Skip to main content
. 2019 May 30;11(6):756. doi: 10.3390/cancers11060756

Table 1.

Summary of the state-of-the-art studies on the use of HSI for cancer analysis.

Reference Year Type of Cancer Type of Sample Spectral Range (nm) Image Size (pixels) # Bands Light Source Acquisition Mode Algorithms ¥ Goal Subject *
[123] 2007 Breast in-vivo 450–700 1024 × 1528 34 InGaN LEDs LCTF Custom Algorithm Classification A
[142] 2011 Oral in-vivo 450–650 350 × 350 48 Halogen Snapshot - - H
[143] 2011 Oral in-vivo 400–700 - 40 Halogen Snapshot PCA, LDA Dimensional reduction,
Classification
H
[116] 2011 Gastric ex-vivo 1000–2500 - 239 Halogen Pushbroom SVM, Integral Method, NDCI Classification,
Margin delineation
H
[184] 2012 Prostate in-vivo 450–950 1392 × 1040 251 Xenon LCTF LS-SVM Classification A
[146] 2012 Tongue in-vivo 600–1000 1392 × 1040 81 Halogen AOTF SR, SVM, RVM Classification H
[185] 2012 Prostate in-vivo 500–950 1392 × 1040 251 Xenon LCTF LS-SVM Classification A
[117] 2013 Gastric ex-vivo 400–800 640 × 480 72 Halogen - Cutoff point Optimal wavelength selection,
Classification
H
[125] 2013 Breast ex-vivo 380–720 - 101 Xenon - Polynomial SVM Automatic ROI detection based on contrast and texture information H
[126] 2013 Breast ex-vivo 380–720 - 101 Xenon - Fourier
coefficient selection features, mRMR,
RBF SVM
Feature extraction,
Dimensional reduction,
Classification
H
[124] 2014 Breast in-vivo 500–600 1392 × 1040 26 Halogen LCTF Gabor Filter,
Expectation Maximization
Microvessel sO2 segmentation & classification A
[132]
[133]
2014 H&N in-vivo 450–950 1392 × 1040 251 Xenon LCTF Tensor Decomposition,
PCA, KNN
Feature extraction,
Classification
A
[134] 2014 H&N in-vivo 450–950 1392 × 1040 251 Xenon LCTF PCA, FFD Surgical margin delineation and in-vivo/in-vitro registration A
[136] 2015 H&N in-vivo 450–950 1392 × 1040 226 Xenon LCTF mRMR, KNN Glare removal,
Feature extraction, Automatic classification
A
[135] 2015 H&N in-vivo 450–950 1392 × 1040 226 Xenon LCTF mRMR,
RBF SVM,
Chan-Vase active contour method
Glare removal,
Feature extraction,
Automatic classification,
Active contour refinement
A
[118] 2015 Gastric ex-vivo 400–800 480 × 640 81 Halogen - Mahalanobis distance,
Cutoff point
Optimal wavelength selection,
Classification
H
[145] 2016 Oral in-vivo 390–680 - 30 - - RF Classification H
[78] 2016 Oral in-vivo 390–680 1388 × 1040 30 Xenon - Customized Image filtering (honeycomb pattern removal) H
[120] 2016 Colon in-vivo 405–665 585 × 752 27 Xenon Filter Wheel Recursive divergence, SVM Wavelength selection,
Classification
H
[137] 2016 H&N in-vivo 450–950 1392 × 1040 251 Xenon LCTF SVM, MSF Classification & segmentation A
[144] 2016 Oral in-vivo 390–680 1388 × 1040 30 Xenon - NCC,
MNF,
RF
Image registration and denoising,
Glare detection,
Classification
H
[140] 2017 H&N ex-vivo 450–950 1392 × 1040 91 Xenon LCTF CNN, SVM,
KNN, LR,
DTC, LDA
Classification H
[138] 2017 H&N ex-vivo 450–50 1392 × 1040 91 Xenon LCTF Ensemble LDA Classification H
[139] 2017 H&N ex-vivo 450–950 1392 × 1040 91 Xenon LCTF LDA, QDA,
Ensemble LDA,
Linear SVM,
RBF SVM, RF
Classification H
[119] 2019 Colon ex-vivo 400–1000
900–1700
1 × 1312
1 × 320
- Halogen Pushbroom Quadratic SVM Classification H
[186] 2019 H&N ex-vivo 450–950 1392 × 1040 91 Xenon LCTF Inception CNN Binary and Multiclass Classification H
[173] 2016 Brain in-vivo 400–1000
900–1700
1 × 1004
1 × 320
826
172
Halogen Pushbroom SVM, RF,
ANN
Classification H
[169] 2016 Brain in-vivo 400–1000 1 × 1004 826 Halogen Pushbroom RF Pre-Processing and Classification H
[170] 2017 Brain in-vivo 400–1000
900–1700
1 × 1004
1 × 320
826
172
Halogen Pushbroom tSNE, FR-tSNE
STF, DCT-STF
Dimensional Reduction and Classification H
[164]
[171]
2018 Brain in-vivo 400–1000 1 × 1004 826 Halogen Pushbroom SVM, FR-tSNE/PCA,
KNN Filter,
K-Means, MV
Classification H
[165]
[166]
2019 Brain in-vivo 400–1000 1 × 1004 826 Halogen Pushbroom CNN, DNN,
SVM,
KNN Filter, K-Means
Binary and Multiclass Classification H

* Subject: (H) Human; (A) Animal. ¥ Algorithms: (PCA) Principal Component Analysis; (LDA) Linear Discriminant Analysis; (SVM) Support Vector Machine; Normalized Cancer Index (NDCI); (LS-SVM) Least-Squares Support Vector Machine; (SR) Sparse Representation; (RVM) Relevance Vector Machine; (mRMR) maximal Relevance and Minimal Redundancy; (RBF) Radial Basis Function; (RF) Random Forest; (MSF) Minimum-Spanning Forest; (NCC) Normalized Cross-Correlation; (MNF) Minimum Noise Fraction; (CNN) Convolutional Neural Network; (KNN) K-Nearest Neighbor; (LR) Linear Regression; (DTC) Decision Tree Classification; (QDA) Quadratic Discriminant Analysis; (ANN) Artificial Neural Network; (tSNE) t-Distributed Stochastic Neighbor Embedding; (FR-tSNE) Fixed Reference t-Distributed Stochastic Neighbor Embedding; (STF) Semantic Texton Forests; (DCT-STF) Discrete Cosine Transform based Semantic Texton Forest; (MV) Majority Voting; (DNN) Deep Neural Network.