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The great ambition to treat cancer through harnessing a patient’s own

immune responses has started to become reality. Clinical trials have

shown impressive results and some patients reaching the end of existing

treatment options have achieved full remission. Yet the response rate even

within the most promising trials remain at just 30–40% of patients. To

date, the focus of immunotherapy research has been to identify tumour anti-

gens, and to enhance activation of effector lymphocytes. Yet this is only the

first step to effective immunotherapy for a broader range of patients. Acti-

vated cytotoxic T cells can only act on their tumour cell targets if they

have free and easy access to all tumour regions. Solid tumours are complex,

heterogeneous environments which vary greatly in their physical properties.

We must now focus our efforts on understanding how factors such as the

composition, density and geometry of tumour extracellular matrix acts to

impede or promote immune cell infiltration and activation, and work to

design novel pharmacological interventions which restore and enhance

leucocyte trafficking within solid tumours.

This article is part of a discussion meeting issue ‘Forces in cancer: inter-

disciplinary approaches in tumour mechanobiology’.
1. Introduction
An early pioneer study in the 1890s by William Coley treating cancer patients

with live bacteria, is one of the first examples demonstrating that boosting

the patient’s immune response against transformed cells was a possibility to

cure cancer [1]. Many years later it is now widely demonstrated that the

immune system can control tumour growth and that evading this specific

immune response is a hallmark of cancer [2]. Over the last decades, scientists

have developed a number of therapeutic avenues to exploit the possibility of

harnessing immune responses to treat cancer.

Therapeutic cancer vaccines include inoculation of cancer cell lysates, iso-

lated tumour-associated antigens and neoantigens, and autologous dendritic

cells loaded with these same tumour antigens. Normally triggered by an adju-

vant of choice, this approach generates an adaptive immune response against

the tumour [3–6]. Inoculation of specifically designed chimeric antigen receptor

T cells and NK cells could be considered a more targeted version of cancer vac-

cination [7,8]. Alternatively, spontaneous anti-tumour responses in cancer

patients can be exploited by adoptive transfer of expanded populations of auto-

logous tumour-infiltrating lymphocytes. Adjuvant treatment is still used today,

and immunotherapy is the most successful therapy for non-muscle-invasive

bladder cancer [9]. Last but not least, immune checkpoint blockade therapy

neutralizes molecules that cancer cells and associated stromal cells use to

dampen the immune response. The most popular and effective targets

are CTLA-4 and PD-1 used alone, together, or in combination with other

therapies [10].

The enormous potential of these therapies is backed up by a large number of

studies using animal models. Nevertheless, efficacy in humans is not as good as
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expected. In order to work, all immunotherapy approaches

have specific requirements to meet. One of these is the ability

of effector immune cells to access the whole tumour. Here, we

review the importance of the tumour stroma in shaping the

tumour microenvironment and how this impacts the effec-

tiveness of immunotherapy. We focus particularly in the

extracellular matrix (ECM) composition and organization,

how it creates both physical and signalling niches around

tumours and its impact on immunological anti-tumoural

responses.
rnal/rstb
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2. The generation of the extracellular matrix in
the tumour microenvironment

The ECM is composed of a network of macromolecules

including fibrillar proteins, proteoglycans and glycoproteins

that serve both biophysical and biochemical functions. It

acts as a physical scaffold to maintain the structure and

mechanical integrity of tissues, as well as an active signalling

constituent through the sequestration and release of growth

factors and cytokines [11]. The composition, anisotropy and

biomechanics of the ECM is uniquely tailored to the specific

function of the tissue.

