
biology

Article

Plasticity in Standard and Maximum Aerobic
Metabolic Rates in Two Populations of an Estuarine
Dependent Teleost, Spotted Seatrout
(Cynoscion nebulosus)

Jingwei Song * , Richard W. Brill and Jan R. McDowell

Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA;
rbrill@vims.edu (R.W.B.); mcdowell@vims.edu (J.R.M.)
* Correspondence: jsong@vims.edu

Received: 9 April 2019; Accepted: 11 June 2019; Published: 14 June 2019
����������
�������

Abstract: We studied the effects of metabolic cold adaptation (MCA) in two populations of a
eurythermal species, spotted seatrout (Cynoscion nebulosus) along the U.S. East Coast. Fish were
captured from their natural environment and acclimated at control temperatures 15 ◦C or 20 ◦C.
Their oxygen consumption rates, a proxy for metabolic rates, were measured using intermittent flow
respirometry during acute temperature decrease or increase (2.5 ◦C per hour). Mass-specific standard
metabolic rates (SMR) were higher in fish from the northern population across an ecologically relevant
temperature gradient (5 ◦C to 30 ◦C). SMR were up to 37% higher in the northern population at
25 ◦C and maximum metabolic rates (MMR) were up to 20% higher at 20 ◦C. We found evidence
of active metabolic compensation in the southern population from 5 ◦C to 15 ◦C (Q10 < 2), but not
in the northern population. Taken together, our results indicate differences in metabolic plasticity
between the northern and southern populations of spotted seatrout and provide a mechanistic basis
for predicting population-specific responses to climate change.
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1. Introduction

Temperature has long been known to have a profound influence on the physiology and metabolic
rates of fishes [1,2]. It dictates the rate of biochemical reactions at the cellular level and leads to
increased metabolic rates in warm water [3,4]. The metabolic cold adaptation hypothesis (MCA) was
first proposed over 100 years ago and has since been a controversial topic in fish physiology [5–8].
MCA predicts that species from colder environments (higher latitudes or altitudes) will have elevated
standard metabolic rates (SMR, minimum metabolic rates needed to sustain life) compared to those
from warmer climates. A meta-analysis approach found support for MCA in that fishes with ranges
extending to higher latitudes have higher SMR, higher rates of mitochondrial respiration, and higher
enzyme activity than counterparts living at lower latitudes [9]. Other studies, including those by
Holeton (1974) and Steffensen (2002), argued that MCA is an experimental artifact and there was no
evidence of elevated SMR in Arctic or Antarctic fishes when comparisons were made to similar species
from temperate regions [7,8]. Within the Fundulus notatus species group (F. notatus, F. olivaceus, and
F. euryzonus), evidence of MCA was found at the intraspecific level, but not at the interspecific level [10].

Climate change is predicted to bring disproportionately large impacts to coastal estuaries due to
their shallow depths and proximity to human activities [11]. The metabolic physiology of eurythermal
species living in these environments is much less studied compared to other economically important
fishes such as cod and salmon. Anthropogenic climate change is causing increasing average water
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temperatures and larger temperature variation, which warrants a better understanding of the metabolic
capacities and limits of estuarine fishes [12]. In addition, most studies of metabolic adaptation of fishes
have treated species as a single homogeneous unit and ignored intraspecific variation in phenotypic
plasticity [13–15]. This hinders our ability to predict a population-specific response to acute thermal
change [16–18].

