, podosomes are highly sensitive to sub-

strate stretching and demonstrate unique dependence on

substrate topography. Altogether, our results clearly show

that podosome formation and dynamics are regulated by

two groups of mechanical factors, one operating via myosin-

IIA filaments and the other being membrane deformations.

This sheds a new light on the unique role of podosome-type

adhesions in cell migration and environmental sensing as

well as in cancer invasion and metastasis.
2. Results
(a) Disruptive effect of myosin-II filament assembly on

podosome integrity
The antagonism between myosin-II filaments overproduction

and podosome formation was documented in previous

studies [49–53], but the mechanism underlying this antagon-

ism is insufficiently understood. Here, we studied the time

course of podosome disruption upon activation of myosin-

II filament assembly under conditions when localization of

podosomes is defined by a micropatterned substrate

(figure 1a–d; electronic supplementary material, movie S1).

We plated THP1 cells differentiated into macrophages by

TGFb1 treatment on micropatterned surfaces consisting of

4 mm diameter adhesive islands coated with fibronectin sep-

arated by non-adhesive space (figure 1b). Under such

conditions, the podosomes of adherent cells are concentrated
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Figure 1. Interrelationship between podosomes and myosin-II filaments in TGFb1-stimulated THP1 cells. (a) Podosome actin cores visualized by phalloidin staining
(red in the left panel), and myosin-IIA filaments fluorescently labelled by myosin-IIA heavy chain antibody (green in the middle panel); merged image is shown in
the right panel. Scale bar, 5 mm. Note that myosin-IIA filaments are localized to the narrow peripheral zone of the cell and surround the podosome array. (b) The
micropatterned substrate organized as a square lattice consisting of circular fibronectin-coated islands (4 mm diameter) arranged with 8 mm period on passivated
non-adhesive substrate. The islands are visualized by fluorescently labelled fibronectin. Scale bar, 4 mm. (c) The edge of the cell attached to the fibronectin micro-
pattern (left) is marked by the yellow line. Podosomes (actin, red) confined within the adhesive islands are surrounded by myosin-II filaments (green). The boxed
area in c is shown at higher magnification in c0 (left: actin staining; right: merged image of actin and myosin-IIA filaments). Scale bars, 5 mm. (d ) Time course of
disruption of podosomes in cells attached to the micropatterned substrate upon activation of RhoA by CN03. The cell attached to three adhesive islands is seen.
The cell was transfected with RFP-Lifeact (red) and GFP-myosin regulatory light chain (green). Podosomes are localized to the adhesive islands and surrounded
by myosin-II filaments. Upper row: actin cores of podosomes; lower row: merged images of podosomes and myosin-II filaments. Note that disruption of podo-
somes upon addition of CN03 correlates with the assembly of myosin-II filaments. See also electronic supplementary material, movie S1. Scale bar, 5 mm. All
images were taken using SIM.
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in small clusters confined by the islands (figure 1c). Of note,

the intensity of fibronectin fluorescence was significantly

lower in zones of the islands underlying podosome clusters,

presumably due to podosome-mediated matrix degradation

(figure 1c). The myosin-II filaments in THP1 cells were
located at the cell periphery but can also be found in the

rims surrounding podosome clusters (figure 1c). The addition

of the RhoA activator, CN03 (Cytoskeleton, Inc; see also [61]),

triggered myosin-II filament formation within 2 min. These

filaments are first concentrated at zones surrounding



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180228

4
podosome clusters and then move towards the centre of the

islands occupied by podosomes. The relocation of myosin-II

filaments to within 2 mm of podosomes rapidly instigated

podosome elimination (figure 1d; electronic supplementary

material, movie S1). Detailed examination of images and

movies revealed that the filaments never overlap with exist-

ing podosomes. Overall, our data suggest that podosomes

disappear as a result of local remodelling of the actin network

in their microenvironment induced by myosin-II filaments.

