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Abstract: Hepatitis C virus (HCV) infection is commonly attributed as a major cause of chronic
hepatotropic diseases, such as, steatosis, cirrhosis and hepatocellular carcinoma. As HCV infects only
humans and primates, its narrow host tropism hampers in vivo studies of HCV-mammalian host
interactions and the development of effective therapeutics and vaccines. In this context, we will focus
our discussion on humanized mice in HCV research. Here, these humanized mice are defined as
animal models that encompass either only human hepatocytes or both human liver and immune cells.
Aspects related to immunopathogenesis, anti-viral interventions, drug testing and perspectives of
these models for future HCV research will be discussed.

Keywords: humanized mice; hepatitis C virus; liver; hepatotropic disease; steatosis; cirrhosis;
hepatocellular carcinoma

1. Introduction

First identified in 1989, hepatitis C virus (HCV) is an enveloped, positive-sense, single-stranded
ribonucleic acid (RNA) virus belonging to the genus Hepacivirus of family Flaviviridae [1,2]. It is
hepatotropic and a leading cause of liver disease including acute hepatitis, chronic hepatitis, cirrhosis
and hepatocellular carcinoma. The global prevalence of HCV infection is estimated at 3%, with 170
million chronically infected individuals [3–5]. Infection is transmitted through blood and most
frequently occurs by perinatal transmission, unsafe invasive healthcare procedures and improper
injection practices [6,7].

To date, there are 7 major HCV genotypes (1–7) [8]. Despite their different geographical
distributions, there is about 30% heterogeneity in the viral genomic sequence between each
genotype [9,10]. For example, genotype 4 is found in Egypt, genotype 5 in South Africa, genotype
7 in Democratic Republic of Congo (DRC) and genotypes 1a, 1b, 2 and 3 within United States of
America [9,11]. On the other hand, having one of the highest global incidences of HCV, the predominant
genotypes in Asia are genotypes 1 (Singapore, Indonesia and Philippines), 3 (Malaysia and Thailand)
and 6 (Vietnam, Myanmar and Laos) [12].

A spectrum of in vitro and in vivo models including; cell culture, tree shrew, zebrafish, chimpanzee
and viral protein transgenic mouse models have been used to study HCV [4]. Even though these
models have advanced parts of HCV research, the inability to fully recapitulate relevant clinical features
as observed in human patients, create a need for improved animal models to enable the effective study
of HCV immunopathogenesis and evaluation of new therapeutics and prophylactic vaccines [13].
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Hepatitis C virus exhibits a narrow host tropism, infecting the hepatocytes of a limited range
of species, particularly human and chimpanzee [14,15]. Being genetically similar to humans,
the chimpanzee has been instrumental in the study of HCV infection. Its contributions to research
include the identification of HCV, understanding HCV immunopathogenesis, validation of molecular
tools for drug discovery and evaluation of drug safety/efficacy [16]. The accumulation of scientific
discoveries, has translated into several Food and Drug Administration (FDA)-approved antivirals [17].
While the chimpanzee models have provided valuable insights to HCV research, the use of these
models is limited due to the lack of human cells/immune system, ethics and economic reasons [16].

Existing limitations and the need to further our understanding of HCV viral immunopathogenesis
and treatments; have led scientists to establish HCV infected humanized mouse models [18–21]. In this
context, humanized mice are defined as mice engrafted with only human hepatocytes or with human
immune system and hepatocytes. These small animal models allow in vivo HCV infection as per
clinical settings, therefore enabling the analysis of human-specific host immune responses [18–21].
In this review, we provide an overview of the currently available humanized mouse models that have
proven valuable for the study of HCV and discuss their main benefits and weaknesses.

2. Life Cycle of HCV

The HCV life cycle is only partially understood as there is a complex network of cell surface
molecules involved in mediating viral entry, hence making it challenging to establish a reliable in vitro
model of replication [22]. It has been shown that there are seven steps to the lifecycle of HCV, namely;
attachment, entry, uncoating, translation, replication, assembly and maturation. Viral particles of HCV
circulate the blood either as free particles or are surrounded by low-density lipoproteins from the host.
These HCV virions then enter the cells via clathrin-mediated endocytosis by sequentially binding
various receptor molecules of the target cell membrane [22–24].

Low pH of the endosome triggers fusion of cellular and viral membranes, in turn causing
the capsid to be disorganized. Upon disruption of the viral capsid in the endocytic compartment,
single-stranded RNA genome is uncoated and released into the cytoplasm. Following this, the RNA
genome is translated at the rough endoplasmic reticulum (ER) to form a single polyprotein precursor
which is cleaved by cellular and viral proteases into single proteins. Products from this process include,
structural core and envelope glycoproteins E1 and E2; non-structural proteins important for viral
assembly and release, p7 viroporin and non-structural protein 2 (NS2); protease complex, NS3 and
NS4A; membrane-associated protein which mediates interactions between virus and host, NS4B;
Zinc-binding and proline-rich hydrophilic phosphoprotein essential for replication of HCV RNA,
NS5A and a RNA polymerase, NS5B [22–24].

Through a minus-strand replicative intermediate, an array of host factors and non-structural
proteins form a replication complex which makes multiple copies of HCV RNA genome.
Virions undergo maturation and are enveloped by endogenous lipoproteins as they are being assembled
in an ER-derived compartment and finally released through exocytosis via a Golgi-dependent secretory
pathway or transmitted to other cells by a cell-free mechanism [22–24].

