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Selective evolutionary pressure shapes the processes and genes that enable

cancer survival and expansion in a tumour-suppressive environment. A dis-

tinguishing lethal feature of malignant cancer is its dissemination and

seeding of metastatic foci. A key requirement for this process is the acqui-

sition of a migratory/invasive ability. However, how the migratory

phenotype is selected for during the natural evolution of cancer and what

advantage, if any, it might provide to the growing malignant cells remain

open issues. In this opinion piece, we discuss three possible answers to

these issues. We will examine lines of evidence from mathematical model-

ling of cancer evolution that indicate that migration is an intrinsic

selectable property of malignant cells that directly impacts on growth

dynamics and cancer geometry. Second, we will argue that migratory phe-

notypes can emerge as an adaptive response to unfavourable growth

conditions and endow cells not only with the ability to move/invade, but

also with specific metastatic traits, including drug resistance, self-renewal

and survival. Finally, we will discuss the possibility that migratory pheno-

types are coincidental events that emerge by happenstance in the natural

evolution of cancer.

This article is part of a discussion meeting issue ‘Forces in cancer: inter-

disciplinary approaches in tumour mechanobiology’.
1. Introduction
The distinguishing feature of solid malignant tumours is their dissemination

from their primary site to seed metastatic foci. While traditionally this process

was considered to be a late event in the natural history of cancer development,

numerous studies have indicated that early cancer dissemination is frequent,

and can often occur when the primary lesion is small and formed by a loose

ensemble of highly proliferating and hyper-motile cells [1–4]. These cells can

infiltrate blood or lymphatic vessels to disperse to distal sites. There, they

might remain dormant for years, before re-awakening to undergo a fast-

proliferating, metastasis-generating phase [5], which represents the main

unmet clinical challenge and the yet-to-be-defeated cause of cancer recurrence

and, ultimately, of cancer death.

During this journey, the ability of cancerous malignancies to detach from

the primary early lesion and migrate throughout interstitial tissues represents

an acquired trait to initiate the dissemination cascade that eventually leads to

the seeding of metastatic foci. However, frequently, aggressive tumours have

already disseminated their lethal, albeit dormant, load at the time of diagnosis

[4,6]. Additionally, 5–10% of all cases of metastatic cancers are cancers of

unknown primary origin, where the metastatic lesion is detected before the pri-

mary tumour [7,8]. Thus, attempts to target the migration phenotype of cancer

malignancy are often seen as trying to ‘shut the stable door after the horse has

bolted’. These observations further raise the issue as to whether the ability to

move is selected for during the natural evolution of cancer, and what advan-

tage, if any, this might provide to the growing malignant cells that must

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2018.0224&domain=pdf&date_stamp=2019-07-01
http://dx.doi.org/10.1098/rstb/374/1779
http://dx.doi.org/10.1098/rstb/374/1779
mailto:giorgio.scita@ifom.eu
http://orcid.org/
http://orcid.org/0000-0001-7984-1889


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180224

2
constantly compete with each other as well as with the sur-

rounding host cells in a naturally unwelcoming, tumour-

suppressive environment. Or, stated differently, why would

the migratory ability of cancer cells be advantageous in the

first place?

In this short opinion piece, without aiming to be compre-

hensive and exhaustive, we examine three distinct possible

answers to this conundrum, the solution of which is likely

to have broader implications not only for our understanding

of cancer evolution and metastasis formation, but also in the

design of specific anti-tumour therapeutic strategies. We will

do so by examining a few selected examples. First, we con-

sider the evidence, which mostly stems from mathematical

modelling of cancer evolution, and points to the concept

that cell migration is an intrinsic selectable property of malig-

nant cells. This property is so intimately intertwined with

more obvious evolution-driving cancer traits, such as cell

proliferation and survival, that it directly impacts not only

on the potential of malignant cells to disseminate, but also

on their growth dynamics, ultimately providing a selective

advantage [9–14]. Second, we argue that migratory pheno-

types might emerge as an adaptive response to

unfavourable growth conditions, including mechanically

challenging microenvironments, which endow cells not

only with the ability to move/invade, but also with specific

metastatic traits, including drug resistance, self-renewal and

survival. Finally, we will discuss the possibility that

migratory phenotypes are coincidental events that emerge

by happenstance in the natural evolution of cancer. This

might occur owing to either accumulation of passenger

mutations that happen to foster motility [15] or as non-gen-

etic coincidental responses of cancers to selective growth

conditions.

