Skip to main content
. 2019 Jun 21;20(12):3037. doi: 10.3390/ijms20123037

Table 4.

Energy profile (kJ/mol) for the formation of cyclic oligomers through the MAM mechanism.

Entry Reactions ΔEact a ΔE b ΔG298K c ΔG450Kc ΔH298K d ΔH450K d If e
1 T3C3 + H2O 136.5 −12.5 −14.6 −15.8 −12.3 −12.2 −793.3
2 T4C4 + H2O 136.9 −16.9 −23.1 −26.7 −16.2 −16.0 −895.7
3 T5C5 + H2O 150.9 −4.5 −17.0 −24.3 −2.0 −2.5 −861.9
4 T6C6 + H2O 147.6 −3.6 −14.7 −20.5 −4.0 −2.9 −913.5
5 T4C31 + H2O 133.5 −12.8 −9.8 −9.9 −9.3 −10.11 −928.3
6 T5C41 + H2O 145.7 −8.8 −0.8 0.2 −2.4 −3.3 −828.0
7 T6C51 + H2O 147.2 −7.3 −3.4 −3.0 −4.0 −4.3 −830.2
8 T7C61 + H2O 145.8 −11.7 −18.6 −21.1 −14.3 −13.2 −807.2
9 T5C32 + H2O 147.8 −18.8 −13.0 −10.6 −17.7 −17.8 −884.9
10 T6C42 + H2O 146.0 −20.5 −24.7 −26.5 −21.4 −20.9 −739.1
11 T7C52 + H2O 146.7 −19.4 −30.8 −34.6 −23.8 −22.7 −931.1
12 T8C62 + H2O 146.5 −18.1 −20.0 −21.1 −18.5 −17.2 −837.3

a The energy barrier for the oligomerization. b The exothermicity for the oligomerization. c The free energy change of the oligomerization at 298 and 450 K. d The entropy change of the oligomerization at 298 and 450 K. e Imaginary frequencies obtained from first-principles based calculations for confirmation of the transition states.