Among the most frequently utilized methods to study in vitro replication of HCV, cell culture HCV
(HCVcc) and HCV trans-complemented particles (HCVTCP) are most widely applied. Application of
these cell lines has not only allowed the identification of HCV entry factors but also established the
virion structure of HCV, determined its biochemical properties and evaluated relevant therapeutics.
However, all in vitro methods use Huh-7 cells. Even though these cells are permissive to HCV replication,
it has different mechanisms, locations of HCV receptors and absent polarity as compared to primary
hepatocytes [22–24]. As a result, the life cycle of HCV is not accurately reproduced in this model,
hence making humanized mice an attractive platform to further understand the life cycle of HCV.



Cells 2019, 8, 604 3 of 27

3. Immunopathogenesis of HCV

Once hepatocytes are infected with HCV, the immune system is activated to clear the virus [25,26].
To do this, a cascade of immunological events is triggered, dendritic cells (DC), hepatic stellate cells
and Kupffer cells secrete cytokines (MIP-1α, IL-12, IL-15 and IL-18) to recruit NK cells, which produce
IFNγ in the liver [27,28]. Type I and III interferons produced, then activates sinusoidal endothelial
cells to secrete chemokines (CXCL10, MIG), which attracts T cells for viral clearance [29].

However, the highly mutable HCV is capable of evading host immune system to develop chronic
infection. It achieves this through a number of ways, first via the disruption of DCs. It has been shown
that HCV can increase levels of indoleamine-2, 3, -deoxygenase to dysregulate DC maturation and
antigen-presenting functions [30]. Induce plasmacytoid dendritic cell (pDC) apoptosis and disrupt
proteasomal subunits of DC to affect their phagocytic functions [31]. Unresponsiveness to chemokine
CCL21 also impairs DC migration to lymphoid tissues and downregulates HCV-sensing toll-like
receptors (TLRs) as well as critical adaptor molecules (TRIF, TRAF6) [32]. Impaired DC function, early in
HCV infection results in low levels of NK cell maturation and an immunosuppressive regulatory T-cell
phenotype due to defective priming of CD4+ and CD8+ T cells [33–35].

Second, even though it has been shown that there is no difference in the cytotoxicity of natural
killer (NK) cells between groups of individuals including HCV infected, recovered patients and healthy
donors [36–39]. Researchers have demonstrated that NK cells may be inhibited by ways including
but not limited to, reduction in NK cell expression of microRNA-155, which upregulates inhibitory
receptor Tim-3; disrupted NK cell activation receptor expression and core-induced stabilization of
human leukocyte antigen E (HLA-E) [36–41].

Third, assisting HCV in evading the immune system also include CD56+ natural killer T cells
(NKT), which are found to be at low levels in acute HCV infection [42]. Additionally, in chronic
infection, naïve antigen-specific CD8+ T cells have been shown to be primed by NKT cells to produce
an immunosuppressive environment, further enabling HCV to evade the immune system [43].

Lastly, early adaptive immune responses are crucial in determining the acute or chronic outcome
of HCV infection. About 30% of infected individuals are able to eliminate virus-infected cells via
strong and sustained responses by CD8+ T cells and CD4+ T cells [44–48]. A defined role for B cells in
HCV infection has not been dissected and current results are controversial [49]. In chronic infection,
the inability of T cells to control HCV infection could be due to a range of reasons, such as, defective
priming of T-cells by DC, abnormal T cell priming by intrahepatic antigen-presenting cells, T cell anergy
and high expression levels of viral antigens in hepatocytes that causes elevated levels of regulatory T
cell (Treg) subsets, which in turn creates an immunosuppressive immune environment [28,50–52].

4. The Role of HCV in the Progression of Liver-Associated Diseases

In acute hepatitis infection, components within the extracellular matrix, including glycoproteins
and proteoglycans are synthesized in a tridimensional network to limit inflammatory reactions during
the early phases of infection [53]. However, when infected individuals are unable to clear the virus,
chronic HCV infection occurs. During this state, activated hepatic stellate cells acquire a myofibroblastic
phenotype which allows it to attract leukocytes, proliferate and produce extracellular matrix proteins
and collagen, eventually resulting in hepatic fibrogenesis where these components are deposited in the
liver and eventually damage the organ [54].

The transition from liver fibrogenesis and cirrhosis involves inflammatory factors, vascular
occlusion and angiogenesis. The activity of hepatic stellate cells is mainly regulated by important
elements such as, transforming growth factor β (TGF-β), chemokines and adipokines [54]. Similar to
fibrogenesis, both the formation of angiogenesis and cirrhosis are mediated by extracellular matrix
remodeling and the activation of growth factors, including but not exclusive of TGF-β, vascular
endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF), and increased gene
expression of adhesion molecules [55,56].
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Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy and
the fourth leading cause of cancer-related deaths globally [57]. In most cases, HCV-associated
hepatocarcinogenesis is preceded and driven by hepatic inflammation, oxidative stress and cellular
deoxyribonucleic acid (DNA) damage [54,58]. All of which, is progressively caused by hepatic
fibrogenesis and cirrhosis [53,59]. Once infected, hepatitis C virus does not integrate into the host’s
genome. Instead, it remains as an episome in the endoplasmic reticulum (ER), encoding for survival and
growth proteins, which induces the expansion of infected hepatocytes [60,61]. Proliferation of infected
hepatocyte activates signaling pathways, such as Wnt/β-catenin and MAPK/ERK, which results in
mutations implicated during the transition of chronic viral hepatitis to HCC [62–64].

5. Types of Humanized Mice for HCV Studies

5.1. Humanized Mouse Models with Only Human Hepatocytes

As HCV has a narrow host tropism, there is a lack of in vivo models that can recapitulate clinical
settings, therefore limiting the development of effective vaccines and treatments [65]. Even though
non-human primate animal models have contributed significantly to HCV research, ethical, financial and
a lack of human immune system have restricted their use in recent years [16].