(a) The inextricable link between cell growth and
migration

Cells that divide often do not move, which suggests that

migration and proliferation are dichotomous, nearly oppos-

ing behaviours at least at the single-cell levels. Malignant

cells must choose between these alternative behaviours at

any given time during the natural evolution of cancerous

masses [16,17], begging the questions as to what are the

cues that drives this decision one way or the other, and

how cells balance proliferation and migration to maintain

tumour mass.

Molecularly, at least in single-cell analyses in vitro, it has

been shown recently that a critical determinant in the

decision-making process of whether a cell divides or migrates

in response to a potent mitogen, such as epidermal growth

factor (EGF), is membrane trafficking of the cognate EGF

receptor (EGFR). Following EGF stimulation, the EGFR is

activated and promotes a variety of cellular responses,

including cell proliferation, survival, apoptosis, differen-

tiation and migration [18]. To select among these diverse

outcomes, the cell requires additional contextual information,

which includes the intrinsic state of the cell (e.g. the cell cycle

phase) and its extrinsic cues (e.g. additional extracellular sig-

nals, interactions with other cells or the surrounding matrix)

that inform the cell about its microenvironment and promote

its adaptation. Processing of this information occurs in part

through a variety of biochemical feedback loops [19],

although it is also strongly influenced by membrane
trafficking [20]. Indeed, the activated EGFR is rapidly interna-

lized and routed through the endocytic pathways to either

lysosomal degradation or to return to the plasma membrane

via recycling. This self-sustained vesicular recycling of EGFR

generates positive feedback that prolongs plasma-membrane

AKT (protein kinase B) signalling, which, in turn, promotes

cell migration [21]. Impairing cell migration through acti-

vation of the EPH receptor, which is activated when two

opposing cells encounter each other [22], inhibits EGFR recy-

cling. This traps the EGFR in the endosomes, which reduces

AKT activation, and specifically inhibits cell migration,

while leaving proliferation unaffected. Thus, vesicular traf-

ficking might be key in the regulation of the proliferation/

migration decision-making process, particularly when indi-

vidual cells come into contact with each other, thus partly

accounting for the well-established phenomenon of contact

inhibition of locomotion. It must be pointed out, however,

that in dense tissues or tumour masses, EGFR signalling

and internalization are severely perturbed [23–25], and

what is detected at the single-cell level might not apply in

multicellular ensembles.

Consistently, numerous malignant cells migrate and dis-

seminate every day from a multicellular neoplasm, which

indicates that the evolution of cell migration is not a limiting

step [26]. Additionally, migratory-mediated fitness reduction

applies only if tumours are considered as homogeneous

masses. However, intratumoural cellular and environmental

heterogeneity is the norm rather than the exception [27].

Using ecological principles from migratory animal popu-

lations, modelling studies have shown that by increasing the

ability of a cancer clone to sample different environments

with variable resources in the primary tumour mass, cell moti-

lity can provide a selective advantage, as it allows the cancer

cell clone to experience more favourable environments [9].

Not surprisingly, for instance, oxygen deprivation frequently

occurs in poorly vascularized inner tumour masses, and it is

a powerful instigator of migratory programmes and fosters

metastatic dissemination [28].