The primary mediators of ECM deposition and mainten-

ance are fibroblasts. In pathological contexts such as wound

healing and fibrosis, fibroblasts are activated by soluble

mediators like transforming growth factor beta (TGF-b) to

increase ECM production and remodelling. In cancer, fibro-

blasts are chronically activated like a ‘wound that does not

heal’ resulting in severe desmoplasia, as well as dramatic

changes in ECM composition and topography. The tumour

microenvironment is typically enriched in fibrillar collagens,

fibronectin, periostin, tenascin C, hyaluronan and versican,

among others, and their upregulation is associated with

poor prognosis [12–17]. At the structural level upregulation

of the lysyl oxidase (LOX) family of enzymes elevates ECM

cross-linking, and there is a progressive transition to ECM

anisotropy or alignment which requires both cell-intrinsic fac-

tors such as polarity and actomyosin contractility, but also

external factors such as the physical forces exerted by the

growing tumour [18–20].
3. Extracellular matrix structures define tumour
microenvironments

These pathological changes in ECM abundance, cross-linking

and architecture modify the mechanics of tumour tissue,

increasing tumour stiffness and ECM engagement. Integrin-

and focal adhesion kinase (FAK)-dependant adhesions, in

turn, stimulate proliferative signalling and inhibition of

growth suppression and apoptosis in transformed cells [21–23].

The tumour-associated ECM also generates alignotactic,

haptotactic and durotactic gradients that enhance invasion

and metastasis. During the initial phase of metastasis

tumour cells must depart the primary site and navigate

toward blood and lymphatic vessels, and aligned collagen

and fibronectin bundles generate permissive ‘highways’

directing their migration and intravasation [20,24–27]. Stiff-

ness and fibronectin gradients have also been shown to

provide guidance cues to migrating normal and transformed

breast epithelial cells [28–31]. Metastatic dissemination is also
favoured by ECM rigidity by driving an epithelial to

mesenchymal transition [32,33]. Tumour-associated desmo-

plasia could be explained as a foreign body response, a

‘walling off’ of transformed cells through the generation of

an obstructive barrier parallel to the invasive front. Conceiva-

bly this would act in a tumour suppressive manner,

preventing tumour cell escape and inducing cell-cycle arrest

through elevated compressive stress [34]. However, during

tumour progression, the re-orientation of ECM bundles per-

pendicular to the tumour front is likely to counteract these

initial effects [20]. Understanding the different functions of

ECM in tumour progression and the balance between

tumour-suppressive versus tumour-promoting functions

will be necessary to designing therapeutic interventions.
4. Extracellular matrix and immune infiltration
Just as the composition of the ECM determines architecture

and compartmentalization of healthy tissues, the newly gen-

erated ECM around tumours also impacts tumour

composition, including the spread of blood and lymphatic

vessels and infiltration of immune cells. Many studies have

also shown the relevance of the ECM in the regulation of

the immune response in different pathological processes.

ECM is a range of complex structures that can both provide

a route through tissues, and a physical barrier to cell

migration. This depends greatly on the patterns of ECM

fibres, since T cells actively migrate along matrix fibres mean-

ing that directionality of ECM fibres dictates leucocyte

migration [35]. Additionally, ECM components can bind

specific immune receptors, affecting leucocyte proliferation,

polarization/differentiation and trafficking. For example, glu-

cosaminoglycans and proteoglycans can act as functional

ligands directly regulating recruitment and activation of

innate and adaptive immune cells [36,37]. The duality of

ECM to be either protective or tumour promoting means

that we need a nuanced and carefully studied approach to

ECM as a target for enhancing immunotherapy, but the

potential benefits of getting this right are immense.
5. Extracellular matrix control of angiogenesis
and lymphangiogenesis

