
PERSPECTIVE

I-branched carbohydrates as emerging effectors of
malignant progression
Charles J. Dimitroffa,1

Edited by Carolyn R. Bertozzi, Stanford University, Stanford, CA, and approved May 29, 2019 (received for review February 15, 2019)

Cell surface carbohydrates, termed “glycans,” are ubiquitous posttranslational effectors that can tune
cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can
impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans
are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal
receptor–ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-
1 transmembrane proteins. Because glycans play an integral role in a cancer cell’s malignant activity and
are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic
targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and
fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of
blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer
virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched
glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies.
In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including
exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of
β-galactose–binding galectins.
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While a cancer cell’s ability to proliferate, survive, gen-
erate a vascular bed, adapt to metabolic stress, evade
the immune system, and metastasize are widely con-
sidered hallmarks of cancer (1), the dysregulated as-
sembly and structure of glycans on cancer cells is still
reluctantly acknowledged (2). However, altered cancer
cell glycosylation can regulate numerous malignancy-
associated pathways, including cell proliferation, death,
migration/invasion, angiogenesis, metastasis, and im-
mune evasion (3–5). Glycans represent the unifying
“structural” thread through these functional activities,
critical to the development and progression of cancer.
By controlling cellular protein stability, membrane dy-
namics, subcellular trafficking, homo/heterophilic inter-
actions, and extrinsic/intrinsic lectin-binding activities,
cancer-associated glycans are uniquely poised to impact
all virulent pathways. In this Perspective, established
cancer-associated glycans and their roles in cancer will
be contextualized to an emerging cancer glycomic
feature characterized by blood group I-antigen (or I-
branched glycans) and I-branching enzymatic activity of

β1,6 N-acetylglucosaminyltransferase 2, GCNT2. Be-
yond highlighting how GCNT2/I-branched glycans
regulate cancer cell activities, their putative role in
modulating the functional activities of protumorigenic
galactose-binding galectins will also be introduced.

Established Cancer-Associated Glycome
Features
Glycans as markers of malignancy were first described at
least 6 decades ago (6–8). The cancer glycomics field has
slowly progressed from methods using a dearth of anti-
carbohydrate antibodies or plant lectins that detect
blood group/oncofetal antigens and glycan peculiarities
on cancer cells to more precise modalities using matrix-
assisted laser/desorption ionization time-of-flight mass
spectrometry on asparagine (N)-linked glycans released
from cancer cell surfaces (9). Together, these technolo-
gies have provided several key discoveries on cancer cell
glycan phenotypes characterized by bulky tri/tetra-
antennary N-glycans, truncated serine/threonine (O)-
linked glycans, bisecting N-acetylglucosamine (GlcNAc)
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N-glycans, N-glycan core fucosylation, sialylated Lewis antigens, and
α2,6 sialylation. These cancer-associated glycans have been shown
to subtly tune a cancer cell’s ability to proliferate, survive, invade,
evade the immune system, and form distant metastases (10). Ex-
pression of cancer-associated glycans is conspicuously contingent on
a distinct cell type with lineage-specific gene-expression patterns
uniquely leveraged upon cellular transformation and malignant pro-
gression. These common cancer glycome features and their impact
on distinct cancer subtypes are briefly described as follows.

Tri/Tetra-Antennary N-Glycans. One of the most impactful
posttranslational modifications on Golgi-derived membrane and
secreted proteins is N-glycosylation. Notably, the enzymatic activity
of α-mannosyl-β1,6 N-acetylglucosaminyltransferase-V (GnT-V;
MGAT5) generates a bulky tri/tetra-antennary N-glycan species
that can modify a protein’s half-life, stability, membrane dynamics,