This limitation raised enormous demands for a small, easy to manipulate and cost-effective
model that is able to recapitulate clinical scenarios [14]. These include different types of humanized
mice, of which immunodeficient mice engrafted with either only human hepatocytes or both human
immune system and hepatocytes [18,19,21,66–76]. These models allow the study of HCV infection and
discovery of potential treatments. Here, we review humanized mouse models currently available for
HCV research and have included important information, such as details of their study and advantages
as well as limitations for each model.

5.1.1. Alb-uPA/SCID

The Alb-uPA/SCID model was designed to investigate neonatal bleeding disorders [77].
The over-expression of murine urokinase-type plasminogen activator (uPA) with an albumin promoter
resulted in an increase in plasma uPA levels, severe hemorrhagic events, accelerated hepatocytes
and neonatal death [77,78]. However, in newborn mice, scientists observed that the elevated uPA
levels gradually decreased to normal levels through random somatic deletions of the uPA transgene
within hepatocytes and therefore abolished transgene expression. These transgenic uPA deficient
cells exhibited significant replicative advantage, capable of selective proliferation and complete liver
regeneration [78] (Table 1).

In a study to investigate the replicative capacity of adult mouse hepatocytes into newborn
Alb-uPA/SCID mice, these mature hepatocytes replaced up to 80% of the hepatocytes in recipient liver
and restored liver deficiency [78,79]. By transplanting normal human hepatocytes into Alb-uPA/SCID
mice, in vivo human HCV infection was demonstrated for the first time by Mercer et al. [80].
These chimeric Alb-uPA/SCID mice were inoculated with HCV infected human serum and developed
prolonged HCV infections of up to 35 weeks with high viral titers. The human liver Alb-uPA/SCID
mouse models have proven valuable for its contributions to understanding the basic biology of HCV,
evaluation of antiviral therapies and neutralizing antibodies [81–89].

Yet, limitations of this model include, high neonatal mortality rate, susceptibility to kidney
disorders, small body size and weight, limited time window for transplantation, breeding difficulties
and the inability to expand engrafted human hepatocytes due to the spontaneous genotype reversion
in recipient mouse hepatocytes, that effectively outcompete the transplanted human cells during liver
repopulation [4,90].
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Table 1. Chimeric human liver mouse models (Part I).

Name Alb-uPA/SCID cDNA-uPA/SCID MUP-uPA/SCID/Bg

Nomenclature - - -

Engraftment method for humanization
of immune system - - -

Engraftment method for humanization
of liver Intrasplenic injection Intrasplenic injection Intrasplenic injection

Source of cells Human hepatocyte Human hepatocyte Human hepatocyte

Presence of human hepatocytes Yes Yes Yes

Presence of human immune system No No No

Method of HCV infection Intraperitoneal injection Intravenous injection Intravenous injection

Strain of HCV used Patient serum containing HCV genotype
1a Serum/culture medium of HCV (105 copies)

Diluted plasma from HCV-infected
chimpanzee

Duration monitored post-HCV
infection Up to 10 weeks Up to 8 weeks Up to 8 weeks

Advantages

• Presence of mature
human hepatocytes

• This model is able to recapitulate
the human immune system more
efficiently than mouse models
without humanization

• Higher human hepatocytes and
HCV viraemia levels as compared
to TK-NOG

• Useful for evaluation
antiviral agents

• Capable of supporting long-term
HCV infection

• The cDNA with albumin promoter/enhancer
and uPA demonstrate no loss of uPA due to
the deletion of transgene

• Few renal disorders
• High body weight
• High survival rate
• Presence of mature human hepatocytes
• Higher hepatocyte reconstitution as

compared to Alb-uPA/SCID mice
• Higher concentration of serum albumin as

compared to Alb-uPA/SCID mice
• High and persistent titers of viremia
• Capable of supporting long-term

HCV infection

• Easy to maintain colony of
transgenic mice

• High survival rate
• Less technically challenging to

engraft hepatocytes into mice, as
there is a long window to engraft
mice (4-12 months)

• Each major HCV genotype was
infectious in MUP-uPA/SCID mice

• Capable of supporting long-term
HCV infection
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Table 1. Cont.

Name Alb-uPA/SCID cDNA-uPA/SCID MUP-uPA/SCID/Bg

Drawbacks

• Poor breeding efficiency
• Short window for engraftment
• Absence of human immune system
• Liver environment is unsuitable for

the engraftment of fetal-liver
derived cells

• Unable to reproduce pathological
outcomes of HCV

• Impossible to study
HCV immunopathogenesis

• No liver disease
• Low level of

hepatocyte reconstitution
• Low serum levels of human

albumin and HCV viremia
• Repopulation of the liver with

human cells may be cause by
cell fusion

• No liver disease
• High mortality rate
• Low body weight
• High renal disorders

• Absence of human immune system
• Unable to reproduce pathological outcomes

of HCV
• Liver environment is unsuitable for the

engraftment of fetal-liver derived cells
• Impossible to study

HCV immunopathogenesis
• No liver disease

• Absence of human immune system
• Variable viral replication observed

in mice
• Unable to reproduce pathological

outcomes of HCV
• Liver environment is unsuitable for

the engraftment of fetal-liver
derived cells

• Impossible to study
HCV immunopathogenesis

• No liver disease

References

• Washburn et al. (2011) [66]
• Steenbergen et al. (2010) [69]