(b) Osmotic swelling disperses podosomes and
promotes their disassembly

THP1 cells were exposed to RPMI media with 10% serum diluted

by water to 50% or 90% dilutions (0.5� or 0.1� hypotonic,

respectively) for 15 min. Such treatments are known to increase

membrane tension [62–65]. Cells incubated with 0.5� hypotonic

medium showed reductions in podosome number when com-

pared with cells treated with isotonic medium (figure 2a,b,d,e).
The sparse residual podosomes were approximately fivefold

smaller in area than podosomes in control cells (figure 2b,f; elec-

tronic supplementary material, figure S1A,C, D and movie S2)

as revealed by structured-illumination microscopy (SIM). The

cells demonstrated numerous lamellipodia and increased

spread area (figure 2f ). The effect of 0.5� hypotonic medium

on podosomes was transient, so that new podosomes appeared

within an hour following medium dilution.

This is in line with the observations that the effect of hypo-

tonic medium on membrane tension is transient [66].

Incubation in 0.1� hypotonic medium (90% dilution) resulted

in cell retraction and formation of numerous irregular actin-

rich protrusions (figure 2c). Such cells do not demonstrate

any podosome-like structures for several hours. Since we

demonstrated above that podosome disruption is induced by

activation of myosin-II filament formation, we examined

whether elimination of myosin-II filaments interfered with

the effect of hypoosmotic shock. We found that in spite of

complete disassembly of myosin-II filaments upon treatment

with 30 mM Rho kinase inhibitor Y-27632, the 0.5� hypotonic

medium still disrupts podosomes (figure 2g; electronic sup-

plementary material, movie S3). Unlike podosomes, focal

adhesions of mouse embryonic fibroblasts (MEFs) did not dis-

assemble upon hypoosmotic shock (figure 2h; electronic

supplementary material, movie S4).

(c) Decreasing membrane tension by deoxycholate
promoted the clustering of podosomes

In order to decrease membrane tension without perturbing the

spread area of the cell, small concentrations of the detergent

deoxycholate were used to expand the lipid bilayer [64]. The

addition of 400 mM deoxycholate induced immediate disrup-

tion of podosomes, which however quickly recovered with

the formation of large podosome clusters (figure 3a,b,f; elec-

tronic supplementary material, movie S5). As a result, by

5 min following deoxycholate addition, podosome number

was similar to that in non-treated cells, but their organization

differed significantly. Instead of individual podosomes evenly

distributed over the cell ventral surface, podosomes in deoxy-

cholate-treated cells were organized into clusters containing

more than 50 podosomes each (figure 3c,d). Visualization

of podosomes with high magnification using SIM revea-

led thin actin links connecting neighbouring podosomes in
control cells. Such links were significantly shortened or entirely

disappeared in the podosome clusters formed in deoxycholate-

treated cells (figure 3b inset,e). The average distance between

individual podosomes in the cluster was 0.24+0.02 mm

compared with 0.54+0.04 mm in controls, so podosomes

were tightly packed (figure 3e). There were no differences in

actin core diameter or actin fluorescence intensity between

podosomes in deoxycholate-treated and control cells (electro-

nic supplementary material, figure S1B,C,D). The clustering

effect induced by deoxycholate was, however, transient and

podosomes returned to a normal distribution at about

30 min after addition of deoxycholate (figure 2g; electronic

supplementary material, movie S6).

(d) Inhibition of dynamin-II but not clathrin-mediated
endocytosis perturbed podosome formation

Since physical factors increasing membrane tension are

known to inhibit endocytosis [63,67–70], we considered

whether processes of endocytosis are involved in podosome

formation and maintenance. First, we confirmed and

extended previous data on the role of dynamin-II in podo-

somes [30] showing that inhibition of dynamin-II either by

pharmacological inhibitor (dynasore) or by knockdown of

dynamin-II, resulted in severe disruption of podosomes in

THP1 cells and the formation of focal adhesions instead

(figure 4a–i). Inspection of myosin-II organization in cells

with dynamin-II inhibition revealed that such cells have

significantly increased numbers of myosin-II filaments

(figure 4c,g) when compared with functional dynamin-II-

containing THP1 cells. These myosin-II filaments occupied

the entire cytoplasm of dynasore-treated or dynamin-II

knockdown cells but did not form regular myosin-II filament

stacks (figure 4c,g). Since we have shown above that accumu-

lation of myosin-II filaments leads on its own to podosome

disruption, we examined whether accumulation of myosin-

II filaments participate in the podosome disruption induced

by dynamin-II inhibition. When dynasore was added to

THP1 cells pre-treated with ROCK inhibitor Y-27632 for

30 min, podosomes were still disrupted in spite of the

complete absence of myosin-II filaments in these cells

(figure 4d). Of note, focal adhesions typical for dynasore-

treated cells did not form in cells pre-treated with Y-27632

(figure 4c,d). Similarly, treatment with Y-27632 was insufficient

to rescue podosomes in dynamin-II knockdown THP1 cells

(figure 4g). These data strongly suggest that accumulation of

myosin-II filaments did not participate in the disruption of

podosomes induced by dynamin-II suppression.