Spotted seatrout, Cynoscion nebulosus (Cuvier), is a coastal species distributed from the Chesapeake
Bay to the Gulf of Mexico [19]. With such a wide coastal distribution, it is possible that spotted seatrout
populations inhabiting heterogeneous thermal environments have developed metabolic plasticity.
At the northern range limit, spotted seatrout encounter comparatively low winter water temperatures,
while the maximum water temperatures in summer are like those encountered in more southern
regions (Figure 1). Periodic winter mortalities are most severe at high latitudes for these fishes and
act as a strong selective pressure on cold tolerance [20]. Tagging studies have shown that dispersal
distances of spotted seatrout are generally less than 50 km in the Gulf of Mexico and the southeastern
coast of the U.S. [21–25]. Near the northern latitudinal limit of spotted seatrout in Virginia and North
Carolina (hereafter the “northern population”), at least 25% of tagged fish were found to migrate
over 100 km, presumably in response to changing water temperature [26]. Studies have also found
differences in life history characteristics as compared to fish sampled farther south. Spotted seatrout
sampled from Chesapeake Bay grow faster and mature at a larger size than their counterparts from
South Carolina and Florida [27–29]. In addition, genetic studies indicate that the northern population
is genetically distinct from spotted seatrout from regions south of the New River, North Carolina on
the U.S. Atlantic coast (hereafter the “southern population”) [30–32]. This north–south differentiation
provides an opportunity for intraspecific comparison of metabolic plasticity within a widely-distributed
estuarine species.
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A better understanding in the mechanistic basis of the observed differences between the two
spotted seatrout populations is critical for predicting future response under climate change. We were
interested in whether plasticity in metabolic phenotypes has arisen in populations of spotted seatrout,
and whether the pattern is consistent with MCA. Our null hypotheses were:

1. There are no significant differences in metabolic phenotypes across a range of ecologically-relevant
temperatures between the two populations as measured by SMR, MMR, factorial aerobic scope
(FAS) or absolute aerobic scope (AAS) (defined as MMR/SMR and MMR-SMR, respectively);
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2. There is no significant difference in thermal sensitivity of SMR (quantified as Q10 values) between
the two populations across a range of ecologically relevant temperatures.

2. Materials and Methods

2.1. Animal Collection and Husbandry

All animal care and use protocols were approved by The College of William and Mary’s
Institutional Animal Care and Use Committee (IACUC-2017-09-25-12356-jrmcdo). Spotted seatrout
(Cynoscion nebulosus) were captured by hook and line from two locations approximately 800 km apart:
(1) Corrotoman River, Virginia (n = 20, VA, latitude 37.732985, longitude −76.408968) and (2) areas
near Charleston, South Carolina (n = 11, SC, latitude 32.753055, longitude −79.896670, Table 1). Both
populations were sampled in November 2017, however, some SC fish died after transportation from
SC to VA. The Southern population (SC) was sampled again (n = 6) in April 2017. Sampling dates for
each fish in each site, weight, time spent in acclimation, and the test in which it was used are included
in Table S1. Fish from each sampling location were acclimated in separate flow-through 10,000 L
circular aquaria. Water temperature was maintained at 15 ± 1 ◦C and 20 ± 1 ◦C using heat exchangers
(subsequently referred to as cold-stress experiments and heat-stress experiments, respectively). Salinity
from the York River ranged from 15–22 ppt over the acclimation periods. Water quality including pH,
ammonia, nitrate, and nitrite levels were checked daily using a commercial kit (Master Test Kits, API,
Chalfont, PA, USA). The cold-stress experiments were conducted between January and May 2018 and
the heat-stress experiments were conducted between July and August 2018. All fish were fed frozen
and thawed bay anchovies (Anchoa mitchilli) every 2 days to satiation. Prior to an experiment, food
was withheld for 48 h to ensure complete gastric evacuation [33].

Table 1. Number and weight of spotted seatrout used in the study. M = mean (and range) body mass
in grams.

Sampling Location Cold Stress Heat Stress

Corrotoman River, Virginia n = 10
M = 192 g (140–252 g)

n = 10
M = 238 g (122–439 g)

Charleston, South Carolina n = 11
M = 467 g (235–838)

n = 5
M = 454 g (368–508)

2.2. Experimental Procedures

We used automated intermittent-flow respirometry to determine oxygen consumption rates (MO2,
mg O2 kg−1 h−1) as described elsewhere [34,35]. This procedure is considered the best practice for
measuring MO2 in fishes as it records MO2 with high temporal resolution, without the constant
presence of a researcher [36,37].