• Uchida et al. (2017) [70]
• Tesfaye et al. (2017) [71]
• Carpentier et al. (2014) [72]

Abbreviations: cDNA: Complementary DNA, Fah: Fumarylacetoacetate hydrolase, HCV: Hepatitis C virus, NTBC: 2-(2-nitro-4-trifluoro-methylbenzoyl)1,3-cyclohexedione.
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5.1.2. cDNA-uPA/SCID

To address existing issues, variants of uPA mice, such as hemizygous cDNA-uPA/SCID was
established and successfully infected with HCV in vivo [91]. This strain was generated using embryonic
stem cell techniques and attained appropriate levels of uPA expression. As compared to the original
strain, the liver of this model was not detrimentally damaged, experienced fewer kidney disorders,
and had higher body weight and longer survival rates. However, even though HCV viremia was
significantly higher in this model, it was unable to maintain viremia for longer than 8 weeks [70].

5.1.3. MUP-uPA SCID

The other variant, MUP-uPA SCID/Bg model was constructed by backcrossing transgenic mice
carrying the uPA gene driven by MUP promoter onto a SCID/Beige background [92]. As compared to
the original strain, the MUP-uPA SCID/Bg mouse is healthier, has a longer time window of up to 1 year
of age for hepatocyte transplantation and is susceptible to infection with HCV genotype 1-6 [71].

5.1.4. uPA/NOG

Constructed on severely immunodeficient non-obese diabetic (NOD)/Shi-scid/IL-2Rγnull (NOG)
mice, the third variant is the uPA/NOG mouse model [93]. This model offers several advantages
over classical Alb-uPA/SCID mice, enabling, minimal neonatal lethality, increased breeding efficiency,
improved recipient survival, simplified surgical manipulation and higher xenogeneic cell engraftment.
At present, HCV infection has not been reported in uPA/NOG mice.

5.1.5. Fah−/−/Rag2−/−/Il2rg−/− (FRG)

The FRG strain of mice is a triple knockout mouse model [73]. Deletion of fumarylacetoacetate
(Fah), a tyrosine catabolic enzyme results in the accumulation of hepatotoxic metabolites
such as Fah and maleylacetoacetate which induces liver damage and is lethal [94] (Table 2).
Oral administration of 2-(2-nitro-4-trifluoro-methylbenzoyl)1,3-cyclohexedione (NTBC) blocks the
enzyme hydroxyphenylpyruvate dioxygenase which prevents the accumulation of hepatotoxic
metabolites, liver damage and maintains FRG mice in a healthy state [94]. Upon NTBC withdrawal,
mouse liver can be repopulated with human hepatocytes [73,94].

The FRG model is advantageous to classical Alb-uPA/SCID mice in a range of ways including,
that it has a higher rate of chimerism, is easy to breed and there is absolutely no spontaneous transgene
revision, renal disorders and limitations in the time frame for transplantation as liver repopulation is
controlled by NTBC withdrawal [74].

An absence of spontaneous transgene reversion in FRG enables serial transplantation of human
hepatocytes as the Fah deficient mouse hepatocytes are unable to compete with transplanted human
cells during liver repopulation. Because of this, an infinite number of hepatocytes from a single
donor can be produced via serial transplantation over a few generations of mice, hence making it a
cost-effective model, attractive for large scale studies requiring human hepatocytes or mice.

It has been reported that a high rate of liver chimerism of up to 95% human hepatocytes
in FRG mice is generated by high transplantation dose of human hepatocytes. These mice were
successfully infected with 4 HCV genotypes and were responsive to antiviral and neutralizing
antibodies [74,95,96]. Improvements to FRG models are constantly being developed by adding
human oncostatin-M to enhance human hepatoblastoma repopulation in recipient mouse liver by
5-100-fold [96]. These syngeneic liver and immune system mice are reconstituted with functional
human T and B lymphocytes, monocytes and NK cells, which are able to support HCV infection,
hence making it an ideal model for the study of HCV infection in the liver.
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Table 2. Chimeric human liver mouse models (Part II).

Name FRG TK-NOG

Nomenclature Fah−/−Rag2−/−γC−/− NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(Alb-TK)7-2/ShiJic

Engraftment method for humanization of
immune system - -

Engraftment method for humanization of liver Intrahepatic injection Intrasplenic injection of human hepatocytes

Source of cells Human hepatocytes Human hepatocytes

Presence of human hepatocytes Yes Yes

Presence of human immune system No No

Method of HCV infection Intravenous injection Intravenous injection

Strain of HCV used

• Supernatant of Huh-7 cell culture containing 2 × 104

ffu JFH-1, 3 × 103 ffu HCV Con1/C3, 3 × 103 ffu HCV
H77/C3

• Patient serum containing 2 × 105 GE/ml HCV
genotype 1a

• Patient serum containing 2 × 105 IU/ml HCV
genotype 3a

• Patient serum containing HCV genotype 1b (2.2 x
106 copies/mL)

Duration monitored post-HCV infection Up to 5 weeks Up to 8 weeks

Advantages

• Simplified animal husbandry and surgery as liver
disease can be controlled by NTBC

• Mice are genetically stable
• Pharmacological interference not needed in

reconstituting FRG mice with hepatocytes
• Can be serially engrafted with human hepatocytes
• No renal disorders
• High survival rate
• Capable of supporting long-term HCV infection

• Able to achieve endogenous liver injury and
human hepatocyte engraftment

• Cost effective as compared to uPA/SCID and
FRG mice

• Capable of supporting long-term HCV infection
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Table 2. Cont.