A more recent modelling of solid tumour growth com-

bined the ecological–evolutionary principles of animal and

bacterial populations with genetic tumour heterogeneity

and changes in the three-dimensional (3D) architecture of

tumours [13]. Using this model, the authors explored a set

of realistic parameters to identify the factors that better

described the evolution of tumours in a 3D setting, with par-

ticular focus on tumour geometry and cellular composition. If

tumour cells are relatively immobile, then as they proliferate,

they will give rise to dense and overcrowded homogeneous

masses. Under this condition, the lack of available space

causes cells to slow their replication rates and limits prolifer-

ation to the periphery, which leads to the slow expansion of a

nearly perfect sphere, unlike what is observed experimen-

tally. Adding cell migration or cell dispersal to this picture,

however, was sufficient to cause drastic acceleration of the

growth of the tumour cells that then underwent exponential

expansion, with the formation of heterogeneously shaped

tumour masses, much like what is observed for 3D invasive

spheroids of various solid malignancies (figure 1a). Cell moti-

lity or turnover was also shown to accelerate the emergence

of clones with mutated genes that conferred resistance to

simulated drug treatments. Frequently, these genetic altera-

tions are passenger mutations that can become drivers

under selective pressure, such as that imposed by drug
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Figure 1. Cell motility impact on 3D tumour growth dynamics. (a) Shape evolution of a tumour mass composed of n ¼ 1 � 107 cells as a function of the
individual cell movement probability, where M ¼ 0 indicates low or no probability of movement. The colours reflect the degree of genetic similarity. The
three-dimensional tumour with M ¼ 0 becomes spherical and small (tumour size not to scale, as tumours with M ¼ 1 � 105 are much larger than those
with M ¼ 0). As the individual cell movement probability increases, tumours lose their spherical shape and become an ensemble of small clonal balls. (b) Emer-
gence of drug resistant clones in tumours composed of moving cells. Simulation of the growth dynamics of tumours with a higher probability of movement M ¼
106 performed before and after administration of a typical targeted therapy at time t ¼ 0, at t ¼ 1 month and at t ¼ 6 months. Drug treatments cause the loss of
most of the tumour cells, and the few ( probably pre-existing) resistant clones remain after one month of drug exposure. Intrinsic cell motion facilitates regrowth of
the lesions to their original size six months after the treatment. Both cartoons are adapted from [13], copyright (2018), with permission from Elsevier.
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treatments. These, now-fitter clones rapidly expand through

cell turnover and dispersal, to occupy the space left by

drug-sensitive cells (figure 1b). Collectively, these modelling

approaches highlight the pivotal importance of local

increases in cell motility, not just in driving dissemination,

but also in the control of tumour growth dynamics and

shape, and the emergence of genetically fitter clones. Exper-

imental validation of these predictions remains to be provided,

but the availability of mosaically expressing multicoloured

tumour cells that can be monitored in real time in animals

through intravital microscopy might provide experimental

support of this model.

The proliferation versus migration dichotomy does not

appear to apply during a specific phase of the metastatic cas-

cade when primary cancer masses extend multicellular

strands or clusters that invade the surrounding stroma

through a combination of collective motility and expansive

proliferation, termed invasive growth [29]. This process has

long been shown to occur in response to stimulation with

various soluble scattering cues, such as hepatocyte growth

factor (HGF), also known as scatter factor [30]. HGF is

known to act as a potent morphogenic cue during embryo-

genesis, and it becomes a trigger for individual cancer

dissemination by promoting a programme of invasive

growth [29]. A similar, but multicellular, programme has

also been directly documented, at least in animal models,

through real-time microscopy analysis of the growth
evolution of experimentally xeno-transplanted tumours [31].

In these cases, multicellular structures actively invade and

collectively migrate, while undergoing cell division resolving

the dichotomy of the two processes through a coordinated

division of labour [31].

This disparate set of observations can be conceptually

interpreted within a unifying framework which posits

that cell motility and proliferation are dichotomous, non-

necessarily opposing phenotypes, particularly within a growing

tumour mass. Indeed, in multicellular malignancies, cell

motility appears as an intrinsic favourable, if not positively

selected trait that promotes the rapid expansion of cancerous

mass as well as the emergence of fitter clones. As such, cell

motility might be a valuable target to hit to improve cancer

therapies.

(b) Migratory phenotypes are an adaptive response to
unfavourable growth conditions: from epithelial-to-
mesenchymal transition to jamming-to-unjamming
transition

The available evidence, however, suggests that cell motility

driving metastatic spreading should not be regarded as a

genetic trait that is specifically selected during tumorigenesis.

