Skip to main content
. 2019 May 9;9(2):52. doi: 10.3390/diagnostics9020052

Table 10.

Performance metrics obtained with our proposed framework and other classifiers obtained from the literature for CBCD.

Main Aspects Reference [17] Reference [30] DDFCDSS—This Work
CV RS
Number of Variables V1:V2 V1:V3 V1:4 V1-V5 V1:V6 V1:V9 V1:V8 V2,V3,V6,V8,V9 V1:V9
Number of Rules or Hidden neurons/technique SVM AdaBoostM1 and MAD 97 81
Performance Accuracy (%): - - - - - - 91.37 95.9% 94.0%
Sensitivity: 0.81:0.86 0.87:0.92 0.82:0.88 0.84:0.9 0.81:0.86 0.75:0.81 - 0.937 0.901
Specificity: 0.7:0.76 0.78:0.83 0.84:0.9 0.81:0.87 0.8:0.86 0.78:0.84 - 0.992 1.000
F-Measure: - - - - - - 0.914 0.964 0.948
Area under curve: 0.76:0.81 0.82:0.86 0.87:0.91 0.86:0.9 0.83:0.88 0.81:0.85 0.938 0.957 0.933
Kappa statistics: - - - - - - 82.76% 0.917 87.6%
Precision: - - - - - - 0.919 0.994 1.000
Recall: - - - - - - 0.914 0.937 0.901

CBCD: Coimbra Breast Cancer Dataset. V: Variable. SVM: Support Vector Machine. MAD: Mean Absolute Deviation. DDFCDSS: Data-driven fuzzy clinical decision support systems, - which are not mentioned in the literature. Bold values indicate the best performance.