extracellular-binding partners, and functional activity (Fig. 1A).
Not surprisingly, the heightened expression and utilization of
MGAT5 by cancer cells have long been recognized key features in
the synthesis of cancer-associated glycans. There is a pre-
ponderance of experimental evidence showing that elevations in
MGAT5 and resultant large tri/tetra-antennary N-glycans can af-
fect cancer cell virulence: MGAT5 expression promotes homo-/
heterotypic adhesion and migratory activity, tumorigenicity, and
metastasis in mouse models of breast and lung cancer (11–13).
Specific MGAT5 N-glycan–dependent alterations on gastric cancer
cells cause destabilization and aberrant membrane localization of E-
cadherin and of adherens-junctions that impair homotypic cell–cell
aggregation (14). Enforced MGAT5 overexpression in fibrosarcoma
cells compromises N-cadherin clustering and signaling activity and
increases cell motility via phosphorylation of catenins (15) and re-
duces α5β1 clustering to enhance migration and invasion (16).
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Fig. 1. Established cancer-associated glycans. The following cell surface carbohydrates on N- or O-glycans and their enzymatic regulators (in red)
and respective nucleotide-sugar donor play key roles in cancer progression: (A) tri/tetra-antennary N-glycans (MGAT5), (B) truncated O-glycans,
(C) bisecting GlcNAc N-glycans (MGAT3), (D) N-glycan core fucosylation (FUT8), (E) sialylated Lewis antigens, and (F) α2,6 sialylation (ST6Gal1).
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Interestingly, elevations in MGAT5 and tetra-antennary N-glycan
levels correspond better with the fibronectin integrin receptor-
mediated adhesion and motility of a metastatic melanoma cell line
compared with the matching localized melanoma cell line variant
(17). What is increasingly associated with MGAT5-modified N-glycans
is that resultant tri/tetra-antennae often containN-acetyllactosamine
(LacNAc) moieties that bind galectins, form organized lattices, and
accentuate promalignant activity of growth factor receptor tyrosine
kinases (RTK) and integrins (3, 18, 19).

Truncated O-Glycans. O-glycosylations, another major Golgi-
derived protein glycosylation modification, are represented by a
series of 8 diverse core structures. O-glycan biosynthesis is initiated
by addition of N-acetylgalactosamine (GalNAc) by one of 20 poly-
peptideN-acetylgalactosaminyltransferase family members to form a
simple Tn antigen moiety. In cancer, enzymatic extension of Tn an-
tigen with N-acetylneuraminic acid (NeuAc) or galactose (Gal) to
generate sialo-Tn or core 1 O-glycans (T antigen) (Fig. 1B) or with
β1,6 GlcNAc to build core 2 O-glycans is often dysregulated and
associated with numerous malignancies (20, 21). The action of core 1
β1,3 galactosyltransferase 1 (C1GalT1) with the core 1 synthase
chaperone Cosmic; α-GalNAc-α2,6 sialyltransferases-1, -2, -3 and -4
(ST6GalNAc1-4); α2,3 sialyltransferase 1 (ST3Gal-1); or core 2 β1,6N-
acetylglucosaminyltransferases 1 and 2 (GCNT1 or 3) are synthetically
positioned to compete for these budding Tn and core 1 O-glycan
acceptors, which are often aberrantly expressed and commonly re-
lated to cancer progression and poor prognosis (20, 21). These en-
zymes function sequentially and often in competition for the same
glycan acceptor to produce structurally diverse O-glycan species. For
example, elevations in ST6GalNAc enzymes or expression of mutant
nonfunctional Cosmic increase levels of sialo-Tn, whereas reductions
in ST6GalNAc enzymes heighten core 2 O-glycan levels. Whether
overexpressed or down-regulated depending on the cancer subtype,
these O-glycan–modifying enzymes can function as critical bio-
synthetic regulators of siglec- or galectin-binding O-glycosylations.
Cancer cells harness their dysregulated glycoenzyme signatures to
preferentially yield truncated O-glycans, sialo-Tn, or sialo-core 1 or
extended core 2 O-glycans, translating to siglec- or galectin-
dependent malignant behaviors, respectively (21).