In particular, no major genetic differential mutations have

been identified between primary tumours and metastases
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[32–34]. Topographic single-cell sequences of synchronous

breast ductal carcinoma in situ (DCIS) and invasive ductal

carcinoma have further revealed that: (i) genome evolution

occurs within the ducts, before the tumour cells escape the

basement membrane; and (ii) one or more clones can

escape through the basement membrane into the adjacent tis-

sues to establish an invasive tumour mass, which is

consistent with a model of multiclonal invasion [35]. Stated

differently, once malignant clones that have evolved indivi-

dually in a primary tumour breach the basement

membrane, they tend to co-migrate to established local out-

growths. Moreover, cancer cell dissemination can occur

early during tumour progression, which indicates that the

potential to form tumours at distant sites is intimately con-

nected to mechanisms of tumour growth [1–4] (see also

§1a). Emerging evidence suggests that the capacity to dissemi-

nate might be part of the adaptive responses of cancer cells to

unfavourable micro-environmental conditions, which include

hypoxia and scarcity of nutrients, to signals from the tumour-

associated stroma, and to oxidative and genotoxic stress

induced by anti-cancer treatments [36]. The influence of the

structural/mechanical properties is also pivotal in this

response, as these provide key survival, proliferative and

invasive signals [37]. For example, a carcinoma must adapt

to intrinsic tumour-suppressive conditions. These arise from

the mechanical constraints imposed by excessive growth of

tumours that are encased by the relatively rigid architectural

organization of the tissue of origin. This is also frequently

reinforced by a desmoplastic reaction, which is characterized

by accumulation of fibrillar collagen around a tumour. A

case in point is provided, once again, by breast cancer lesions.

A significantly increasing fraction of human breast cancers

currently diagnosed since the adoption of mammographic

population-based screening is indeed DCIS [38]. DCIS

grows within the confined space of the mammary duct,

where it can show highly cohesive growth associated with

extreme cell packing and a density that exerts mechanical

stress, and thus suppresses cell motility and tumour pro-

gression. However, nearly 30% of these lesions can escape

this tumour-suppressive environment to become invasive

ductal carcinoma [39], through the acquisition of migratory

phenotypes. These, we would argue, are adaptive mechanical

responses that coincidentally endow metastatic traits and

chemo-resistance to tumours. One of these responses implies

a drastic change in the identity of a carcinoma, from epi-

thelial-like to mesenchymal-like state. This is commonly

referred to as epithelial-to-mesenchymal transition (EMT),

which is a mechanism that transiently equips individual

cancer cells not only with migratory/invasive ability, but

also with increased resistance to drug treatments. Further-

more, they can also gain stemness potential at the expense

of rapid proliferation. This process can be reversed at later

stages, from the mesenchymal state back to a more epithelial

identity, through mesenchymal-to-epithelial transition (MET),

to thus facilitate regrowth at a distal site [40]. Indeed, it is now

clear that, rather than being a binary switch from epithelial to

mesenchymal behaviour, EMT and MET are graded processes

with a range of different outcomes. This balance can thus give

rise to cells that have various combinations of epithelial and

mesenchymal features, which are frequently referred to as

undergoing a plastic transition state [41]. Additionally,

mounting evidence indicates that cells that undergo EMT or

MET experience a constantly changing set of mechanical
cues, which together control how these cells sense and respond

to other signals from their microenvironment. We refer the

reader to a recent comprehensive review for details of the

types of mechanical inputs and mechanotransduction pathways

that can either initiate or reinforce the EMT/MET-plastic rewir-

ing of cell identity during both organ development and cancer

dissemination [42].

One important caveat is that while EMT has become

recognized as the overarching mechanism that enables disse-

mination of single tumour cells [43,44], invasion by an

epithelial-derived carcinoma frequently involves collective

migration of cohesive cohorts of cells into adjacent tissues,

rather than dispersal of individual carcinoma cells [45,46].

Indeed, this is further supported by the following: (i) breast

carcinomas frequently disseminate as epithelial collectives,

by maintaining their tight cell–cell interactions [40,47];

(ii) circulating cancer cells spread as epithelial cell clusters,

and by doing so, they show increased metastatic seeding

potential [48]; (iii) histopathological studies have indicated

that human DCIS can invade as collective strands or clusters

with E-cadherin-based cellular junctions [49,50]; and

(iv) late-stage HER2-expressing murine mammary cancers

can undergo kinetic arrest and have reduced metastatic

potential as a consequence of increased cell density and pack-

ing [1,2]. These findings further imply that mechanisms that

can overcome the kinetically silent state of a late-stage aggres-

sive tumour might promote collective migratory mechanisms

of cancer dissemination, without the need to invoke changes

to cell identity or rewiring of transcriptional programmes

(e.g. EMT-like programmes).