At the start of each trial, fish were gently netted from the holding tanks and placed into either a 4 L
or 7 L cylindrical respirometer (Loligo System, Viborg, Denmark) depending on the total length of the
fish. The partial pressure of oxygen (PO2, mm Hg) in the respirometers was continuously measured
with a fiber-optic oxygen meter (model FSO2-4, PyroScience, Aachen, Germany). The sensors were
calibrated using two-point methods according to the manufacturer’s handbook prior to experiments
and mounted in the recirculation loop of the respirometer. Each ṀO2 measurement was executed
using a 180 s flush, 60 s wait and 180–1200 s measurement period (5 ◦C, 1200 s; 10 ◦C, 600 s; 15 ◦C,
300 s; 20 ◦C, 240 s; 25 ◦C, 240 s; 30 ◦C, 180 s). This is because fish metabolic rate correlates positively
with water temperature. Longer measurement periods were needed at lower temperatures for fish to
consume a similar amount of oxygen at higher temperatures. The operation of the system and data
recording was done via the AquaResp software (available at: www.aquaresp.com).

Individual fish in the cold-stress group were exposed to three water temperatures: 15 ◦C (20 h),
10 ◦C (5 h) and 5 ◦C (18 h) in each experiment. Experiments on individuals from the heat-stress

www.aquaresp.com
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group were also exposed to three water temperatures: 20 ◦C (20 h), 25 ◦C (5 h) and 30 ◦C (18 h). The
acute decreases or increases between temperature steps were completed within 2 h. The range of
temperatures is representative of the temperature limits of the estuarine environment spotted seatrout
occupy. Because of the limited availability of specimens from SC, the last six fish were returned
to the holding tank after the cold-stress experiment and re-acclimated for at least 30 days at 20 ◦C
before the heat-stress experiments (all fish survived the acute temperature changes, except for a single
fish from SC, which died during a heat stress experiment due to equipment failure). Between trials,
respirometers and connecting tubing were thoroughly cleaned with bleach and rinsed with a large
amount of fresh water. Bacterial background respiration was measured after fish were removed at the
end of cold-stress or heat-stress experiments (5 ◦C, 30 ◦C, respectively). Background respiration values
were negligible (< 1% of the rate of oxygen decline recorded when fish were present) during both the
cold-stress and heat-stress experiments and were subsequently ignored.

MO2 for a given measurement period was calculated from the time course of oxygen partial
pressure (PO2) change: MO2 = V∆PO2∆t−1β, where V is the respirometer volume (L) corrected for
fish volume (assuming 1 kg = 1 L), ∆PO2∆t−1 is the slope of the linear regression (mm Hg·h−1), and β

is the oxygen solubility coefficient (mg O2 mm Hg−1
·L−1) [38]. Slopes with r2 < 0.95 were excluded

from analyses.

2.3. Correcting for Body Weight

To compare the metabolic rates between different fish, all values were normalized to a standard
body weight (the mean body weight of all fish used in the experiments, which equaled 0.34 kg).
The following formula was used:

MO2,std = MO2,obs(
BW
0.34

)
(1−b)

where MO2,std is the mass-specific oxygen consumption rate (mg O2 kg−1 h−1), MO2,obs is the observed
oxygen consumption rate (mg O2 kg−1 h−1), and BW is the actual weight (kg) of the fish. The range of
body weight of experimental animals was too small (less than an order of magnitude) to determine the
mass exponent b [39]. Therefore, we used b = 0.948, which is the average value using all available data
on teleost to correct for SMR [40]. MMR was corrected using the same formula but with b = 0.937 [40].

2.4. Data Analysis and Statistical Procedures

We defined SMR as the minimum metabolic rate of a post-absorptive fish at a given temperature.
At the starting temperatures, 15 ◦C and 20 ◦C, MO2 was initially elevated because of handling stress
and gradually declined to SMR (Figure 2). We used the mclust package [41] implemented in R [42],
which fits a mixture of normal distributions to the data [41]. For each fish, the mean of the lowest
normal distribution was taken as the SMR [43].
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Figure 2. Time course of metabolic rate change in spotted seatrout under two sets of experimental
conditions. Empty circles: heat stress; empty triangles: cold stress. Each dot represents the oxygen
consumption rate from one respirometry cycle. Vertical dotted lines separate different temperatures.
Within each treatment, from left to right: 20 ◦C, 25 ◦C, 30 ◦C (heat stress); 15 ◦C, 10 ◦C, 5 ◦C (cold stress).