Cancer-associated truncated O-glycans have been directly
linked with breast (22), ovarian (23), gastric (24, 25), colorectal (26),
and pancreatic (27) malignancies and have been shown to impact
several oncogenic features, including cell adhesion, migration
and invasion, and immunoregulation (28). Furthermore, cancer-
associated truncated O-glycans (or lack thereof) are also integral
in modifying the binding activities of galectin (Gal)-1 and Gal-3 and
of tumor-associated macrophage siglec-15 that, upon binding,
render an intrinsic malignant activity or a TGF-β–dependent pro-
tumor immune microenvironment, respectively (29–32). That is,
reductions in truncating O-glycan–modifying ST6GalNAc1-4 can
elevate Gal-1 binding extended poly-LacNAc core 2 O-glycans,
while elevations in these enzymes can increase Gal-3 binding
core 1 O-glycans to help confer growth, adhesive and metastatic
seeding activities (29–31).

Bisecting GlcNAc N-Glycans. As noted above, aberrancies in
complex N-glycan processing are a hallmark glycosylation
phenotype in cancer cells. Hybrid or biantennary complex N-
glycans can be bisected with GlcNAc by β-mannosyl-β1,4 N-
acetylglucosaminyltransferase-III (GnT-III; MGAT3) (Fig. 1C).
While this GlcNAc addition is not typically elongated, it can
theoretically impart molecular rigidity or a “spacer”moiety that

affects how N-glycosylation impacts a protein’s function. So,
depending on cancer cell type, this N-glycan maturation step
can either compromise or promote malignant activities. Lung
metastatic activity of murine melanomas is lowered by enforcing
MGAT3 expression (33); cancer cell growth factor receptor
signaling is attenuated (34–36); and absence of MGAT3 in
murine mammary tumors increases tumor growth, migration,
and metastasis, whereas overexpression of MGAT3 inhibits
early mammary tumor development and tumor cell migration
(36). Bisecting GlcNAcs have also been shown to alter cancer
cell E-cadherin and integrin receptor stability and function (17,
37–39) and boost Notch receptor activity related to ovarian
cancer progression (40).

N-Glycan Core Fucosylation. Cell surface α1,3/4 fucosylation is
best known for generating sialylated Lewis antigens, critical for
cancer cell binding to endothelial (E)-selectin, vascular adhesion,
and seeding in distant tissues (41, 42). However, more recent data
suggest that α1,6 fucosylation of the most proximal GlcNAc in the
N-glycan chitobiose core by α1,6 fucosyltransferase 8 (FUT8) (Fig.
1D) is a key structure regulating the function of cancer cell
membrane receptors. When FUT8 gene expression and resultant
α1,6 fucosyl moieties are elevated, breast cancer cells exhibit an
enhanced ability to signal through TGF-β receptor pathway and
undergo malignancy-associated epithelial to mesenchymal tran-
sition and related metastatic activities (43). Similarly, core N-
glycan α1,6 fucosylation on lung cancer cells enhances EGFR-
dependent signaling activity and regulates E-cadherin–dependent
nuclear translocation of β-catenin (44, 45) and, when silenced on
melanoma cell adhesion molecules, suppresses invasion and tumor
dissemination (46).