We found that dynamin-II is localized to the podosome

adhesive ring (electronic supplementary material, figure S2),

while clathrin light chain marked patches that do not overlap

with podosomes. In addition, while dynamin inhibition

showed a severe disruptive effect on podosomes, the inhibi-

tor of clathrin-mediated endocytosis via Pitstopw2 did not

interfere with podosome integrity in our experiments

(electronic supplementary material, figure S2A–C).

(e) Radial stretching of the substrate induces loss of
podosomes

Membrane tension can also be augmented by physical

stretching of the substrate to which the cell is attached

[63,71]. In our study, differentiated THP1 cells were plated
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on PDMS surfaces coated with fibronectin which were

stretched radially using a previously described device [71].

A 5% single radial stretch maintained for 10 s as well as a 5%

cyclic stretch (0.1 Hz, 6 h) resulted in a modest but significant

decrease in podosome number per cell (figure 5a,d,f ) while
the percentage of podosome-containing cells did not decrease

after such treatment (figure 5g). When the stretch magnitude

was increased to 15%, podosomes were completely disrupted

(figure 5b,e). During such stretch, the cells formed numerous

blebs (figure 5b,e). In spite of total podosome disassembly,
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S2). The significance of the difference between groups was estimated by the two-tailed Student’s t-test, the range of p-values . 0.05(non-significant), lesser
than or equal to 0.05, lesser than or equal to 0.01, lesser than or equal to 0.001 and lesser than or equal to 0.0001 are denoted by ‘n.s.’, one, two, three
and four asterisks (*), respectively. All images were taken using SIM.
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Figure 5. Stretching of substrate-induced podosome disassembly. (a – e) Representative images of cells on PDMS substrate coated with fibronectin fixed and stained
after substrate radial stretching or release. Actin was labelled with phalloidin (left, red), vinculin was visualized by antibody staining (middle, green) and their
merged image is shown in the right panel. (a) Cells on non-stretched substrate. (b) Cells subjected to 15% stretching for 10 s. (c) Cells stretched for 10 s
and incubated for 30 min following the stretch release. (d,e) Cells subjected to cyclic stretching of (d ) 5% and (e) 15% magnitude at 0.1 Hz for 6 h. Scale
bars, 5 mm. ( f,g) Quantification of ( f ) the number of podosomes per cell (box-and-whiskers plots), and (g) percentage of cells containing more than 10 podosomes
(mean+ s.d.) for all experimental situations shown in (a – e), as well as for 5% single stretch for 10 s. Graphs represent results of two to three independent
experiments. The significance of the difference between groups was estimated by the two-tailed Student’s t-test, the range of p-values . 0.05(non-significant),
lesser than or equal to 0.05, lesser than or equal to 0.01, lesser than or equal to 0.001 and lesser than or equal to 0.0001 are denoted by ‘n.s.’, one, two, three and
four asterisks (*), respectively. All images were taken using spinning-disc confocal microscopy.
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cells remained attached to the substrate. The podosomes did not

recover until the stretch was released; following stretch release,

both the re-assembly of podosomes and the disappearance of

the blebs were seen, with complete recovery of the control phe-

notype in 30 min following the release of the stretch (figure 5c).