Name FRG TK-NOG

Drawbacks

• Requires maintenance under constant and costly
NTBC treatment

• Absence of human immune system
• Primary engraftment does not occur in all

recipient mice
• Able to achieve high human hepatocyte reconstitution

with only human adult liver cells
• Unable to reproduce pathological outcomes of HCV

• Absence of human immune system
• Liver environment is unsuitable for the

engraftment of fetal-liver derived cells
• Unable to reproduce pathological outcomes

of HCV
• High mortality rate
• Low body weight
• High renal disorders

References
• Washburn et al. (2011) [66]
• Azuma et al. (2007) [73]
• Bissig et al. (2010) [74]

• Dagur et al. (2018) [75]
• Kosaka et al. (2013) [76]
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5.1.6. TK-NOG

In 2011, a new mouse model expressing a transgene, herpes simplex virus type 1 thymidine kinase
(HSVtk), within the liver of immunodeficient NOG mice (TK-NOG) [97] was created. Mouse liver cells
diminished after the exposure of ganciclovir (GCV) and human hepatocytes were stably maintained
without exogenous drugs. It has been shown that serum alanine aminotransferase (ALT) levels are
increased in TK-NOG mice after the HCV infection induced by GCV treatment, rendering these mice
useful for the study of HCV virology [76,97]. However, drawback of this model includes a lack of
human immune system, absence of liver disease post-infection, low body weight and high rates of
renal disorders and mortality [76,97].

5.2. Humanized Mouse Models with Human Immune System and Hepatocytes

Human liver chimeric mice have provided valuable insights into HCV infection, as well as the
evaluation of antiviral treatments. However, a major limitation includes the lack of a functional human
immune system, which impedes the understanding of human-specific immune responses during HCV
immunopathogenesis and novel therapeutics/vaccines [67,98].

Histopathological features associated with chronically infected HCV patients, such as hepatic
inflammation, fibrosis, cirrhosis and HCC has not been reported in human liver chimeric
mice. This indicates that the human immune system plays a key role in disease progression.
Therefore, humanized mouse models with both human hepatocytes and immune system should
be used for HCV research.

5.2.1. AFC8-hu HSC/Hep

Driven on an albumin promoter (AFC8), the AFC8-hu HSC/Hep strain of transgenic mouse
expresses FK506 binding protein (FKBP) and caspase 8 [66,67]. To induce liver cell death, recipient
mouse is administered AP20187, a synthetic drug that induces dimerization of active caspase 8,
expressed specifically in mouse liver cells [66,67].

To study HCV pathogenesis, human CD34+ hematopoietic stem cells (HSC) and human
hepatocyte progenitors were co-transplanted into Balb/C-Rag2−/−-γC−/− mice and infected with
HCV isolates [66]. Infected mice demonstrated elevated levels of ALT, pDC, NK cells, macrophages, T
cells, liver inflammation and fibrosis [66,67].

Limitations of this model include, low human liver chimerism of 15%, undetectable HCV viremia
in the blood, absence of HCV-specific antibodies and hepatitis C virus genomic RNA in the liver,
is detectable in only half of infected mice, after 1-4-month post-infection [66,67] (Table 3).
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Table 3. Humanized mouse models with both human immune system and hepatocytes.

Name AFC8-hu HSC/Hep NSG-DRB*0101

Nomenclature AFC8-HSC/Hep Balb/C Rag2−/−γC−/− NOD/scid-DRB*0101

Engraftment method for humanization of immune
system Intrahepatic injection Intrahepatic injection

Engraftment method for humanization of liver Intrahepatic injection Intrahepatic injection

Source of cells Human adult cells Human fetal liver

Presence of human hepatocytes Yes Yes

Presence of human immune system Yes Yes

Method of HCV infection Intravenous injection Intravenous injection

Strain of HCV used Clinical isolate of HCV genotype 1a (1-5 x 107 genome
copies/mL)

Recombinant adenovirus serotype 5 (AdV5) (5 x 109 or
1010 particles)

Duration monitored post-HCV infection Up to 20 weeks Up to 4 weeks

Advantages

• The use of caspase 8-dependent induction of
mouse hepatocyte apoptosis to promote human
hepatocyte repopulation is less toxic as compared
with uPA/SCID and FAH mice

• Presence of both human immune system
and hepatocytes

• AFC8-hu HSC/Hep mice infected with HCV
generates human immune responses, elevated
levels of alanine aminotransferase (ALT), liver
inflammation, hepatitis and fibrosis

• Suitable for the study of hepatitis virus-induced
liver immunopathogenesis

• HCV genomic RNA is detectable in the livers
of mice

• Only small animal model capable to support the
co-infection of HCV and HIV

• Useful platform for the evaluation of antiviral
drugs and immunotherapies

• Presence of both human immune system
and hepatocytes

• Transgenic HLA expression improves human
antiviral HLA-restricted T cell responses during
human viral infections

• Suitable for the study of hepatitis virus-induced
liver immunopathogenesis
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Table 3. Cont.

Name AFC8-hu HSC/Hep NSG-DRB*0101

Drawbacks

• Liver sinusoidal endothelium is of mouse origin
• Low level of repopulation and immature

phenotype of human hepatocytes
• Unable to detect significant HCV viremia in

the blood
• Low serum levels of human albumin and

HCV viremia
• Cannot be used for long-term studies
• Antiviral immune responses may not be as robust

as in human patients
• Does not fully recapitulate clinical settings

• To analyze HCV immunopathogenesis, mice must
be engrafted with both donor matched human
hepatocytes and immune cells, hence making this
a challenging model to establish

• Liver sinusoidal endothelium is of mouse origin
• Lack of complete viral clearance from the liver
• Does not fully recapitulate clinical settings

References • Washburn et al. (2011) [66]
• Bility et al. (2012) [67]

• Billerbeck et al. (2013) [68]



Cells 2019, 8, 604 13 of 27

5.2.2. NSG-DRB*0101

Even though current humanized mouse models with both human hepatocytes and immune system
are crucial for modelling diseases and testing drugs, it has been reported to have some functional
deficiencies. The NSG-DRB*0101 mouse model was developed to determine if the inclusion of human
leukocyte antigen (HLA) would improve the development of functional human T and B cells [99–103].