MMR was defined as the single highest MO2 value at 15 ◦C and 20 ◦C for individual fish.
We calculated two measures of aerobic scope: absolute aerobic scope (AAS) and factorial aerobic scope
(FAS). The former is the difference between MMR and SMR, and the latter is calculated as the ratio of
MMR/SMR [44]. We quantified thermal sensitivity by Q10 values (i.e., the factor by which the rate of a
biochemical process changes over a 10 ◦C change in temperature) using the following formula [45]:

Q10 =

(
R2

R1

)( 10
t2−t1

)

where R1 and R2 are the SMR at temperature t1 and t2 (t1 + 10 ◦C), respectively.
We used the nlme package [46] implemented in R [42] to perform a linear mixed effects analysis

of the relationship between SMR and origin of the fish. As fixed effects, we entered fish origin,
temperature and their interaction term into the model. We used individual fish as a random effect.
p-values were obtained by likelihood ratio tests of the full model with the effect in question against the
model without the effect in question. Two-tailed Student’s t-test was used to compare means between
groups. A significance level of α = 0.05 was used for all statistical tests.

3. Results

3.1. SMR

SMR in both VA and SC spotted seatrout increased exponentially from 5 ◦C to 30 ◦C. SMR in SC
ranged from 24 to 233 mg O2 kg−1

·h−1; VA ranged from 28 to 349 mg O2 kg−1
·h−1. Mean SMR between

the northern and southern populations differed significantly at 5 ◦C (t19 = 2.1), 10 ◦C (t19 = 4.25), 15 ◦C
(t19 = 4.53), 25 ◦C (t13 = 2.42) but not at 20 ◦C (t13 = 1.41) or 30 ◦C (t13 = 1.90) (Figure 3). Developmental
plasticity and seasonality could cause SMR to differ between batches of fishes sampled at different
times. To test if this effect was detectable in SC fish sampled at different time periods, SMR was plotted
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separately for SC fish sampled from the second time period. No significant differences were detected
(Figure S1), therefore data from two groups of SC were pooled in subsequent analyses.

Biology 2019, 8, x 6 of 14 

 

plasticity and seasonality could cause SMR to differ between batches of fishes sampled at different 
times. To test if this effect was detectable in SC fish sampled at different time periods, SMR was 
plotted separately for SC fish sampled from the second time period. No significant differences were 
detected (Figure S1), therefore data from two groups of SC were pooled in subsequent analyses. 

 

 
Figure 3. SMR of spotted seatrout from two genetically distinct populations measured at six discrete 
temperatures. SC = southern population, VA = northern population. (a) cold stress; (b) heat stress. 
Asterisks indicate significant differences between groups (p ≤ 0.05, two tailed Student’s t-test). 

In cold stress experiments, the origin of fish had a significant effect on SMR (χ2 (1) = 8.97, p = 
0.0027), as did temperature (χ2 (2) = 104.06, p < 0.0001). The fish–temperature interaction was also 
significant (χ2 (2) = 20.14, p < 0.001). Contrasts revealed that: (1) the effect of temperature on SMR was 
significantly larger in individuals from the northern population versus individuals from the 
southern population (5 °C to 10 °C: b = −6.65, t38 = −4.121, p < 0.001; 10 °C to 15 °C: b = −6.59, t38 = −4.17, 
p < 0.001). 

Figure 3. SMR of spotted seatrout from two genetically distinct populations measured at six discrete
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Asterisks indicate significant differences between groups (p ≤ 0.05, two tailed Student’s t-test).