For immune infiltration, there must be an adequate blood

supply surrounding the tumour for leucocytes to be

recruited from. These vessels are the major routes of traffic

for immune cells infiltrating the tumour site. The abundance

and intrinsic properties of the tumour vasculature conditions

leucocyte infiltration [38–40]. ECM components regulate

angiogenesis by both binding angiogenic factors such as

VEGFs [41], and by affecting the elasticity of tissues. Stiffer

ECM promotes angiogenesis via increased expression of

VEGFR2 in endothelial cells (figure 1), positively regulated

by p190RhoGAP/GATA2 [42]. Furthermore, mechanosen-

sing counteracts the antiproliferative role of IL-1b on

endothelial cells, suggesting that stiff tissues dictates angio-

genesis also under inflammatory stress [43]. Interestingly,

lymphatic vessel development seems to respond in a reverse

manner. Soft tissues (0.2–0.3 kPa) induce GATA2 expression

in lymphatic endothelial cell (LEC) precursors and enhances

their response to VEGF-C, promoting LEC migration and
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Figure 1 . Differential tissue stiffness in cancer impacts angiogenesis. Tissue stiffness varies dramatically from healthy (0.4 kPa) to tumoral (1.2 kPa) tissue, with an
increase in stromal stiffness heterogeneity in the invasive region. ECM rigidity induces blood vessel sprouting via upregulation of GATA2 and increased VEGFR2/VEGF-
A signalling in blood endothelial cells (BECs). On the contrary, ECM rigidity might suppress lymphangiogenesis in a similar manner, since lymphatic endothelial cells
(LECs) present lower levels of GATA2 and decreased VEGFR3/VEGF-C response in stiffer substrates. This may lead to angiogenic hot spots across the tumour tissue.
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vessel sprouting [44]. Atomic force microscopy on human

breast cancer has shown that stiffness gradients are formed

in solid tumours, being generally stiffer than surrounding

tissue (0.4 kPa healthy versus 1.2 kPa tumour), with the inva-

sive front being the stiffest [45,46]. These mechanical

gradients influence where and when new vessels form

during tumour progression (figure 1), and therefore the

access routes for immune infiltrate. Fankhauser et al. recently

demonstrated that VEGF-C treatment potentiates immu-

notherapy by attracting naive T cells, which are locally

activated upon immunotherapy-induced tumour cell killing

[47]. Interestingly, targeting the tumour vasculature can

also improve immune therapy [39,48]. Overall, careful charac-

terization of tumour vasculature remodelling will determine

the value of combined therapies.
6. Immune filtration determined by extracellular
matrix structure

The presence of capillaries in the tumour microenvironment

does not necessarily ensure intratumoural blood flow, since

high interstitial pressure and solid-stress causes anomalous

hydrodynamic blood flow [49], and ECM structures can

accumulate to form physical barriers [35]. For example, hya-

lunoranic acid (HA), which plays essential roles in tumour

growth [50] and is associated with poor prognosis, also

increases the tumour interstitial fluid pressure (tIFP) impair-

ing vascular function and hindering access of drugs and

immune cells (figure 2) [51]. Targeting hyalunoran increases

efficacy of immunotherapy by increasing infiltration of cyto-

toxic T cells [52]. Both cancer cells and cancer-associated

fibroblasts (CAFs) are considered sources of HA and studies

have shown that contact between both cell types promotes
high HA production [53,54]. A relatively large number of

secreted factors induce HA synthesis, such as platelet-derived

growth factor (PDGF), fibroblast growth factor-2 (FGF-2), epi-

dermal growth factor (EGF), TGF-b, cytokines and some

chemokines [55]. Extracellular ATP and UTP also upregulate

hyaluronic acid synthase 2 (HAS2) in human epidermal

keratinocytes [56,57]. On the other hand, other secreted

factors lower HA production in fibroblasts, such as IL-10

and IFN alpha [58]. Many of these signalling molecules are

produced by leucocytes [59]; however, the complex interplay

between leucocytes and fibroblasts, and the inflammatory

microenvironment is still not fully understood.

Physical constraints are not the only mechanism by which

abnormal ECM impedes leucocyte recruitment. ECM-

affiliated proteins [60] can sequester growth factors and

chemoattractants leading to defects in leucocyte extravasation

(figure 2). For example, secretion of galectin-3 by tumour

cells binds the glycans of glycoproteins and forms lattices

by oligomerization. These lattices sequester other glycosy-

lated molecules such as IFN gamma, inhibiting formation

of a functional gradient, and blocking T cell recruitment

[61]. Galectin-3 targeting augments the efficacy of T cell

therapy, also demonstrating the impact of this mechanism.

