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ABSTRACT: The virtual assistant concept is one that many
technology companies have taken on despite having other well-
developed and popular user interfaces. We wondered whether it
would be possible to create an effective virtual assistant for a
medicinal chemistry organization, the key being delivering the
information the user would want to see, directly to them, at the
right time. We introduce Kernel, an early prototype virtual
assistant created at Lilly, and a number of examples of the
scenarios that have been implemented to try to demonstrate the
concept. A biochemical assay summary email is described that
brings together new results and some basic analysis, delivered
within an hour of new data appearing for that assay, and an email delivering new compound design ideas directly to the original
submitter of a compound shortly after their compound was tested for the first time. We conclude with a high level description of
the first example of a Design-Make-Test-Analyze cycle completed in the absence of any human intellectual input at Lilly. We
believe that this concept has much potential in changing the way that computational results and analysis are delivered and
consumed within a medicinal chemistry group, and we hope to inspire others to implement their own similar solutions.
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Within mainstream technology companies the virtual
assistant concept has been heavily adopted, despite

these companies having existing well-developed user interfaces.
These include the likes of Google Assistant, Apple’s Siri,
Microsoft’s Cortana, Amazon’s Alexa, and Samsung’s Bixby,
each providing these companies different ways of interacting
with users. One of the keys of the virtual assistant concept is
providing the user with the information they want at the exact
time that they want it. An example would be the way Google
delivers information on journey time and traffic to Android
phones just before the time people may begin their commute
to and from their place of work.
Within the medicinal chemistry organization of a pharma-

ceutical company such as Lilly, the application of data analysis
and other computational methods is inconsistent between
teams. Many tools are desktop or web based and rely on the
user knowing what kind of approach they want to take and
then requesting it (possibly running it themselves). An
alternate delivery of such analysis would be to recognize
when the user might want to perform such analysis, compute
the result in an automated way, and deliver that directly to the
user. The first approach results in inconsistency and is fairly
time-consuming for each individual user applying the desired
approach. Whereas the second, if some approaches can be
standardized and run in an automated way, should be far more
efficient and much more scalable and potentially enable new
solutions to be delivered.
Thinking about the way that the mainstream technology

industry has embraced the virtual assistant concept, we
wondered whether it would be possible to implement aspects

of that approach within a medicinal chemistry environment. If
we were to do this we would need to think about what drives
medicinal chemistry cycles (primarily in the lead optimization
phase).
Lilly, like many other groups doing medicinal chemistry,

follows a Design-Make-Test-Analyze (DMTA) cycle1 which
has been standard practice for a long time (although timelines
for each cycle have come down with improvements in
technology). Basically, a course of action is set given the
current knowledge and understanding, and that direction is not
perturbed until the emergence of new data. Decision making
revolves around this appearance of new data. If we are thinking
about how to implement a virtual assistant and want to be
most impactful, we need to mimic this behavior and drive
automated approaches off of the appearance of new
information. With many assays being run by different people
at different sites on a project, simply knowing that new data
exists can be a challenge and is low hanging fruit a virtual
assistant can help with. Couple this with additional automated
analysis, and the virtual assistant can achieve significant impact.
If we now know when we want to deliver information to

users to help their decision making, we need to think about
what information and analysis is important to each project.
Each project will have a number of assays within its flow
scheme, and each one will have an amount of standard analysis
that is performed (often duplicated by different users), plus
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some more custom, context dependent analysis. With a virtual
assistant we would hope to be able to automate that standard
analysis and present the data in such a way that the user could
then apply anything more context dependent subsequently.
Here, we introduce Kernel, an early prototype virtual

assistant created with the aim to enhance medicinal chemistry
at Lilly. The name of such an assistant, although having no
bearing on the science being delivered, does assist in uptake
and understanding among users. Colonel Eli Lilly, as the
company’s founder, is well-known by Lilly employees and the
virtual assistant name is a pun on both that, and the fact kernel
is a term used within the computer science and machine
learning fields, which has generally been well received by users.
Unlike the mainstream technology companies utilizing voice
recognition to interact with users, Kernel is currently
configured to interact with users via email, and a number of
POC workflows have been implemented in KNIME 3.3, high
level details of which are provided below.2