In cold stress experiments, the origin of fish had a significant effect on SMR (χ2 (1) = 8.97,
p = 0.0027), as did temperature (χ2 (2) = 104.06, p < 0.0001). The fish–temperature interaction was
also significant (χ2 (2) = 20.14, p < 0.001). Contrasts revealed that: (1) the effect of temperature on
SMR was significantly larger in individuals from the northern population versus individuals from
the southern population (5 ◦C to 10 ◦C: b = −6.65, t38 = −4.121, p < 0.001; 10 ◦C to 15 ◦C: b = −6.59,
t38 = −4.17, p < 0.001).
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In heat stress experiments, the origin of fish had no significant effect on SMR (χ2 (1) = 2.48,
p = 0.12), perhaps due to a small sample size in the SC group. Temperature had a significant effect on
SMR (χ2 (2) = 69, p < 0.0001). Origin–temperature interaction did not significantly improve the fit of
the model (χ2 (2) = 3.54, p = 0.17). Predicted SMR in spotted seatrout originating from the northern
population was up to 37% higher than SMR in spotted seatrout from the southern population at 25 ◦C
(185.6 vs. 135.1 mg O2 kg−1

·h−1, respectively). The smallest difference was at 5 ◦C, with fish from
the northern population showing an approximately 19% higher SMR than fish from the southern
population (34 vs. 28.6 mg O2 kg−1

·h−1, respectively) (Table 2).

Table 2. Predicted SMR from linear mixed effect model. SC = southern population, VA = northern
population. Fit = predicted SMR, sd = standard deviation, se = standard error, ci = 95%
confidence interval.

Origin Temp.
(◦C) N fit sd se ci

SC 5 11 28.6 5.7 1.7 3.8
SC 10 11 33.1 4.5 1.4 3.1
SC 15 11 53.8 7.1 2.1 4.8
VA 5 10 34.0 5.7 1.8 4.1
VA 10 10 45.2 7.8 2.5 5.6
VA 15 10 72.5 10.0 3.2 7.2
SC 20 5 86.6 13.4 6.0 16.6
SC 25 5 135.1 24.3 10.9 30.1
SC 30 5 231.7 29.4 13.1 36.5
VA 20 10 100.2 10.7 3.4 7.7
VA 25 10 185.6 38.3 12.1 27.4
VA 30 10 291.7 59.4 18.8 42.5

3.2. Maximum Metabolic Rates

Mean MMR between northern and southern spotted seatrout was not significantly different at
15 ◦C (t19 = 1.38, p = 0.18), but was significantly different at 20 ◦C (t14 = 3.07, p = 0.008) (Figure 4).
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3.3. Aerobic Scope

Mean AAS of fish from the northern population was significantly higher at 20 ◦C (t14 = 2.62,
p = 0.01) but not at 15 ◦C (t19 = 0.93, p = 0.366). For FAS, the differences were reversed. Mean FAS of
fish from the southern population was significantly higher at 15 ◦C (t19 = 3.93, p < 0.001) than mean
FAS of fish from the northern population, but not at 20 ◦C (t14 = 0.87, p = 0.4) (Figure 5).

Biology 2019, 8, x 8 of 14 

 

3.3. Aerobic Scope 

Mean AAS of fish from the northern population was significantly higher at 20 °C (t14 = 2.62, p = 
0.01) but not at 15 °C (t19 = 0.93, p = 0.366). For FAS, the differences were reversed. Mean FAS of fish 
from the southern population was significantly higher at 15 °C (t19 = 3.93, p < 0.001) than mean FAS of 
fish from the northern population, but not at 20 °C (t14 = 0.87, p = 0.4) (Figure 5). 

 
Figure 5. Absolute aerobic scope (AAS, a) and factorial aerobic scope (FAS, b) between two northern 
and southern spotted seatrout populations, at 15 °C and 20 °C. SC = southern population, VA = 
northern population. Asterisks indicate significant differences between groups (p ≤ 0.05, two tailed 
Student’s t-test). 