Expression of HLA in humanized mice allowed the development of a partially functional adaptive
human immune system during viral infection and the generation of HLA-A2 restricted virus-specific
T cells. However, drawbacks in this model include difficulty in sourcing HSC with the same HLA
type, minute levels of human NK cells, defective recruitment and homing of human immune cells,
and restricted inter-species cross-reactivity of cytokines and chemokines produced during infection [68].

5.2.3. HIL Mice

A humanized mouse model with both human hepatocytes and immune system (HIL mice) was
established by intrahepatically injecting mice with human fetal liver cells [18,104–106]. Unlike other
chimeric liver mouse models, these mice do not require additional drug treatments or transgene
modifications [18,104].

Similar to clinical scenarios, these mice developed liver inflammation, upregulated human
cytokines and developed fibrosis [18–21]. Long-term effects of HCV in HIL mice were monitored
for up to 28 weeks, where infected mice demonstrated higher incidences of fibrosis. Immune profile
analysis of HCV infected mice showed elevated numbers of T cells and monocytes/macrophages in
granulomatous inflammation [18–21] (Table 4).

In addition, at 28 weeks’ post-infection, human proinflammatory cytokines such as interferon
gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and interleukin 18 (IL-18) were
significantly increased in the plasma of HIL mice [19]. When treated with pegylated-interferon-α-2A
(PEG-IFNα-2A), progression of HCV liver pathogenesis was blocked by PEG-IFNα-2A, demonstrating
that HIL mice are able to reproduce HCV infection and immunopathogenesis [107–112]. The main
drawback of this model is the low levels of B cells detected as compared to clinical settings [19].
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Table 4. Humanized mouse models with both human immune system and hepatocytes (HIL mice).

Name NSG NSG NSG

Nomenclature NOD-scid Il2rg−/− NOD-scid Il2rg−/− NOD-scid Il2rg−/−

Engraftment method for
humanization of immune system Intrahepatic injection Intrahepatic injection Intrahepatic injection

Engraftment method for
humanization of liver Intrahepatic injection Intrahepatic injection Intrahepatic injection

Source of cells HLA type I matched fetal liver Fetal liver Fetal liver

Presence of human hepatocytes Yes Yes Yes

Presence of human immune
system Yes Yes Yes

Method of HCV infection Intravenous Intravenous Intravenous

Strain of HCV used HCV induced HCC patient derived
xenograft

106 FFU/mL of J6/JFH-1 HCV (genotype 2a)
viruses 106 or 107 ffu of HCVJ6/JFH1-P47

Duration monitored post-HCV
infection Up to 8 weeks Up to 9 weeks Up to 28 weeks

Advantages

• Presence of both human immune
system and hepatocytes

• Liver inflammation and fibrosis
are observed

• Able to study
HCV immunopathogenesis

• Useful platform for
therapeutic testing

• Side effects of immunotherapies
tested on this mouse model were
similar to clinical settings

• Presence of both human immune system
and hepatocytes

• Liver inflammation and fibrosis
are observed

• Mice are able to support HCV infection and
demonstrate some clinical symptoms
found in HCV-infected patients including
hepatitis, robust virus-specific human
immune cell and cytokine response as well
as liver fibrosis and cirrhosis

• Useful platform for therapeutic testing
such as antiviral treatment, PEG-IFNα-2A

• Presence of both human immune system and hepatocytes
• HCV infected mice developed increase incidences of liver fibrosis,

granulomatous inflammation and tumour formation in the form of
hepatocellular adenomas/carcinomas by 28-weeks post-infection as
compared to uninfected mice

• Mice can recapitulate some clinical symptoms, such as, chronic
inflammation, immune cell exhaustion and tumorigenesis as observed
in patients

• HCV infection is able to progress beyond 27-weeks in this model
• Liver inflammation and fibrosis are observed
• Able to study HCV immunopathogenesis
• Useful platform for therapeutic testing

Drawbacks

• Does not fully recapitulate HCV
responses as observed in patients

• Antiviral immune responses not as
robust as observed in
clinical settings

• Does not fully recapitulate HCV responses
as observed in patients

• Antiviral immune responses not as robust
as observed in clinical settings

• Does not fully recapitulate HCV responses as observed in patients
• Antiviral immune responses not as robust as observed in

clinical settings
• Effects of HCV in mice needs to be monitored for a longer duration of

time to confirm if liver tumorigenesis can occur
• Despite observation of chronic hepatitis, viremia was not detectable in

plasma/liver of infected mice
• HCV RNA was challenging to detect with non-sacrificial

sampling methods
• HCV RNA could only be detected after extracting RNA from purified

human hepatocytes in infected HIL mice, although this renders the
liver tissue unusable for histopathological analyses

References Zhao et al. (2018) [21] Keng et al. (2015) [18] Zheng et al. (2017) [19]
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6. Hepatitis C Treatment

Humanized mouse models with only human hepatocytes have been crucial in initial therapeutic
tests. However, due to the lack of a functional human immune system, the study of in vivo drug
interactions and vaccine development has been precluded [113,114]. On the other hand, humanized
mouse models with both human immune system and hepatocytes are able to efficiently recapitulate
immune-mediated events in HCV and are essential in developing novel vaccines and treatments.