Cycles of substrate stretching and release can be repeated sev-

eral times with reproducible reverse responses of podosomes

and blebs. The results were not affected if the duration of

single stretch was increased up to 1 min, and cyclic stretch fre-

quency varied from 0.01 to 0.1 Hz. Collectively, the data show

that podosomes respond strongly to the magnitude of stretch

but not to the duration of a single stretch or frequency of

cyclic stretch, and cells are capable of forming new podosomes

once the strain is released (figure 5f,g).
( f ) Formation of linear podosome arrays induced by
substrate topography

Another group of physical factors affecting podosome for-

mation are topographical features of the substrate. It was
shown previously that podosomes of dendritic cells prefer

to form in the proximity of 908 steps on the substrate [72]

or can be induced by pores in the nuclearporeTM filters [73].

To further explore the effects of three-dimensional topogra-

phy on podosome organization, THP1 cells were plated on

arrays of microfabricated parallel ridges. The ridges have

the shape of a triangular prism (figure 6a) with varied

widths, heights and distance between them (pitch)

(figure 6b). We have found that cells plated on fibronectin-

coated substrates with such ridges showed highly ordered

podosome formation, which formed single or double chains

along edges of the triangular ridges regardless of their heights

or the spacing between them (figure 6c–f ). Cells were capable

of forming multiple streaks of single or double chains of podo-

somes depending on the spacing between the ridges

(figure 6c–f ). If the distance between the ridges was large,

podosomes could also be formed at the flat areas between

the ridges. However, the distance between neighbouring

podosomes oriented along the ridges was always smaller

than between those on the flat surface. Moreover, the

podosomes aligned along narrow-width ridges sometimes



2 µm line width, 4 µm pitch (h = 1.4 µm) 1 µm line width, 4 µm pitch (h = 0.7 µm) 

4 µm line width, 10 µm pitch (h = 2.8 µm) 4 µm line width, 20 µm pitch (h = 2.8 µm)
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h

gapline width

phalloidin vinculin

MHCIIA BF

triangular ridges

(e) ( f )

(b)(a)

(c) (d)

Figure 6. Podosome formation in response to topographical cues. (a) Scanning electron microscopy image of PDMS substrate with triangular ridges. (b) Schematic
diagram of profile of the substrate with triangular ridges. The PDMS substrate was coated with fibronectin (1 mg ml21) for 1 h. The width of the ridges, distances
between them ( pitch) and ridges’ height (h) were varied as shown in (c – f ). In each panel, four views of the same cell are presented: actin cores visualized by
phalloidin staining (upper left, red), podosome adhesive domains visualized by vinculin staining (upper right, green), distribution of myosin-IIA filaments (lower left,
purple) and bright field image of the cell (lower right). Scale bars, 5 mm. Note that in all cases, podosomes are aligned along both sides of the ridges, and not
formed in other regions of the cell. At the substrate with smallest ridges ( pitch: 1 mm), the discrete actin cores are seen but vinculin is not organized into ring-
shaped structures. At pitches 2 – 20 mm, chains of typical podosomes are seen. Myosin-IIA filaments are located at the cell periphery similarly to the case of cells
plated on planar substrate. Images (c – f ) were taken using SIM.
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apparently fused with each other (figure 6c). This suggests

that sensing local topography can favour the assembly

of podosomes.

Examination of distribution of myosin-IIA filaments in

cells on the patterned substrates revealed that filaments

remained at the cell periphery, forming a subcortical ring

similar to that seen in cells on a flat substrate (figure 6c).

This suggests that formation of podosome arrays at the

edges of the triangular ridges is not a consequence

of reorganization of myosin-IIA filaments. Moreover,

podosomes formed in cells treated with the microtubule-

disrupting drug nocodazole and Rho kinase inhibitor

Y-27632 still aligned along the ridges (electronic
supplementary material, figure S3). These cells had only

a few residual microtubules associated with the micro-

tubule organizing centre and completely lacked myosin-II

filaments, showing that neither microtubules nor myosin-

II filaments are required for the alignment of podosomes

along topographical cues.
3. Discussion
In this study, we explored the effects of several types of fac-

tors on the integrity of podosomes in macrophage-type

cells. We confirmed and extended the disruptive effect of
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myosin-IIA filaments on podosomes. By direct observation of

the interaction of small groups of podosomes with surround-

ing myosin-IIA filaments, we found that activation of

myosin-II filament formation affects podosomes locally, and

the distance at which myosin-II filaments exert their effect

is in the micrometre range. The process of podosome

disassembly upon local activation of myosin-II filament

formation was rapid and lasted less than a minute. The dis-

assembly of myosin-II filaments, known to have a profound

disruptive effect on focal adhesion integrity [17,37–40],

does not affect podosomes.