An emerging physical framework that is known as ‘cell

jamming’ aims to capture and simplify into unifying prin-

ciples the mechanical and biochemical mechanisms that

govern collective motion, or more specifically, the transition

of a multicellular ensemble from a rigid, dense or ‘jammed’

state, into a fluid, dynamic, motile or ‘unjammed’ state [51–

54]. For example, a variety of multicellular collectives have

been shown to acquire structural and dynamic physical

properties that are surprisingly similar to those of amor-

phous viscoelastic materials [45,51–54]. During collective

motility, cells can flow like a fluid, but as the cell density

rises owing to proliferation, the motion of each cell is con-

strained by the crowding from its neighbours, which

forces them to move as groups [55–57]. At a critical density,

the motility ceases and the collectives jam or rigidify, to thus

undergo liquid (unjammed)-to-solid ( jammed) transition

[51–54]. It has been proposed that this transition ensures

the correct development of elasticity and of barrier proper-

ties of epithelial tissues, and also to act as a strong

suppressive mechanism for aberrant growth of oncogenic

clones [51]. The reverse, known as jamming-to-unjamming

transition (JUT), might instead represent a complementary

gateway to cell migration with respect to EMT, which

enables tissues to escape the caging imposed by the

crowded cellular landscape of the mature epithelia [51].

Indeed, if cells retain an epithelial phenotype throughout

all stages of the metastatic process, then the idea of EMT

as the sole or principal gateway to cellular migration does

not hold. However, the molecular mechanisms and cellular

processes that cells use to control the jamming transition are

poorly defined. It is also even less clear whether JUT occurs

in a 3D environment and during tumour progression, and

whether JUT can elicit the durable genetic or epigenetic
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changes that are required to confer tumours with the rel-

evant metastatic traits.

In an attempt to address the first of these issues, we and

others have recently characterized endocytic-dependent,

mechanically driven mechanisms that promote the transition

from a jammed to a fluid (i.e. unjammed) state in epithelial

monolayers [58–63]. Specifically, we have shown that a

master regulator of endocytosis, RAB5A, is highly expressed

in aggressive human breast cancer [64], with levels that are

sufficient to promote JUT through changes to the mechanical

properties of the tissue [61]. Perturbations in RAB5A levels in

normal and tumorigenic mammary epithelia were sufficient

to re-awaken the motility of the otherwise solid-like and

kinetically arrested (i.e. jammed) monolayers [61]. RAB5A

expression promoted millimetre-scale, coherent and ballistic

movement of multicellular streams that flowed like flocking

fluids. RAB5A also resulted in the extension of oriented

and persistent protrusions. The combination of these effects

allows cell monolayers to acquire a fluid-like character, and

delays any transition to a jammed/solid state (figure 2).

Molecularly, impairing endocytosis or micropinocytosis, or

increasing fluid efflux, abrogated the RAB5A-induced collec-

tive motility, which supports the concept that perturbation of

multiple trafficking routes that impact upon different signal-

ling and biomechanical pathways is necessary for JUT [61,67].

A simple computational model that was based on mechanical

junctional tension and included an active cell reorientation

mechanism for the velocity of self-propelled cells identified

regimes of monolayer dynamics that can explain endocytic

re-awakening of cell movement in terms of the combination

of large-scale directed migration and local unjamming

[58,60,61]. These features lead to a ‘flocking’ (or flowing)

fluid mode of collective cell migration (figure 2(3)). The

model further provides a quantitative framework that sup-

ports the concept that small variations in fundamental

cellular properties (e.g. cell self-propulsion, junctional ten-

sion, packing density) are sufficient to tip the dynamic state

of collective structures from solid to liquid, or to flowing

liquid. Biologically, this might provide both innate cell plas-

ticity and adaptability, as the emerging properties of a

collective structure. Consistently, as a consequence of these

emerging material properties, RAB5A-expressing monolayers

are not only efficient in directed movement during wound

closure and epiboly gastrulation movement during zebrafish

development [61], but they also show a high degree of plas-

ticity that allows them to migrate under physical constraints

that are typical of the interstitial tissue architecture [61].