These sink-like structures may apply to other glycosylated

proteins such as chemokines, affecting tumour infiltration

of other leucocytes. Chemokine availability is also influenced

by the glycocalyx, which retains glycosylated proteins on the

surface of cells, essential for the establishment of chemokine

gradients [62]. Oligomerization of chemokines can drive gly-

cocalyx cross-linking, establishing a mechanism that can alter

the physical properties of cells and ECM [62,63]. In an in vitro
system, lung tumour cell-derived TNF alpha, disrupted the

endothelial glycocalyx via activation of endothelial hepara-

nase [64], affecting its capacity to present chemokines [65].
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Figure 2. Immune infiltration. Similar osmotic pressures between fenestrated small capillaries and adjacent tissue enables normal exchange of small molecules in
organs. During acute inflammation, this allows diffusion and gradient formation of chemoattractants that are partially trapped by the luminal glycocalyx of the
endothelium, assisting leucocyte recruitment into the inflammation site. Cancer development represents a chronic inflammatory response in which vasculature is affected
in a number of ways. Tumour growth and excess of ECM components such as collagens and hyaluronan acid increases interstitial fluid pressure that hinders molecule
exchange. Blood vessels become tortuous, impeding normal flow and extravasation of leucocytes. Furthermore, cancer cells can induce loss of the luminal glycocalyx
in endothelial cells, impeding the formation of chemoattractant gradients, which are retained within the tissue bound to tumour-derived galectin-3 lattices.
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It is, therefore, important to assess the glycocalyx status of

tumour vasculature in order to maximize recruitment of

immune cells for immunotherapy.
7. Matrix-immune response feedback
With 275 protein-coding genes (195 glycoproteins, 36 proteo-

glycans and 44 collagens), elements of the core matrisome

[66], there exists an immense array of ligand domains for

specific receptors expressed by infiltrating immune cells. A

wealth of studies has shown how these ECM-ligands regulate

the adaptive immune response, with pathogen recognition

receptors and adhesion molecules as key regulators [67].

Apart from acting as ligands, the ECM scaffolding and

mechanoproperties can directly modulate the anti-tumour

immune response. High substrate stiffness induces

expression of the immune suppressor molecule PD-L1 in a

number of tumour cells, which is blocked when actin

polymerization is inhibited [68]. Inhibitory PD-1 ligands are

also expressed by tumour stromal cells, including CAFs

[69]. Although the mechanism is not characterized, these

findings shed light on the regulation of PD-L1 expression

by the ECM, relevant for immune evasion and selective

depletion of tumour-specific CD8þ cytotoxic cells.

Tumour-draining lymph nodes (TDLNs) represent an

important immunological barrier against cancer, being privi-

leged sites for generating tumour-specific immune responses

[70]. Leucocyte–fibroblastic stroma interactions in LNs also

provide a model system to study the signalling between

these cells within tumours and how these influence ECM

remodelling. TDLNs often present an immunosuppressive

profile characterized by overrepresentation of regulatory

CD4þ T cells [71,72]. This inhibitory profile of TDLNs can

be reverted by TDLN-targeted adjuvant treatment, which

induces Th1 responses and results in higher frequencies of

intratumoural CD8þ cells, slowing down tumour growth in

the murine B16–F10 melanoma model [73].

Evidence shows that abnormal ECM composition

in TDLNs may affect anti-tumour immune response.

In breast cancer, metastatic TDLNs present accumulation of
subcapsular collagen I and III [74] and fibrosis in meta-

static LNs is also strongly correlated with poor prognosis in

colorectal cancer [75]. More specifically, increased levels of

collagen and hyaluronic acid in non-metastatic TDLNs corre-

lated with high bulk tissue elasticity and viscoelasticity, and

with elevated intranodal pressures [76]. In pre-metastatic

TDLNs, the lymphoid stromal population of fibroblastic reti-

cular cells (FRCs) is increased in number and gradually

reprogrammed towards a CAF-like phenotype in response

to tumour factors. Importantly, TDLN FRCs present differen-

tial regulation of ECM genes and lower expression of IL-7

and CCL21, key factors in T cell homeostasis [77–79]. In

these studies, loss of IL-7 correlated with low numbers of

LN T cells, which may lead to poor anti-tumour responses.

It is, therefore, important to study which cellular interactions

might be inducing fibrosis in TDLNs and whether the fibrotic

status of TDLNs may affect the response to immunotherapy.