There are several not necessarily mutually exclusive

mechanisms by which excessive assembly of myosin-II fila-

ments can interfere with podosome integrity. Myosin-II

filaments under certain conditions can depolymerize actin

[74,75] or disintegrate branching actin networks nucleated

by the Arp2/3 complex. Forces generated through inter-

action of myosin-II and actin filaments may therefore

interfere with the Arp2/3-mediated actin polymerization

in podosomes. Finally, myosin-II filaments underlying

the plasma membrane could affect membrane tension or

curvature [76,77] in such a way that hinders the formation

of podosomal protrusions.

We therefore investigated the role of physical factors in

regulation of podosome integrity and dynamics including

those affecting membrane tension and sculpting. We have

clearly shown that hypoosmotic shock, known to transiently

increase membrane tension [66], results in transient disassem-

bly of podosomes. Of note, suppression of myosin-II filament

formation by Rho kinase inhibitor Y-27632 does not prevent

or rescue the disruptive effect of hypoosmotic shock on

podosomes. The decrease in membrane tension by treatment

with deoxycholate also exerts a profound effect on podo-

somes resulting in podosome clustering.

Dynamin-II, known for its function in membrane fission

[78] and regulation of actin polymerization [79], is required

for podosome integrity [30,31]. We checked whether the dis-

ruptive effect of dynamin-II inhibition on podosomes is

mediated by myosin-IIA filament formation. This conjecture

was motivated by our observation that treatment of THP1

cells with the dynamin inhibitor, dynasore, triggered the for-

mation of multiple myosin-IIA filaments. However,

inhibition of myosin-IIA filament formation by Rho kinase

inhibitor did not prevent the disruptive effect of either dyna-

min inhibition or dynamin-II knockdown on podosomes.

Thus, not all podosome-disrupting factors operate via

myosin-II filaments and, in particular, manipulations with

membrane tension or sculpting can affect podosomes

directly.

We further investigated the effects of single or cyclic

substrate stretching on podosome integrity and clearly

showed that such manipulations result in reversible dis-

assembly of podosomes. This effect can be explained by the

increase in membrane tension upon stretching observed in

previous studies [63,80]. However, in addition to membrane

tension, the substrate stretching was shown to activate

RhoA [81] and reinforce contractility [82] which suggests

that formation of myosin-IIA filaments is activated. Thus,

the effect of substrate stretching on podosomes is most prob-

ably a result of the combined action of increased membrane

tension and augmented myosin-II filament formation.

A common feature of all podosome-disrupting treatments

discussed above is their inhibitory effect on endocytosis.
Indeed, it is well documented that increase in membrane ten-

sion via osmotic swelling inhibits endocytosis [63,67,69,83].

Substrate stretching is also known to interfere with endocyto-

sis [63]. Finally, dynamin, a protein required for multiple

forms of endocytosis [84], is indispensible for podosome

integrity. The sensitivity of podosomes to factors inhibiting

endocytosis can be explained by the possible role of endocy-

tosis in the membrane balance at podosomes. Podosomes

seem to be the sites of intense insertion of new membrane

required for both protrusional activity and exocytosis of ves-

icles containing metalloproteinases degrading the

extracellular matrix [11]. Therefore, compensatory endocyto-

sis [85] could be needed for the maintenance of membrane

equilibrium. Since inhibition of clathrin-mediated endocyto-

sis did not affect podosome integrity in our experiments,

the endocytosis that might be required for podosome

integrity is probably clathrin-independent.

Of note, the sensitivity of both endocytosis and

podosome formation to similar experimental treatments

could also reflect the similarity between the processes of

endocytosis and podosome formation. In both cases, the

mechanism depends on membrane remodelling mediated

by the actin cytoskeleton. Further elucidation of this analogy

is an interesting avenue for future studies.