Tumour cells, on the other hand, might exploit this ‘mechan-

ical flexibility’ to activate key steps in the metastatic process

without the need to change their genetic make-up or cell

identity. They would thus require significantly less-drastic

events than EMT (or the reverse, MET) to disseminate. Con-

sistently, recently, we combined biophysical and

biochemical analysis to study endocytic-mediated unjam-

ming in a variety of malignant epithelial 3D collectives in

breast cancer, such as spheroid models of breast DCIS, and

ex vivo slices of orthotopically implanted DCIS. We found

that RAB5A-mediated endocytic perturbations are sufficient

to spark a flocking-liquid mode of 3D motility that causes

tumour masses embedded in thick collagen type I matrix to

undergo a highly persistent and coordinated rotation. This

is accompanied by an augmented mechanical stress exerted

by the cells on the extracellular matrix, which leads to its
remodelling, and the concurrent ‘fluidification’ of cells in

the close proximity of the remodelled matrix. The combi-

nation of these two effects results in the collective invasion

of otherwise jammed carcinoma [67].

It should be noted here that a number of the alterations

that characterize EMT are expected to impact on the mechan-

ical and kinematic properties of cell collectives, such as

changes in cell–cell and cell–matrix interactions, or in cell

self-propulsion and motility. This is particularly relevant in

the context of heterogeneous tumour ensembles, where cells

that retain epithelial features coexist with those that have

undergone partial or full mesenchymal transition, with

as-yet unexplored consequences for the overall tissue

dynamics. Thus, ultimately, EMT, JUT and collective cell

motion might actually have much less sharply defined bound-

aries, and might even be slightly different aspects of the same

process of tissue adaptation to specific mechanical inputs.

In keeping with this concept, and in analogy to EMT, to

be instrumental in tumour dissemination, mechanically

driven, collective invasive strategies must provide cells with

metastatic traits that will include tumour-initiating growth

capacity, a self-renewal programme, drug resistance and

re-awakening from dormancy [68]. Whether this is the case

remains to be addressed; nevertheless, we note that changes

in tissue mechanics and in the ability of cells within a

tissue to transmit forces both to the substrate and long

range through cell–cell adhesion are pivotal in the control

of the jamming transition and for the remodelling of extra-

cellular matrix surrounding tumour to enhance their

invasiveness [65]. These mechanical alterations might be

sufficient to activate mechanosensitive transcriptional pro-

grammes, such as those elicited by the mechanotransducers

YAP1 and TAZ [65]. The activation of YAP1 and TAZ is

emerging as essential for tumour growth and metastatic

colonization [69–74], and this has also been shown to initiate

a subsequent EMT-like programme [75–78].
(c) Migration phenotypes emerge by happenstance in
the natural evolution of a cancer: the case of
macropinocytosis

Our understanding of the molecular mechanisms that drive

cell motility has undergone an exponential increase more

recently. A number of critical pathways and genes can be

categorized based on their roles in the control of the critical

steps of the cell migration cycle: (i) extension of the leading

edge; (ii) adhesion to matrix contacts; (iii) contraction of the

cytoplasm; and (iv) release from the contact sites to enable

rear-end retraction and forward sliding of the cell body [79].

These basic fundamental steps have been deduced from

the study of cells ‘crawling’ on flat 2D surfaces [79], and

they will also apply, with some variations, to malignant

cells in complex 3D environments. These cells must negotiate

the intricacy of fibrillar collagen-rich networks, through

activation of a pericellular proteolytic programme [80], and

they must move on single fibres [81], squeeze through

narrow pre-existing or newly formed slits and channels or

move in a highly coordinated collective fashion [45].

As a consequence of the recognized complexity of cell

motility, increasing numbers of genes have been implicated

in migration, and particularly in three dimensions. This has

revealed the extraordinary flexibility of cancer cells in
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lead to a ‘flocking’ (or flowing) liquid mode of migration. (4) This transition in the mode of movement enables RAB5A-expressing epithelial monolayers to flow through
micro-fabricated narrow slits that mimic the confined channels encountered during interstitial migration. (5) This might promote mechanosensitive programmes, such as the
YAP1/TAZ axis [65], for the acquisition of metastatic traits. Adapted from [66], copyright (2018), with permission from Elsevier.
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rewiring their gene programmes in order to adapt to diverse

and dynamically changing micro-environmental conditions.

Remarkably, however, despite being essential for migration,

the vast majority of these genes have rarely been ascribed

the role of drivers of cancer development, albeit a number

of them are mutated in diverse malignancies.