  

Figure 5. Absolute aerobic scope (AAS, a) and factorial aerobic scope (FAS, b) between two
northern and southern spotted seatrout populations, at 15 ◦C and 20 ◦C. SC = southern population,
VA = northern population. Asterisks indicate significant differences between groups (p ≤ 0.05, two
tailed Student’s t-test).
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3.4. Q10

The Q10 ranged between 1.4 and 3.4 among SC fish and 1.9 to 2.4 among VA fish. There were no
significant differences in Q10 between the two populations at temperatures between 5 ◦C and 15 ◦C,
(t18 = 1.2, p = 0.32). There was, however, a significant difference in Q10 between the two populations
between 20 ◦C and 30 ◦C (t13 = 3.77, p = 0.0025) (Figure 6).
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4. Discussion

Estuaries are characterized by large daily and seasonal temperature fluctuations [47] and we
argue that spotted seatrout have evolved metabolic plasticity to cope with the challenge of living in
these dynamic environments. The degree of physiological plasticity can, however, also vary among
populations inhabiting heterogeneous environments [48,49]. Using cold- and heat-stress experiments,
we showed that spotted seatrout can maintain a broad range of metabolic rates from 5 ◦C to 30 ◦C.
In addition, we found that the reaction norms of metabolic responses to acute temperature changes
are population-specific, with northern fish having higher SMR than southern fish, consistent with the
predictions of MCA [50]. Similar patterns have been observed in another estuarine-dependent species,
the common killifish (Fundulus heteroclitus); fish sampled from a northern population (New Hampshire,
USA) were found to have a higher metabolic rate than fish sampled from a southern population
(Georgia, USA) [51]. Our sampling locations were in closer proximity to each other as compared to the
killifish study (800 km vs. 1800 km). Thus, the observed differences in SMR between spotted seatrout
sampled from different thermal regimes provide evidence that intraspecific metabolic plasticity can
take place at a spatial scale of a few hundred kilometers and suggest that temperature may play an
important role in the maintenance of genetic breaks. It should be noted that our sample size in the SC
heat stress group was relatively low (n = 5) due to difficulty in obtaining live specimens. This may
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have had an effect on our ability to detect statistical significance in SMR between SC and VA at 20
and 30 ◦C (Figure 3). Nevertheless, there were significant differences between SC and VA in the heat
stress group based on MMR, AAS and Q10 despite a small sample size, consistent with differences in
metabolic phenotypes between northern and southern spotted seatrout.

SMR appear to approach a threshold at the lowest experimental temperature, 5 ◦C, in both
spotted seatrout populations and this threshold likely limits overwinter survival of this species at its
northern distributional limit. This finding is consistent with the results of both telemetry studies and
previous cold tolerance experiments. In North Carolina, all winter mortality events of telemetered
spotted seatrout in their natural environment occurred in water temperatures below 7 ◦C, and a
precipitous increase in natural mortality occurred at water temperatures below ~ 4 ◦C [52]. Cold
tolerance experiments using fish from both North Carolina and South Carolina show that when fish
are exposed to water temperatures below ~4 ◦C, survival is short-term and physiological impairments
due to acute cold stress are largely irreversible [53,54].

Organisms with a larger AS at a given temperature are considered to be more capable of performing
energetically demanding tasks such as growth [55–57]. Previous studies found that juvenile spotted
seatrout in Chesapeake Bay reach larger sizes at maturity than fish from South Carolina, despite a
growing season in Chesapeake Bay that is about a month shorter [27,29,58]. We hypothesized that a
larger AS of VA spotted seatrout might compensate for a shorter growing season. AS is most commonly
represented as AAS in fishes, but FAS is also used (albeit less frequently) [44,59,60]. AAS provides an
exact value for metabolic rates above SMR while FAS accounts for the fact that different individuals
require proportionally different rates of oxygen delivery to the tissues to perform a given physiological
task [44]. Here we report both measures of AS, but base our interpretation on AAS. Our data show
that the standard deviation in percentage of the mean value is lower for MMR than SMR and AAS has
been found to be more robust when the variability in SMR is larger than that of MMR [44] (Table S2).
Our experiments obtained MMR at 15 ◦C and 20 ◦C and therefore AAS at these two temperatures.
Both temperatures are in the middle of the wide range of temperatures that spotted seatrout tolerates
and representative of temperatures in their natural habitats [61]. AAS was significantly larger in VA
than SC fish at 20 ◦C. Thus, the faster growth of juvenile spotted seatrout in Chesapeake Bay is likely
achieved when water temperatures are ~ 20 ◦C. It is unclear if AAS is also larger in temperatures over
20 ◦C or between 15 ◦C and 20 ◦C.