Depending on the genotype of HCV, different combinations of therapeutics including interferon
(IFN), direct acting antiviral (DAA) and ribavirin (RBV) are usually prescribed [115–118]. Some obstacles
faced in current therapies include factors such as, patients being resistant to existing treatments,
poor tolerance to side effects which prevent individuals from completing therapy, limited efficacy,
high cost and emergence of drug-resistant viral variants [119,120]. For these reasons, constant research
and development is needed to develop effective treatment and vaccine options. In this review,
some antivirals such as Claudin-1 (CLDN1), Interferon-λ, NA808, direct acting antivirals (DAA) and
PEG-IFNα-2A will be discussed.

6.1. Claudin-1 Antibody

As a tight junction protein, functions of CLDN1 include regulation of HCV entry and transmission
from cell to cell [121]. Claudin-1 antibody functions by eliminating HCV viral activity through inhibition
of HCV cell entry. When Alb-uPA/SCID mice were administered CLDN1, virus-mediated signaling
pathways were induced and persistent HCV infection was cleared, demonstrating effectiveness of the
treatment [95,111] (Table 5).

6.2. Interferon-λ

Interferon is a cytokine that is essential in mediating the innate immune system and is the first
response against HCV viral infection. The innate immunity is crucial for initial defense against viral
pathogens; therefore, antiviral drugs that can activate innate immune response are ideal candidates for
HCV treatment [122–124].

6.3. NA808

An alternative method of activating the innate immune system is through a complex, cationic
liposome (LIC) and synthetic double-stranded RNA analog, polyinosinic-polycytidylic acid (Poly I:C)
(LIC-pIC). Activation of this complex induces IFN-λ mediated antiviral response of HCV-infected
human hepatocytes and is a potential for overcoming resistance to therapies across different HCV
genotypes [124,125].

Katsume et al. [126] identified a novel class of serine palmitoyltransferase (SPT) inhibitor, known
as NA808. Derived from fungal metabolites, this SPT inhibitor prevents the synthesis of sphingolipid,
in turn disrupting HCV replication complex, hence inhibiting HCV replication.

6.4. DAA

Studies have shown that even in the absence of immunomodulatory IFN, direct acting antivirals
(DAA) are able to activate the innate immune system. Administration of DAA suppresses HCV
expression and significantly reduces levels of chemokines [96]. Post-DAA treatment, there is an
increase in protein expression of Cardif and IFITM1, suggesting that DAA are able to block HCV
expansion in hepatic cells [96,127].

Currently, an array of DAA is being developed as novel strategies to target HCV [11]. These drugs
have been shown to provide shorter treatment times, higher cure rates and reduced side effects.
The main classes of DAA are NS3/4 protease inhibitors (PIs), NS5A inhibitor, Nucleoside and nucleotide
NS5B polymerase inhibitors. These drugs directly target viral proteins halt HCV replication in host
cells. In clinics, treatments for HCV infected patients include combinations of DAA. Two significant
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groups of DAA are widely used, Boceprevir and Telaprevir blocks NS3/4A serine protease and inhibits
crucial proteins for viral cycle, while NS5A inhibits protease to halt HCV replication [128–131].

6.5. PEG-IFNα-2A

Human PEG-IFNα-2A is often used in clinical treatment of HCV and has a specific role in
inhibiting HCV replication and regressing HCV-associated disease progression. It has been shown
that HIL mice are able to reproduce HCV infection, immunopathogenesis and drug response as per
clinical settings. When tested with PEG-IFNα-2A, progression of HCV liver pathogenesis was halted.
In addition, it was observed that serum ALT levels decreased and mice were protected from liver
damage and fibrosis [18,132].

7. HCV Vaccines

Although current treatments have improved the cure rates of HCV, existing limitations that
prevent complete disease eradication include; high cost of therapy, limited worldwide accessibility,
potential development of drug resistance and an inability to ameliorate long-term effects of chronic
infection [4]. Therefore, to relive a worldwide burden of the disease, it is crucial to develop an effective
vaccine to prevent the transmission of virus and liver damage [133].

Over the years, a range of adjuvants, vectors and vaccination regimens have been tested [4].
At present, two ways are being used to design HCV vaccines. First, through inducing an antibody
response that targets the exterior surface of viruses [134]. However, as HCV is highly variable
among strains and mutates quickly, this method is extremely challenging. Second, generate broadly
neutralizing antibodies to induce viral inactivity and third, stimulate broad T cell responses to clear
infected hepatocytes [134–137].

The task of developing a vaccine against HCV is an extremely challenging process. Humanized
mouse models can be readily used to better understand the immunopathogenesis of HCV and also as a
preclinical platform to determine the effectiveness of novel vaccines and therapeutics.
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Table 5. Antiviral treatments for HCV.