The unique dependence of podosome formation on

substrate topography described in this study and previous

publications [72,73] provides another example of podosome

regulation. Indeed, we have found that alignment of podo-

somes along the triangular ridges of microfabricated

substrates is not accompanied by apparent changes in the dis-

tribution of myosin-II filaments. Moreover, total disruption of

myosin-II filaments did not prevent alignment of podosomes

along the ridges. Thus, the podosome regulation by topogra-

phical cues is myosin-II independent. However, this does not

prove directly that the podosome alignment in this situation

is regulated by membrane deformation or changes in mem-

brane tension. Further studies are needed to elucidate the

mechanism of substrate topography-dependent regulation

of podosomes.

Summing up, our study revealed two groups of mechanisms

affecting podosome integrity and dynamics involving

myosin-IIA filament reorganization and membrane tension/

shape changes, respectively. These mechanisms seem to be

operating for podosomes rather than other types of integrin

adhesions, such as focal adhesions. Further elucidation of

these mechanisms will be important for understanding

podosome-dependent processes where these are of important

biological consequence, such as three-dimensional cell

migration and tumour cell invasion.
4. Material and methods
(a) Cell culture, plasmid and transfection procedures
THP1 human monocytic leukaemia cell line was obtained from the

Health Protection Agency Culture Collections (Porton Down, Salis-

bury, UK) and cultured using Roswell Park Memorial Institute

medium (RPMI-1640) supplemented with 10% HI-FBS and

50 mg ml21 2-Mercaptoethanol (Sigma-Aldrich) at 378C and 5% CO2.

The suspension-cultured THP-1 cells were differentiated into

adherent macrophage-like cells with 1 ng ml21 human recombi-

nant cytokine TGFb1 (R&D Systems) for either 24 or 48 h on

fibronectin-coated glass substrates. No apparent difference
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between the phenotype of cells stimulated for either 24 or 48 h

was detected. The 35 mm ibidi (cat. 81158) glass-bottomed

dishes were coated with 1 mg ml21 of fibronectin (Calbiochem,

Merck Millipore) in phosphate-buffered saline (PBS) for at least

1 h at 378C, washed with PBS twice and incubated in complete

medium containing TGFb1 prior to seeding of cells.

THP1 stably expressing GFP-b-actin (described in Cox et al.
[86]) or stably co-expressing red-fluorescent protein (RFP)-Lifeact

and human green-fluorescent protein (GFP)-myosin regulatory

light chain (MRLC) (described in Rafiq et al. [51,87]) were used

in all live experiments concerning podosome studies.

For dynamin-II knockdown, THP1 cells were transfected

with 100 nM of dynamin-II siRNA (Dharmacon, ON-TARGET-

plus SMARTpool siRNA, catalogue no. L-004007-00-0005). For

control experiments, non-targeting pool siRNA (Dharmacon,

ON-TARGETplus, catalogue no. D-001810-10) was used at a

similar concentration. Cells were transfected using electroporation

(Neon Transfection System, Life Technologies) in accordance with

the manufacturer’s instructions. Specifically, two pulses of 1400 V

for 20 ms were used.

Immortalized rptp-a(þ/þ) MEFs [88], termed MEFs, were

obtained from the Sheetz Laboratory (Mechanobiology Institute,

Singapore). MEFs were cultured in Dulbecco’s modified Eagle’s

Medium high glucose (DMEM), supplemented with 10% heat-

inactivated foetal bovine serum (HI-FBS, Gibco), 1% L-glutamine

and 100 IU mg21 penicillin–streptomycin (Invitrogen) at 378C
and 5% CO2. MEFs were either seeded on fibronectin-coated

35 mm ibidi or 27 mm IWAKI (Japan) glass-bottomed dishes for

24 h post-transfection.

For focal adhesion analysis, MEFs were transiently electropo-

rated (Neon Transfection System, Life Technologies) with mCherry-

Vinculin (Dr Michael W. Davidson, Florida State University, FL,

USA) with a single pulse of 1400 V for 20 ms.