The first task we sought to make inroads with was getting
Kernel to summarize and analyze the data generated (typically
each week) by the main biochemical assay on a project. Most
projects will have a biochemical assay that serves as the
workhorse for the project and will often be the first measure of
activity of a newly synthesized compound on that project. As
such, most medicinal chemists will be most interested in the
output of that assay to see how the compounds they had made
have performed.
In Figure 1, there is an example of the main biochemical

assay summary email which tries to put together many of the

standard analyses a medicinal chemist would (or should) do, to
save them running more manual queries to achieve the same
result. This email appears in a project team member’s inbox
within an hour of the new data appearing in the database.
The first paragraph is a high level summary of what has been

tested in that run, including the project name, number of
compounds, the run date, and an assessment of diversity of the
structures assessed using an internal 2D structural fingerprint.
Following this, we have a link to an HTML page showing the
new structures that have been tested that week (Figure 2).
Here, the user can see the new activities using a single click
from the email, along with other calculated properties of
interest and efficiency metrics. Beyond the raw activity values,
most users would want to know how these new activities
compare to close analogues previously tested. To achieve this
we implemented each of the compound ID’s as clickable links
which display a number of matched molecular pairs (MMPs)
to the newly tested compounds, displayed in a similar HTML
format with the fold changes in activity and other properties
calculated.
Something else that Kernel does in the main assay summary

email is check potentially important things that users might not
always do due to the inconvenience of doing it (i.e., running a
number of database queries), and the low probability of it
being an issue. These include checking the performance of the
assay control compound and any repeated compounds. We
have had examples whereby the control compound had been
tested and found significantly different in activity to the
historical performance, Kernel highlighted this and repeats

Figure 1. Example of main biochemical assay summary email.
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were requested as a result. This is a good example of the
benefit of the virtual assistant concept as there is significant
time saving for the user, potential errors can be quickly flagged,
and consistent behavior can be applied across projects.
Going beyond just showing the data and checking assay

performance, we wanted to highlight which compounds are the
most interesting from that run of the assay, which may not
always be the ones that are the most potent. These should be
interesting to the recipient of the email but may also show
compounds that we can apply further computational
approaches to (e.g., de novo compound design, described in
more detail later in the manuscript), or they could be
automatically submitted to downstream assays. Kernel
currently tries to identify such compounds in two ways. One
is to use efficiency metrics such as the product of the measured
activity and the predicted human microsomal unbound
intrinsic clearance (hCLint,u) which can be thought of as a
measure of specific binding similar to a lipophilic ligand
efficiency (LLE).3 The other is to use a ligand based QSAR
model to compare predicted values to the measured ones.
These sorts of machine learning models are very good at
interpolation but much less so at extrapolation; therefore,
predicted values provide a good baseline as to what might be
expected to occur. Those compounds that show significant
difference to the predicted values (typically > ∼7-fold) may
have something interesting about them which is worth
exploring further or may be an error in the assay and warrant
repeat. Those falling within prediction, although they may be
potent with good properties, are likely to fall within the existing
SAR and may not be of significant interest. Details of the
performance of the model are included in the email using
statistics that are easily interpreted (e.g., median absolute
error), along with a link to a plot of predicted vs measured
pIC50 with each point able to be hovered over to reveal the
compound structure so outliers can be easily visualized. Future
work here will include automated binding mode prediction
which could provide insight into QSAR model disconnects
through the generation of new contacts with the receptor.

Finally, the identifiers of the newly tested molecules are
included as a list which can be pasted directly into our other
desktop tools for further custom analysis.
Alerting that an assay has been run, summarizing that data,

and providing basic analysis that could potentially be coupled
to pretty much every assay on a project is easily implemented
and can save people time. Beyond that would be the ability to
trigger additional computational approaches and deliver the
results directly to those who would be interested. One such
POC example we have implemented is the de novo design of
derivatives of the newly tested molecules from the workhorse
assay.
For active molecules identified by Kernel, we apply

numerous MMP transformations to create novel progeny
(e.g., atom perturbation or growing fragments at CH, NH, or
OH, typically 50−150k per single molecule input), all of which
are single point changes from the initially tested molecule
(although any de novo design method could be used here). We
restrict ourselves to molecules in the MMP space as this is
typically how medicinal chemists operate as it helps under-
stand the SAR. Currently we predict potency using an
automatically generated and updated ligand based QSAR
model,4,5 but other potency prediction approaches would be
possible.6 We also predict a number of the ADME end points7

of interest, and those molecules that are most highly ranked by
different criteria are then sent back to the original submitter of
the compound for review via a similar email to the assay
summary above.
The idea here is that ideas from the medicinal chemist are

seeded with the more exhaustive sampling capable by the
computer, and their additional insight adds value to the
computational prediction to overall achieve higher quality
output. Going forward for projects that are enabled with a
protein structure bound with a relevant ligand, we envisage
adding a structure-based assessment to the designed ligands
and highlight those predicted to fill the pocket more optimally
to drive potency, while balancing desired (predicted) proper-
ties.
As a pilot, we have deployed Kernel to four of our ongoing