Drug name DAA PEG-IFNα-2A NA808 Interferon-λ Claudin-1

Trade name Many different DAA in the
market with individual names Pegasys - - -

Manufacturing company A range of companies
manufacture DAA Roche Pharmaceuticals - - -

Mechanism of action

Disrupts HCV viral life cycle by
shortening the length of therapy,
minimizing size effects, targeting

the virus, improving sustained
virological response rates

Acts as interferon within
the immune system

Halts HCV replication via
non-competitive

inhibition of Serine
Palmitoyltransferase

(SPT), hence reducing
viral load in mice

IFN-λ binds to heterodimeric
IFN-λ receptor, activates STAT
phosphorylation-dependent
signal cascade which induces
hundreds of IFN-stimulated

genes, which in turn modulates a
range of immune functions

Blocks entry of HCV

Commonly used in
combination PEG-IFNα-2A and Ribavirin DAA and Ribavirin

PEG-IFNα-2A, HCV
polymerase/ protease

inhibitors
Not fully characterized Ribavirin

Rate of SVR ~95% ~79% in genotype
1~89% in genotype 2 or 3 Not fully characterized Not fully characterized Not fully

characterized

Stage of clinical trial - Completed and in market - - -

Side effects
Fatigue, gastrointestinal

symptoms, anemia, headache and
dyspnea

Headache, fatigue,
depression, insomnia,
nausea, pain at site of

injection, fever, psychosis,
autoimmune disorders,

blood clots and infection

Not fully characterized
Inhibition of host enzyme

might result in
mechanism-related

toxicities/side effects

Not fully characterized Not fully
characterized

Advantages • Effective
• Wide range of DAA

• Safe
• Effective particularly

in patients with
IL28B genotype

• No development of
resistant mutants

• Able to prevent
replication of HCV
genotypes 1a, 1b, 2a,
3a, and 4a

Not fully characterized Not fully
characterized

Limitations
• Expensive
• Unavailable in some regions

of the world

• Extensive and
systemic side effects

• Limited efficacy
• Viral and host factors

can result
in non-responders

Not fully characterized Not fully characterized Not fully
characterized
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Table 5. Cont.

Drug name DAA PEG-IFNα-2A NA808 Interferon-λ Claudin-1

References Williford et al. (2016) [3] Huang et al. (2017) [138] Katsume et al. (2013) [126] Bruening et al. (2018) [139]

• Colpitts et al.
(2018) [140]

• Evans et al.
(2017) [121]

• Meertens et al.
(2008) [136]

Abbreviations - DAA: Direct-acting antiviral, HCV: Hepatitis C virus, PEG-IFNα-2A: Pegylated-interferon-α-2A, SVR: Sustained virological response, SPT: Serine Palmitoyltransferase

Table 6. Immunotherapy for HCC.

Drug name Nivolumab Pembrolizumab Tremelimumab Durvalumab Ipilimumab

Commercial name Opdivo Keytruda - Imfinzi Yervoy

Company Bristol-Myers Squibb
(BMS)

Merck Sharp & Dohme
(MSD) MedImmune MedImmune BMS

Target molecule PD-1 PD-1 CTLA-4 PDL-1 CTLA-4

Target cell T lymphocyte T lymphocyte T lymphocyte Tumor cell T lymphocyte

Stage of clinical trial Approved by FDA and
commercially available

Approved by FDA and
commercially available Phase III Approved by FDA and

commercially available
Approved by FDA and
commercially available

References El-Khoueiry AB et al.
(2017) [141] Zhu et al. (2018) [142] Sangro et al. (2013) [143] Wainberg et al. (2017)

[144] -

Abbreviation: BMS: Bristol-Myers Squibb, MSD: Merck Sharp & Dohme.
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8. Immunotherapy for Hepatocellular Carcinoma

Globally, Hepatocellular carcinoma (HCC) is one of the most debilitating and fatal cancers [145].
Despite promising data from preclinical and clinical trials, current strategies for cancer treatments
are limited [146]. The establishment of humanized mice has advanced knowledge of important
immunopathogenesis and oncogenic signaling pathways within the diseased microenvironment of
HCC [21]. In particular, HIL mice has allowed the dissection of cancer initiation and progression,
as well as the opportunity to test and evaluate a diverse range of immune-oncological interventions
including but not limited to, Nivolumab, Pembrolizumab, Tremelimumab, Durvalumab and Ipilimuma
(Table 6).

9. Future direction and Conclusion

Humanized mouse models with chimeric human liver or both human immune system and
hepatocytes are imperative for the characterization of HCV infection and development of therapeutics
and vaccines [18–21,66,68]. As these models are of utmost importance, constant improvements are
necessary to push boundaries and create models with superior clinical accuracy.

Even though current models of humanized mice are able to support HCV infection, some limitations
that need to be improved on include; first, humanization levels of hepatocytes and immune cells
can be further enhanced in humanized mice. This can be done through the supplementation of
cytokines (IL-1β, IL-2, IL-7, and GM-CSF), to enable differentiation and maturation of HSC which
can give rise to a range of immune cell subsets [147–149]. A more human-specific microenvironment
will enable in-depth characterization of HCV immunopathogenesis and therapeutic development.
Second, elimination of selective host-specific factors may improve HCV infection efficiency. For example,
studies have demonstrated that very-low-density lipoprotein (VLDL) blocks HCV cell attachment;
therefore, removing VLDL may increase the infection efficiency of HCV [150].

Third, the liver sinusoidal endothelium (LSEC) has a paramount role in shaping intrahepatic
immune responses by mediating antigen-presentation and immune cell homing into the liver but is of
mouse origin [151,152]. Finding methods to humanize this anatomy will provide valuable insights
into human immune cell migration via the liver endothelium. Fourth, to fully mimic clinical settings,
induced pluripotent stem cells (iPSC) may be used to create patient matched mice for HCV and HCC
studies [21,153].

The lack of effective therapies and vaccine for HCV highlights an unmet clinical need.
Advancements in developing humanized mouse models will provide insights into the complexity,
redundancy, interdependence and regulatory mechanisms of acute and chronic HCV infection,
therefore providing exciting opportunities for in vivo characterization of HCV virus-host interaction
and the identification of novel vaccine and treatment strategies.
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