The case of the key founding RHO GTPase family mem-

bers, CDC42, RAC1 and RHOA, is particularly relevant in

this context [82]. These GTPases are pivotal in orchestrating

the signalling pathways that are essential for cell migration,

from acquisition of polarity (e.g. CDC42) to the extension of

cell protrusions (e.g. RAC1) and generation of actomyosin

contractility (e.g. RHOA) [82]. In cancers, the activity of

these GTPases is frequently dysregulated, and genetic studies

have supported the importance of their actions in the various

phases of tumour initiation and progression [83,84]. How-

ever, at variance with respect to the genes coding for RAS

GTPases, mutated variants of RHO GTPases are rarely

found to act as drivers in cancers, with the notable exception

of RAC1-P29S, which is a spontaneously activating cancer-

associated GTPase defined in approximately 5% of sun-

exposure melanomas [85]. Thus, various cancer cells might

modulate the expression or activity of their essential migratory

genes as part of an adaptive response to challenging micro-

environmental conditions, rather than for the intrinsic pro-

motility functions of these genes.

The process of macropinocytosis can be considered as

a remarkable case in point [86]. Macropinocytosis is an

endocytic route through which large macromolecules and

solutes are internalized following remodelling of the actin

cytoskeleton, which generates the force to extend the mem-

brane protrusions and ruffles that are necessary for this

process [86]. Macropinocytosis activity is increased following

activation of potent oncogenes, such as KRAS and v-SRC,

and it depends on the small RHO GTPase RAC1, which is

also a master regulator of branched actin polymerization in

crawling-cell migration [87–90]. Consistent with this, macro-

pinocytosis has been implicated in cancer cell motility,

extracellular matrix degradation and metastasis formation

[86,91].

However, whether macropinocytosis has positive or

negative effects on cell migration remains under debate,

and its diverse biological outcomes might depend on the

cell type. For example, macropinocytosis is very active in

professional phagocytic cells, including macrophages and

dendritic cells [92,93], and it mediates chemotaxis in highly

motile cells, such as neutrophils [94]. Dendritic cells, in

particular, appear to regulate the use of macropinocytosis

according to their status. Following maturation and

activation, dendritic cells switch from their macropinocytic,

antigen-sampling, but kinetically inactive state to a hyper-

motile, chemotactic phase. This is essential to guide their

movement towards lymph vessels and nodes, so as to

mount an efficient adaptive immune response [95,96]. Thus,

at least in some specialized contexts, macropinocytosis is a

trade-off for efficient, directed cell migration [97].

In non-professional, migratory cells, however, macropino-

cytosis (or at least some form of this process) has invariably

been associated with enhanced crawling-cell movement. We

have recently shown that circular dorsal ruffles represent a

specialized set of ARP2/3-dependent protrusions [98,99].

These protrusions are sites of macropinocytic internalization,

and they have dynamic features (i.e. rapid and recurrent
wave-like behaviour) that are typical of an oscillatory excit-

able system that can be biased by chemical cues. They

therefore act as steering devices to drive efficient chemotactic

migration. Additionally, during stimulated fibroblast

migration, integrins have been shown to undergo rapid traf-

ficking via circular dorsal ruffles and macropinocytosis [100].

Given its role in solute and nutrient uptake, macropinocy-

tosis has been directly implicated in the regulation of the

mTOR pathway and cell metabolism [101,102]. Indeed, in

addition to cancer cell migration and dissemination, macropi-

nocytosis appears to be used by malignant cells to also satisfy

their demanding metabolic needs [102]. Metabolic alterations

of cancer cells have, indeed, emerged as paramount for

development and progression of neoplastic transformation

[103]. A case in point is represented by pancreatic ductal ade-

nocarcinoma. The reduced cellularity and increased presence

of a stromal component of the pancreatic ductal adenocarci-

noma microenvironment lead to high interstitial pressure,

which induces physical and oxidative stress and tumour

hypo-perfusion, with a consequent limited supply of both

oxygen and nutrients [104,105]. To support cancer viability

under these conditions, oncogenic insults, and specifically

KRAS-G12 mutants (mutKRAS) (the prevalent oncogenes in

these tumours), activate several pathways to use alternative

sources of nutrients, among which there is macropinocytosis.