These mechanisms may be similar to those controlling ECM

production within and surrounding the primary tumours.
8. Therapeutic opportunities
Given the contribution of ECM to tumour progression, many

have reasonably hypothesized that targeting the fibroblastic

stroma might offer some therapeutic benefit [80,81]. Target-

ing the fibroblast-activation protein with the neutralizing

antibody sibrotuzumab has unfortunately failed to show effi-

cacy in a phase II trial for the treatment of metastatic

colorectal cancer [82]. More promisingly, the anti-fibrotic

agent pirfenidone inhibits tumour-promoting actions of

CAFs and increases vascular functionality and perfusion,

improving doxorubicin chemotherapy treatment in two

different cancer models [83,84]. In a landmark study by

Olive et al., targeting tumour stroma cross-talk using Sonic

HedgeHog (SHH) inhibitors improved drug delivery and

response in murine PDAC [85]. Despite this promise, phase

II clinical trials of an SHH inhibitor have so far been ineffec-

tive. More recent studies have enabled a more nuanced

picture. Pharmacological and genetic ablation of fibroblast

SHH signalling transiently stabilized tumours but ultimately
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accelerated disease progression [86]. Similarly, genetic

depletion of activated fibroblasts gave rise to tumours that

were less differentiated, more invasive and overall more

aggressive [87]. These studies and others have highlighted

the context-dependent role of the stroma and associated

ECM, seemingly acting in both tumour-promoting and

tumour-suppressive roles.

As an alternative to targeting the cancer-associated fibro-

blasts themselves, a number of therapies have focused on the

ECM directly, targeting either specific ECM components or

structural modifications like cross-linking. Most attention

has focused on the latter using a monoclonal antibody

against LOXL2 (GS-6624/simtuzumab) or small molecule

inhibitor of transglutaminase 2. While pre-clinical investi-

gations were promising, phase II clinical trials with

simtuzumab in both cancer and fibrosis have so far displayed

no clear benefit for patients. A study using a PEGylated

enzyme against hyaluronan in pancreatic adenocarcinoma

may provide some hope [88]. A recent phase II study demon-

strated a significant increase in objective response and a

three-month extension in median overall survival in patients

with high hyaluronan [89].

Another approach has been to target ECM associated

mechano-signalling in cancer cells directly using ligand

mimetics or blocking antibodies against integrins. Cilengi-

tide, a small peptide targeting avb3 showed promise in

phase II trials in patients with glioblastoma, but unfortu-

nately demonstrated limited efficacy in phase III [90]. An

antibody against avb6 has also been trialled in idiopathic

lung fibrosis to prevent integrin-mediated release of TGF-

b1; however, the results of the phase II study

(NCT01371305) are yet to be published. Signalling nodes

downstream of integrins also offer additional points of thera-

peutic intervention. The tyrosine kinase FAK is activated
upon ECM engagement by integrins, and works primarily

through Src and downstream Rho/ROCK, ERK, PI3K and

YAP to promote further ECM deposition, cell contractility,

growth and survival. Small molecule inhibitors of FAK

have been developed to disrupt its kinase function through

either direct inhibition of the ATP-binding site or allosteric

interference. Two of these (PF-04554878/VS-6063 and

GSK2256098) are currently in early-stage clinical trials. Like

other kinase inhibitors, these drugs are challenged by the

structural ubiquity of the catalytic domain which confers

undesirable cross-reactivity. Another recent approach has

been to target specific scaffolding interactions of the kinase

target which should give rise to greater selectivity.
9. Concluding remarks
The key role that the ECM plays in tumour progression is

undisputed. Nevertheless, targeting the ECM is yet to prove

of therapeutic benefit. While combined therapies might be

the future, we need to increase our understanding of ECM

composition and structure that impacts the efficacy of immu-

notherapy. Furthermore, arrival of immune cells in the

tumour microenvironment will cause changes to stromal

cell behaviour, in turn, feeding back to the immune response.