(b) Immunofluorescence
THP1 cells were fixed for 15 min with 3.7% paraformaldehyde

(PFA) in PBS, washed twice in PBS, permeabilized for 10 min

with 0.5% Triton X-100 (Sigma-Aldrich) in PBS and then

washed twice again in PBS. For microtubule visualization, cells

were fixed and simultaneously permeabilized for 15 min at

378C in a mixture of 3% PFA–PBS, 0.25% Triton X-100 and

0.2% glutaraldehyde in PBS, and then washed twice with PBS

for 10 min. Before immunostaining, samples were quenched for

15 min on ice with 1 mg ml21 sodium borohydride in cytoskele-

ton buffer (10 mM MES, 150 mM NaCl, 5 mM EGTA, 5 mM

MgCl2, 5 mM glucose, pH 6.1). Fixed cells were blocked with

5% bovine serum albumin or 5% FBS for 1 h at room temperature

prior to incubation with the following primary antibodies overnight

at 48C: anti-tubulin (Sigma-Aldrich, catalogue no. T6199, dilution

1 : 400); anti-vinculin (Sigma-Aldrich, catalogue no. V9131, dilution

1 : 400); anti-non-muscle heavy chain of myosin-IIA (Sigma-

Aldrich, catalogue no. M8064, dilution 1 : 500); samples were

washed with PBS three times and incubated with Alexa Fluor-

conjugated secondary antibodies (Thermo Fisher Scientific) for

1 h at room temperature, followed by three washes in PBS. F-actin

was visualized by Alexa Fluor 488 Phalloidin (Thermo Fisher

Scientific), Phalloidin-TRITC (Sigma-Aldrich) or Alexa Fluor 647

Phalloidin (Thermo Fisher Scientific).

(c) Osmotic shock and drug treatments
Pharmacological treatments were performed using the following

concentrations of inhibitors or activators: 30 mM Y-27632 dihy-

drochloride (Sigma-Aldrich), 80 mM for dynasore (Sigma-

Aldrich), 400 mM deoxycholate (Sigma-Aldrich), 0.1 mg ml21

Rho Activator II (CN03, Cytoskeleton) and 1 mM nocodazole

(Sigma-Aldrich). The duration of the treatment with the inhibi-

tors was 1 h unless otherwise stated. In some cases, cells were
pre-treated with one inhibitor for 30 min and then another inhibi-

tor was added for an additional 1 h. For hypotonic experiments,

cells were exposed to solutions containing complete medium

diluted in sterile water at 1 : 1 (0.5� hypotonic) or 1 : 9 (0.1�
hypotonic) using a perfusion chamber (CM-B25-1, Chamlide

CMB chamber) and the image was acquired just prior to the

start of acquisition.

(d) Micro-patterning of adhesive islands using
UV-induced molecular adsorption

Adhesive islands with a diameter of 4 mm were printed in square

lattices with a period of 8 mm. Clean glass coverslips were sealed

with NOA 73 liquid adhesive to plastic-containing dishes by UV

treatment for 2 min, and were then treated with oxygen plasma

for 5 min. The coverslips were coated with PLL-g-PEG

(PLL(20)-g[3.5]-PEG(5), SuSoS AG, Dübendorf, Switzerland) at

100 mg ml21 in PBS for at least 8 h followed by multiple

washes with PBS. For micropattern printing, the PRIMO

system (Alveole, France) mounted on an inverted microscope

(Nikon Eclipse Ti-E, Japan) equipped with a motorized scanning

stage (Physik Instrumente, Germany) was used as Digital Micro-

mirror Device (DMD) to create a UV pattern at 105 mm above the

focal plane of the microscope. After alignment of specimen with

the UV pattern by using the Leonardo software (Alveole, France),

a solution of photoinitiator (PLPP, Alveole, France) was incu-

bated on the dishes. Depending on the UV exposure and time,

the UV-activated photoinitiator molecules locally cleaved the

PEG chains, which permits subsequent local deposition of pro-

teins. The dishes were washed with PBS multiple times prior

to incubation with labelled fibronectin (Alexa 488 Fibronectin,

Cytoskeleton, Inc., 50 mg ml21) or unlabelled fibronectin mixed

with Fibrinogen Alexa 647 (ThermoFisher Scientific, 50 mg ml21)

at a ratio of 20 : 1 for 10 min. After several washes with PBS,

THP1 cells were plated on these micropatterned lattices for SIM

imaging.

(e) Cell stretching assay
THP1 cells were subjected to 0, 5 or 15% single or cyclic radial

stretch using the stretching device described in Cui et al. [71].