Accumulating evidence indicates that macropinocytosis is,

indeed, one of the main mechanisms by which mutKRAS

pancreatic ductal adenocarcinoma cells scavenge protein

and lipid sources. These are degraded in lysosomes, to refill

the amino acid pools, and to fuel mitochondrial metabolism

and lipid biosynthesis [88,106,107]. Ultimately, this enables

cell survival in nutrient-deprived tumour microenviron-

ments, and promotes resistance to inhibitors of the amino

acid sensor mTOR [101]. Consistent with this, the inhibition

of macropinocytosis has been shown to impair cell growth

of mutKRAS pancreatic ductal carcinoma cells in vitro and

as tumour growth in vivo. Additionally, macropinocytosis is

activated following amino acid starvation and mTOR inhi-

bition [101]. This argues that this endocytic process is

selected for by various cancers, including prostate tumours

[108], to adapt to and survive in microenvironments charac-

terized by limited nutrient availability. Of note, a number

of molecules that are required to activate macropinocytosis

in cancer, including KRAS, RAC1 and their upstream regula-

tors (e.g. guanine nucleotide exchange factor DOCK1; [109]),

and the downstream effectors that regulate actin dynamics at

the leading edge, are also essential to drive cell movement

[86]. These observations suggest that migratory genes and

motility phenotypes might emerge coincidentally, as by hap-

penstance, in the natural evolution of cancer. These are

subsequently exploited by disseminating malignant cells for

their pro-migratory and pro-invasive properties.

2. Concluding remarks
We began by questioning whether cell migration is a trait

that, if not actively selected for, is at least beneficial during

the natural history of cancer development, much like prolifer-

ation or survival. The answer is clearly complex. There is

little doubt that for the process of metastatization, malignant

cells must acquire the ability to migrate through a set of extre-

mely diverse micro-environmental conditions. This diversity

drives the emergence of multiple and flexible modes of
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locomotion fostered by a vast number of motility molecules.

Much less obvious is whether these motility molecular traits

are advantageous, and as such under some sort of selective

pressure in the context of the growing primary tumour

mass. Indeed, if one considered cancer as an ensemble of

individual entities in constant competition with their neigh-

bours, it is not immediately obvious which kind of benefit

the ability of moving might provide. However, tumours are

ecologically complex multicellular structures with rich intra-

cellular dynamics and composed of highly heterogeneous

clones. Within this context, cell motion has been proposed to

be a critical determinant of the growth dynamics of tumour

masses, causing a drastic acceleration of proliferation by

favouring the emergence of heterogeneous fitter clones,

which can rapidly expand through cell turnover and dispersal

to occupy the space left by lesser fit cells.

Migration in epithelial-derived carcinoma might also

directly emerge as a favourable adaptive process in response

to challenging micro-environmental biomechanical con-

ditions. This, at the individual cell level, might be sufficient

to trigger a transition in cell identity from an epithelial, sessile

to a hyper-motile mesenchymal state or EMT thought to be

essential to drive tumours’ cell dissemination [43,44]. Alter-

natively, this adaptive response might promote a switch in

the material property of packed carcinoma, from a solid, kine-

tically-arrested (i.e. jammed) phase to a liquid (i.e.

unjammed)-like phase that would favour the migration and

dispersal of epithelial, multicellular strands and clusters.

Both these motility transitions might be associated with the

acquisition of traits (i.e. self-renewal or drug resistance) that
would increase the fitness of dispersed cells, thus favouring

the seeding and growth of distal metastatic foci.

Finally, we reviewed evidence that migration may emerge

indirectly, almost by happenstance, as a consequence once

again of tumour cell adaptation to, for example, limited avail-

ability of nutritional components. These conditions force

metabolically demanding tumours to activate pathways to

use alternative sources of nutrients, among which there is

macropinocytosis. Macropinocytosis requires the upregulation

of force-generating actin cytoskeletal remodellers, which, in

addition to driving membrane deformation for the engulf-

ment of proteinaceous and lipid material, might also be

exploited to propel migratory and explorative behaviours,

ultimately promoting cancer cell dispersal.

Thus, migration, regardless of the way it becomes acti-

vated, should be viewed as a mechanism to promote tumour

cell fitness, and as such should be a valuable therapeutic

target to hit in the battle to curb the development of aggressive

metastatic malignancies.
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