A better understanding of these complex reciprocal inter-

actions will be essential in order to design new effective

therapeutic approaches.
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57. Jokela T, Kärnä R, Rauhala L, Bart G, Pasonen-
Seppänen S, Oikari S, Tammi MI, Tammi RH. 2017
Human keratinocytes respond to extracellular UTP
by induction of hyaluronan synthase 2 expression

http://dx.doi.org/10.18632/oncotarget.12772
http://dx.doi.org/10.1016/j.ajpath.2010.11.076
http://dx.doi.org/10.1186/1741-7015-4-38
http://dx.doi.org/10.1016/j.cub.2009.07.069
http://dx.doi.org/10.1016/j.cub.2009.07.069
http://dx.doi.org/10.1038/nm.3497
http://dx.doi.org/10.15252/embr.201439246
http://dx.doi.org/10.15252/embr.201439246
http://dx.doi.org/10.1016/j.bpj.2014.10.035
http://dx.doi.org/10.1016/j.bpj.2014.10.035
http://dx.doi.org/10.1186/1741-7015-6-11
http://dx.doi.org/10.1016/j.cell.2011.05.040
http://dx.doi.org/10.1073/pnas.1610347113
http://dx.doi.org/10.1073/pnas.1610347113
http://dx.doi.org/10.1158/2159-8290.CD-15-1183
http://dx.doi.org/10.1126/science.aaf7119
http://dx.doi.org/10.1126/science.aaf7119
http://dx.doi.org/10.1016/j.bpj.2010.12.3733
http://dx.doi.org/10.1016/j.bpj.2010.12.3733
http://dx.doi.org/10.1038/nature04695
http://dx.doi.org/10.1038/nature04695
http://dx.doi.org/10.1091/mbc.e11-06-0537
http://dx.doi.org/10.1091/mbc.e11-06-0537
http://dx.doi.org/10.1038/ncb3157
http://dx.doi.org/10.1016/j.bpj.2014.08.031
http://dx.doi.org/10.1016/j.bpj.2014.08.031
http://dx.doi.org/10.1172/JCI45817
http://dx.doi.org/10.1172/JCI45817
http://dx.doi.org/10.1186/s40425-018-0376-0
http://dx.doi.org/10.1016/j.cellimm.2016.12.003
http://dx.doi.org/10.1080/2162402X.2017.1378843
http://dx.doi.org/10.1080/2162402X.2017.1378843
http://dx.doi.org/10.1038/s41419-017-0061-0
http://dx.doi.org/10.1016/j.cytogfr.2013.11.002
http://dx.doi.org/10.1016/j.cytogfr.2013.11.002
http://dx.doi.org/10.1038/nature07765
http://dx.doi.org/10.4049/jimmunol.0903660
http://dx.doi.org/10.1038/s41467-018-03959-6
http://dx.doi.org/10.1038/s41467-018-03959-6
http://dx.doi.org/10.1039/c1ib00043h
http://dx.doi.org/10.1039/c1ib00043h
http://dx.doi.org/10.1039/C5IB00040H
http://dx.doi.org/10.1126/scitranslmed.aal4712
http://dx.doi.org/10.3389/fimmu.2016.00621
http://dx.doi.org/10.1083/jcb.201701039
http://dx.doi.org/10.3390/cancers4030873
http://dx.doi.org/10.1136/gutjnl-2012-302529
http://dx.doi.org/10.1016/j.biomaterials.2018.04.039
http://dx.doi.org/10.1016/j.biomaterials.2018.04.039
http://dx.doi.org/10.1073/pnas.81.21.6767
http://dx.doi.org/10.1073/pnas.81.21.6767
http://dx.doi.org/10.3389/fcell.2018.00048
http://dx.doi.org/10.3389/fcell.2018.00048
http://dx.doi.org/10.1530/REP-16-0240
http://dx.doi.org/10.1530/REP-16-0240
http://dx.doi.org/10.1042/BCJ20180054
http://dx.doi.org/10.1042/BCJ20180054


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180214

7
and increased hyaluronan synthesis. J. Biol. Chem.
292, 4861 – 4872. (doi:10.1074/jbc.M116.760322)