The temperature sensitivity (i.e., Q10) of metabolic rates differs among species and even populations
and reflects physiological adaptations [62]. Q10 values in this study ranged from 1.4 to 3.4. This
is in general agreement with values commonly reported in teleost fishes across a broad range of
temperatures (2–3) [63]. The finding that some southern spotted seatrout show mean Q10 < 2 at 5–15 ◦C
suggests active metabolic compensation, while there is no evidence of such compensation in the
northern population (mean Q10 > 2). A previous study comparing seasonal metabolic rates of spotted
seatrout with its congener sand seatrout (Cynoscion arenarius) found that the former shows a greater
degree of metabolic compensation (i.e., lower Q10 values) from 15 ◦C to 30 ◦C [64]. Spotted seatrout are
year-round residents in estuaries, whereas sand seatrout migrate offshore in the winter months [65].
The authors concluded that the lower Q10 value observed in spotted seatrout allow them to remain
active in the estuarine environment during the warmest months in Texas estuaries [64]. Analogous to
the congenic comparison, Q10 is significantly lower in VA than SC spotted seatrout between 20 ◦C and
30 ◦C. This may allow VA fish to survive similar maximum water temperature in the summer, despite
the fact that higher SMR might be detrimental at higher temperatures.

Whether the observed differences in metabolic phenotypes have a genetic basis in spotted seatrout
is unknown. Future studies should use a common garden experimental design in which metabolic rates
are measured over multiple generations to rule out effects from ontogeny or an individual’s thermal
history [66,67]. Although spotted seatrout can reach sexual maturity relatively quickly compared
to other sciaenid fishes (age 1), such experiments would still require multiple years to complete.
Alternatively, genome scan approaches can be used to look for functional loci that show unusually
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large differentiation between populations, which can serve as indirect evidence for the genetic basis of
whole-organism physiological differences [68,69]. For example, a study combined physiological tests
and genomic analyses to examine thermal adaptation between conspecific populations of redband
trout [70]. Populations from a desert climate (hot) showed improved cardiorespiratory capacity
at high test temperatures compared to a population from a montane climate (cool). In addition,
genomic and transcriptomic analyses revealed candidate genes that showed differential expressions
between populations, providing additional evidence that the observed physiological differences had a
heritable component.

Our results support the MCA hypothesis at the intraspecific level in spotted seatrout. Organisms
with greater plasticity will likely be more resilient to an accelerated rate of environmental changes,
especially temperatures [71,72]. There are increasing efforts to predict future range shifts in fishes
based on physiological abilities and tolerances [73,74]. Failure to account for physiological plasticity
among local populations could over- or underestimate the potential for migration and compromise
the utility of these species distribution models. We contend, therefore, that our results should be
explicitly incorporated into projects aiming at predicting range shifts of spotted seatrout in response to
climate change.

5. Conclusions

The results of this study are consistent with the predictions of the MCA hypothesis. Northern
populations of spotted seatrout were found to have greater metabolic plasticity than its southern
counterparts when compared at ecologically relevant water temperatures. This finding can be explicitly
incorporated into modeling framework to predict range shifts of spotted seatrout in response to
climate change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/8/2/46/s1,
Figure S1: SMR of spotted seatrout sampled from SC at two different time periods: SC 1 (n = 5, sampled Nov 2017)
and SC 2 (n = 6, sampled Mar 2018). Table S1: Details on the spotted seatrout specimens used in this study. Table
S2: Summary of mass-specific SMR and MMR for both SC and VA spotted seatrout populations.
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