internal discovery projects. The aim here was not necessarily to
make significant impact to the projects as what we have is an
early unoptimized prototype, but to get a handle on how this
change in paradigm could potentially impact medicinal
chemistry and learn from this. Whenever compound
predictions are sent to a chemist, the predictions and the
date are saved to enable later analysis. As of this writing, 63
compounds have been suggested to a chemist by Kernel and
later made by the same chemist (frequently not as a result of
the suggestion from Kernel). We also looked for compounds
that were predicted by Kernel but made by a different chemist
on the project. These cases most likely correspond to
independent compound design (i.e., the chemist came up
with the design idea on their own). In these cases, we can look
at the time between Kernel’s prediction and when the
compound was made independently to see what kind of
speedup could be possible if the chemist had seen the
prediction and selected those compounds from the much
larger number sent to them (typically ∼20-times more
compounds than those made). On average, Kernel predictions
were about 35 days (range of 4−72 days) ahead of the
chemist’s. This represents the possibility of accelerating the
progress of a discover project which could be a significant
savings in both time and money.

Figure 2. Example of newly tested structure activity data.
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Combining the two described scenarios with other computa-
tional tools and automated synthesis platforms at Lilly, in 2018
we were able to achieve a landmark moment of a fully
automated DMTA cycle (Figure 3). On a test project, Kernel

was able to identify that newly tested compounds had appeared
in the database; from those found active, derivatives were
designed as described above. The activity and properties of
those were then predicted using ligand-based QSAR models.
Those that met certain activity and property criteria, as well as
being a certain fingerprint distance from the existing SAR, were
then run through an internally developed automated retrosyn-
thesis tool (which can be found as part of a larger open source
release of internally developed cheminformatics methods:
https://github.com/EliLillyCo/LillyMol).8 Molecules that met
the criteria and could be made in one step using available
reagents were then submitted for synthesis at our automated
synthesis lab and made via the proposed route.9 Synthesized
examples were then submitted for test completing a full
DMTA cycle in the absence of any human intellectual input in
2018 for the first time at Lilly. Our implementation is still
suboptimal, and in this case the synthesized compounds did
not drive the project forward; however, as our ability to design
and assess molecules computationally improves over time, this
will likely only improve with future iterations. Achieving the
first example of this is a significant step toward our ultimate
goal of running this sort of approach alongside a medicinal
chemistry team, allowing novel ideas to be generated and move
the SAR in a different direction. This approach complements
the automated hit finding approach we published recently.10

Others have also moved to create automated medicinal
chemistry systems, such as the work from Stevan Djuric and
his team at AbbVie shared in publication and oral
presentation,11 as well as other microfluidic systems.12 These
systems typically have the users define the seeds for expansion
and the synthetic routes up front (some of which may be
limited to being compatible with flow technologies) and may

then iterate on compound designs. The system we define by
comparison can choose any seed for expansion and can
perform any chemistry that has been extracted from the
historical electronic lab notebook or patents, and performed in
batch mode, which is why we believe that there is significant
potential here. As more automated synthetic chemistry systems
appear,13 approaches such as this should become all the more
relevant.
We believe that this virtual assistant concept has significant

potential in changing the way the users receive computational
results and analysis. Presenting results directly to users, at the
right time, in an easily consumable format should increase
uptake of the results and increase the effectiveness of those
users. Beyond potency or ADME surrogate assays, examples of
other assays we could apply this approach to could include
compound stability assay, which for us is applied to all new
submissions, and those found unstable could be highlighted to
the original submitter. When new protein−ligand X-ray crystal
structures are generated, the structure could be compared to
what is known, and if novel the existing SAR could be docked
to that structure and compared to proposed binding modes in
other X-ray structures. The current interface via email will
likely evolve too; we could imagine generating some sort of
web interface providing a dashboard of the information, rather
than the text heavy email. We believe there is lots of potential
for novel automated approaches within this paradigm.
Overall, we describe a new concept of how to deliver

information and results of computational approaches to
scientists within a medicinal chemistry environment. The
approach is generally applicable to most assays, the key being
understanding what information the user would most like to
see once alerted the new data is available. Tracking these assays
can also then provide a trigger for subsequent more complex
computational approaches and possibly automated down-
stream assay submissions. We describe our prototype summary
of the results from a project workhorse biochemical assay,
followed by de novo design of derivatives as an early POC. The
concept is to automate the approaches and deliver the results
directly to those that would want to see them. Finally, we
highlight that we have achieved the first example at Lilly of a
fully automated DMTA cycle and that this, along with other
automated approaches, has the potential to complement and
enhance medicinal chemistry at a pharmaceutical company
such as Lilly. The POC we describe here has been well
received internally (gathered through discussion with some
users), and we are currently in the process of developing more
optimized systems which are scalable across projects at Lilly, as
well as coupling these systems to more assays and developing
new approaches that may work well with the concept. We hope
that others will be inspired by the concept we have shared to
create similar systems within their own organizations.
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