58. Kim M-S, Song HJ, Lee SH, Lee CK. 2014
Comparative study of various growth factors and
cytokines on type I collagen and hyaluronan
production in human dermal fibroblasts. J. Cosmet.
Dermatol. 13, 44 – 51. (doi:10.1111/jocd.12073)

59. Gaucherand L, Falk BA, Evanko SP, Workman G,
Chan CK, Wight TN. 2017 Crosstalk between T
lymphocytes and lung fibroblasts: generation of a
hyaluronan-enriched extracellular matrix adhesive
for monocytes. J. Cell. Biochem. 118, 2118 – 2130.
(doi:10.1002/jcb.25842)

60. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes
RO. 2012 The matrisome: in silico definition and in
vivo characterization by proteomics of normal and
tumor extracellular matrices. Mol. Cell Proteomics 11,
M111.014647. (doi:10.1074/mcp.M111.014647)

61. Gordon-Alonso M, Hirsch T, Wildmann C, van der
Bruggen P. 2017 Galectin-3 captures interferon-
gamma in the tumor matrix reducing chemokine
gradient production and T-cell tumor infiltration.
Nat. Commun. 8, 1. (doi:10.1038/s41467-017-
00925-6)

62. Dyer DP, Migliorini E, Salanga CL, Thakar D, Handel
TM, Richter RP. 2017 Differential structural
remodelling of heparan sulfate by chemokines: the
role of chemokine oligomerization. Open Biol. 7,
160286. (doi:10.1098/rsob.160286)

63. Paszek MJ et al. 2014 The cancer glycocalyx
mechanically primes integrin-mediated growth and
survival. Nature 511, 319 – 325. (doi:10.1038/
nature13535)

64. Schmidt EP et al. 2012 The pulmonary endothelial
glycocalyx regulates neutrophil adhesion and lung
injury during experimental sepsis. Nat. Med. 18,
1217 – 1223. (doi:10.1038/nm.2843)

65. Rai S, Nejadhamzeeigilani Z, Gutowski NJ,
Whatmore JL. 2015 Loss of the endothelial
glycocalyx is associated with increased E-selectin
mediated adhesion of lung tumour cells to the
brain microvascular endothelium. J. Exp. Clin. Cancer
Res. 34, 105. (doi:10.1186/s13046-015-0223-9)

66. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA,
Hynes RO. 2016 The extracellular matrix: tools and
insights for the ‘omics’ era. Matrix. Biol. 49, 10 – 24.
(doi:10.1016/j.matbio.2015.06.003)

67. O’Dwyer DN, Gurczynski SJ, Moore BB. 2018
Pulmonary immunity and extracellular matrix
interactions. Matrix Biol. 293, 966 – 981. (doi:10.
1016/j.matbio.2018.04.003)

68. Miyazawa A, Ito S, Asano S, Tanaka I, Sato M,
Kondo M, Hasegawa Y. 2018 Regulation of PD-L1
expression by matrix stiffness in lung cancer cells.
Biochem. Biophys. Res. Commun. 495, 2344 – 2349.
(doi:10.1016/j.bbrc.2017.12.115)

69. Lakins MA, Ghorani E, Munir H, Martins CP, Shields
JD. 2018 Cancer-associated fibroblasts induce
antigen-specific deletion of CD8þ T cells to protect
tumour cells. Nat. Commun. 9, 1960. (doi:10.1038/
s41467-018-03347-0)

70. Yoshizawa H, Sakai K, Chang AE, Shu S. 1991
Activation by anti-CD3 of tumor-draining lymph
node cells for specific adoptive immunotherapy.
Cell. Immunol. 134, 473 – 479. (doi:10.1016/0008-
8749(91)90318-6)

71. Alonso R et al. 2018 Induction of anergic or
regulatory tumor-specific CD4þ T cells in the tumor-
draining lymph node. Nat. Commun. 9, 2113.
(doi:10.1038/s41467-018-04524-x)

72. Faghih Z, Erfani N, Haghshenas MR, Safaei A, Talei
A-R, Ghaderi A. 2014 Immune profiles of CD4þ

lymphocyte subsets in breast cancer tumor draining
lymph nodes. Immunol. Lett. 158, 57 – 65. (doi:10.
1016/j.imlet.2013.11.021)

73. Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz
MA. 2014 Targeting the tumor-draining lymph node
with adjuvanted nanoparticles reshapes the anti-
tumor immune response. Biomaterials 35,
814 – 824. (doi:10.1016/j.biomaterials.2013.10.003)

74. Rizwan A, Bulte C, Kalaichelvan A, Cheng M,
Krishnamachary B, Bhujwalla ZM, Jiang L, Glunde K.
2015 Metastatic breast cancer cells in lymph nodes
increase nodal collagen density. Sci. Rep. 5, 10002.
(doi:10.1038/srep10002)

75. Ikuta D, Miyake T, Shimizu T, Sonoda H, Mukaisho K-I,
Tokuda A, Ueki T, Sugihara H, Tani M. 2018 Fibrosis in
metastatic lymph nodes is clinically correlated to poor
prognosis in colorectal cancer. Oncotarget 9, 29
574 – 29 586. (doi:10.18632/oncotarget.25636)

76. Rohner NA, McClain J, Tuell SL, Warner A, Smith B,
Yun Y, Mohan A, Sushnitha M, Thomas SN. 2015
Lymph node biophysical remodeling is associated
with melanoma lymphatic drainage. FASEB J. 29,
4512 – 4522. (doi:10.1096/fj.15-274761)

77. Riedel A, Shorthouse D, Haas L, Hall BA, Shields J.
2016 Tumor-induced stromal reprogramming drives
lymph node transformation. Nat. Immunol. 17,
1118 – 1127. (doi:10.1038/ni.3492)

78. Gao J, Zhao L, Liu L, Yang Y, Guo B, Zhu B. 2017
Disrupted fibroblastic reticular cells and interleukin-
7 expression in tumor draining lymph nodes. Oncol.
Lett. 14, 2954 – 2960. (doi:10.3892/ol.2017.6537)

79. Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea
H, Hinz B, Cyster JG, Luther SA. 2007 Fibroblastic
reticular cells in lymph nodes regulate the
homeostasis of naive T cells. Nat. Immunol. 8,
1255 – 1265. (doi:10.1038/ni1513)
80. Dykes SS, Hughes VS, Wiggins JM, Fasanya HO,
Tanaka M, Siemann D. 2018 Stromal cells in breast
cancer as a potential therapeutic target. Oncotarget
9, 23761. (doi:10.18632/oncotarget.25245)

81. Jiang H, Hegde S, DeNardo DG. 2017 Tumor-
associated fibrosis as a regulator of tumor immunity
and response to immunotherapy. Cancer Immunol.
Immunother. 66, 1037 – 1048. (doi:10.1007/s00262-
017-2003-1)

82. Hofheinz R-D et al. 2003 Stromal antigen targeting
by a humanised monoclonal antibody: an early
phase II trial of sibrotuzumab in patients with
metastatic colorectal cancer. Onkologie 26, 44 – 48.
(doi:10.1159/000069863)

83. Takai K, Le A, Weaver VM, Werb Z. 2016 Targeting
the cancer-associated fibroblasts as a treatment in
triple-negative breast cancer. Oncotarget 7, 82
889 – 82 901. (doi:10.18632/oncotarget.12658)

84. Polydorou C, Mpekris F, Papageorgis P, Voutouri C,
Stylianopoulos T. 2017 Pirfenidone normalizes the
tumor microenvironment to improve chemotherapy.
Oncotarget 8, 24 506 – 24 517. (doi:10.18632/
oncotarget.15534)

85. Olive KP et al. 2009 Inhibition of Hedgehog
signaling enhances delivery of chemotherapy in a
mouse model of pancreatic cancer. Science 324,
1457 – 1461. (doi:10.1126/science.1171362)

86. Rhim AD et al. 2014 Stromal elements act to
restrain, rather than support, pancreatic ductal
adenocarcinoma. Cancer Cell 25, 735 – 747. (doi:10.
1016/j.ccr.2014.04.021)
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