Skip to main content
. 2019 Apr 11;7(2):61. doi: 10.3390/healthcare7020061

Table 2.

Pairwise correlation matrix of variables in main regressions.

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13
Healthcare access
1. Healthcare quality ---
2. Blood pressure check 0.0514 * ---
3. Blood test 0.0776 * 0.4722 * ---
4. Vision exam 0.0889 * 0.2384 * 0.2825 * ---
5. Dental examination 0.0705 * 0.1620 * 0.2006 * 0.3196 * ---
6. Breast exam (female only) 0.0811 * 0.1910 * 0.2318 * 0.2609 * 0.1862 * ---
Household registration
7. Household registration (hukou) type −0.2394 * −0.1091 * −0.1199 * −0.1913 * −0.1425 * −0.1873 * ---
Demographic variables
8. Gender −0.0179 0.0258 * 0.0241 * 0.1601 * 0.0130 * −0.0015 −0.0141 ---
9. Education −0.0876 * −0.1354 * −0.1375 * −0.2504 * −0.1333 * −0.2507 * 0.2434 * −0.2894 * ---
10. Economic condition 0.0394 * 0.0565 * 0.0588 * 0.0740 * 0.0624 0.0740 * −0.1099 * −0.0499 * −0.1552 * ---
11. Ethnic minority −0.0422 * 0.0340 * 0.0241 * −0.0080 −0.0022 −0.0031 0.0397 * 0.0058 −0.0067 −0.0166 ---
12. Religion −0.0261 * −0.0080 −0.0242 * 0.0101 −0.0190 * 0.0000 0.0111 0.0351 * −0.0729 * −0.0116 0.1394 * ---
13. Having insurance or not 0.0080 0.0486 * 0.0525 * 0.0362 * 0.0336 * 0.0389 * 0.0128 0.0229 * −0.0514 * 0.0060 0.0060 −0.0004 ---

Notes: As the number of non-missing observations was different across variables, the sequence length varies across each pair of variables when computing the correlation coefficients; * p < 0.01.