function [performance] = CrispOutputs(fis,trainingdata,validationdata,testingdata,indicesinputs,indicesoutputs,combination); |
inputtrainingdata = trainingdata(:,indicesinputs(combination,:)); |
outputsdata = trainingdata(:,indicesoutputs(combination,:)); |
fisoutputstrainingdata = evaluate the performance with the inputtrainingdata variable. |
calculate correlation coefficient (regression) using outputsdata and fisoutputtrainingdata; |
calculate the square of the correlation coefficient (R2) |
inputvalidationdata = validationdata(:,indicesinputs(combination,:)); |
outputsdata = validationdata(:,indicesoutputs(combination,:)); |
fisoutputsvalidationdata = evaluate the performance with the inputvalidationdata variable. |
calculate correlation coefficient (regression) using outputsdata and fisoutputvalidationdata; |
calculate the square of the correlation coefficient (R2) |
inputtestingdata = testingdata(:,indicesinputs(combination,:)); |
outputsdata = testingdata(:,indicesoutputs(combination,:)); |
fisoutputstestingdata = evaluate the performance with the inputtestingdata variable. |
calculate correlation coefficient (regression) using outputsdata and fisoutputtestingdata; |
calculate the square of the correlation coefficient (R2); |
Calculate the total performance using the complete dataset (training, validation, and testing). |
Calculate correlation coefficient (regression) using totaloutputsdata and fisoutputtotaldata. |
Calculate the square of the correlation coefficient (R2). |
performance = [R2_total,R2_training,R2_validation,R2_testing]; |
end |