Briefly, cells were plated on a layer of polydimethylsiloxane

(PDMS) coated with 10 mg ml21 fibronectin, in a stretching

unit. The substrate stretching was generated via changing the

pressure in a chamber underneath the stretchable substrate. For

single stretch experiments, cells were incubated under stretched

conditions for 10 s, and then fixed as described above. The

stretching itself lasted for less than a second [71]. For single

stretch recovery experiments, cells were released from stretching

30 min prior to fixing. For cyclic stretching, cells were exposed

to stretching with a frequency of 0.1 Hz at 5 or 15% stretch

magnitude and then fixed.

( f ) Fluorescence microscopy
THP1 cells (in figures 2a–c and 5) and MEFs (in figure 2h) were

imaged in complete medium (unless stated otherwise) using a

spinning-disc confocal microscope (PerkinElmer Ultraview

VoX) attached to an Olympus IX81 inverted microscope,

equipped with a 100� oil immersion objective (1.40 NA, UPlan-

SApo) and EMCCD camera (C9100-13, Hamamatsu Photonics)

for image acquisition. Volocity software (PerkinElmer) was

used to control the image acquisition. For all other images, two

types of SIM equipments were used: (i) spinning-disc confocal

microscopy (Roper Scientific) coupled with the Live SR module

[89], Nikon Eclipse Ti-E inverted microscope with Perfect Focus

System, controlled by MetaMorph software (Molecular device)

supplemented with a 100� oil 1.45 NA CFI Plan Apo Lambda
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oil immersion objective and sCMOS camera (Prime 95B, Photo-

metrics); (ii) Nikon N-SIM microscope, based on a Nikon Ti-E

inverted microscope with Perfect Focus System controlled by

Nikon NIS-Elements AR software supplemented with a 100�
oil immersion objective (1.40 NA, CFI Plan-ApochromatVC)

and EMCCD camera (Andor Ixon DU-897).

(g) Microfabrication of triangular ridges
The coverslips with PDMS structures on top were produced by

adapting a moulding protocol from Migliorini et al. [90]. Silicon

moulds 15 � 15 mm2 wide with 1.5 mm long trenches of triangu-

lar cross-section with different sizes and pitch were prepared via

silicon anisotropic etching. Briefly, standard single-side-polished

silicon wafers with 300 nm of thermally grown SiO2 were spin-

coated with 1 mm thick AZ5214E-positive tone photo-resist.

The pattern was then produced with direct writing in a DWL-

66fs Heidelberg laser writer equipped with a diode-laser-emit-

ting light at 375 nm wavelength. After development for 1 min

in AZ400 K diluted 1 : 4 in DI water, the patterned resist mask

was then used to etch the silicon oxide layer in a Samco 10NR

RIE tool using CF4/O2 etching chemistry (40/4 sccm, respect-

ively), 15 Pa, 150 W applied through an RF generator at

13.56 MHz, as described in Ashraf et al. [91]. After stripping

the resist, 10 min of anisotropic etching in 5 M KOH at 808C pro-

duced the triangular trenches with the designed sizes. After the

anisotropic etching, the silicon oxide was removed with immer-

sion in a buffered oxide etching solution (a solution of 1 : 7 of

HF : NH4F in water; this etching solution is selective for silicon

oxide but does not attack Si). The wafer was then diced in the

single dyes, and each was coated with an anti-sticking self-

assembled monolayer of Trichloro(1H,1H,2H,2H-perfluorooc-

tyl)silane by vapour deposition. PDMS (Sylgard 184, Dow

Cornig, USA) was prepared in 10 : 1 ratio with its reticulation
agent and degassed for 30 min in a vacuum jar after careful

mixing. A 10 mm layer was spin-coated on the coverslip

(4000 rpm for 60 s) and degassed a second time for 10 min. A

silanized mould was then placed on top of the PDMS coating

and gently pressed to the coverslip with around 150 kPa of

pressure to facilitate the filling of the triangular cavities. While

keeping the pressure applied, the assembly was transferred on

a Hot Plate and the temperature raised to 1208C, where PDMS reti-

culation was left to proceed for 30 min. After cooling down to room

temperature, the silicon mould was peeled off revealing the struc-

tured PDMS layer on top of the coverslip with the triangular ridges.
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