Sialylated Lewis Antigens. Sialylated Lewis antigens, α2,3 sialyl
Lewis A (sLeA) and α2,3 sialyl Lewis X (sLeX), are commonly ele-
vated on aggressive cancer cells and linked to metastatic poten-
tial (10, 42, 47) (Fig. 1E). The most widely recognized function of
sLeX/A on cancer cells is its ability to bind vascular endothelial (E)-
and platelet (P)-selectins and promote vascular endothelial cell
adhesion to help deliver circulating cancer cells to distant tissues.
Cancer cell–selectin binding interactions characteristically yield
tethering and rolling events on the luminal aspect of postcapillary
venules that precede firm adherence and tissue entry, analo-
gous to the leukocyte homing paradigm (48). While most cancer
cells are enzymatically equipped to generate terminal α2,3 sialyl
LacNAc moieties by ST3Gal3, ST3Gal4, and ST3Gal6 at the ter-
mini of their N-glycans, core 2 O-glycans, and neolacto glyco-
sphingolipids, selectin-binding proficiency is consummated by
the action of α1,3/4 fucosyltransferases (FUT3–7, 9–11) to syn-
thesize sLeX or sLeA antigens (3, 41, 47, 49–56). Whereas FUT3
and, to a minor extent, FUT5 exhibit α1,4 fucosyltransferase ac-
tivity for sLeA synthesis, FUT3, FUT5–7, and FUT9 predominantly
provide the α1,3 fucosyltransferase activity necessary for synthe-
sizing sLeX and related selectin-binding activities (57–61). Uni-
formly, decades of experimental and correlative analyses indicate
that a high level of sLeX and sLeA antigens inversely correlates
with the survival of patients with most if not all types of malig-
nancies. Cancer of the colon (62–68), breast (69–72), prostate (41,
51, 52, 56, 73, 74), multiple myeloma (75), and pancreas (76–78)
commonly leverage their elevated sLeX/A moieties to mount
shear-resistant, vascular E/P-selectin–mediated adhesion and
enhance metastatic potential.
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α2,6 Sialylation. N-glycan antennae terminated with α2,6 NeuAc
moieties (Fig. 1F), principally governed by the action of β-galactosyl-
α2,6 sialyltransferase (ST6Gal-1), are becoming one of the more
critical glycomic features correlated with malignant and metastatic
progression (79). In colon (80, 81), mammary (82), ovarian (83–88),
liver (89–91), and pancreatic (84–86, 88, 92) cancers, α2,6 sialylation
can enhance several malignancy-associated activities. Cancer cell
α2,6 sialylation can elicit its functional activity on N-glycosylated
membrane proteins via a binding moiety (e.g., ligand for siglec-
2/CD22) or by imparting optimal stability, membrane organization,
or homo/heterophilic interactive capacity. When β1 integrins on
cancer cells display ST6Gal-1–synthesized α2,6 sialylated moie-
ties, adhesive and migratory activities and related focal adhesion
kinase activities are accentuated (80, 82, 89–91). Protection from
chemotherapeutics, including EGFR-targeted therapy, and Fas-
mediated death, promotion of survival pathways, and evasion
of hypoxic stress are also boosted in cancer cells via ST6Gal-1–
dependent sialylation (83–87, 92). Beyond these malignancy-
associated traits, tumor-initiating cell activity and expression of
stem cell markers have been correlated positively with ST6Gal-1
expression (88).

Emergence of I-Branched Glycans and β1,6 I-Branching
Enzyme GCNT2 as Modulators of Cancer Progression
Sialylation, fucosylation, number/length of N-glycan antennae,
and O-glycan complexity have predominated the focus of the
cancer glycomics research field. However, more recent studies on
the identity of cancer-associated glycans have revealed a critical
new role for blood group I-antigen (I-branches) in cancer pro-
gression. Synthesis of I-branched glycans, Galß1,4GlcNAc moie-
ties linked in a β1,6 conformation to internal galactose residues on
fetal i-antigen [linear poly-LacNAc; (Galβ1,4-GlcNAcβ1,3)n], is
chiefly initiated by the developmental I-branching GCNT2 (Fig.
2A) (93). A linear poly-LacNAc synthesized by the repeating action
of β3GnTs and β4GalTs (94) provides its internal galactose resi-
dues as an acceptor for the β1,6 GlcNAc transferring action of
GCNT2 and subsequent ubiquitous β1,4Gal capping activity of
β4GalTs (9, 95). GCNT2 exists as isoforms A, B, and C (also re-
ferred to as variants 1, 2, and 3) and governs the conversion of
linear poly-LacNAcs commonly expressed on fetal and cord blood
cells to I-branched glycans normally found on adult erythrocytes,
mucosal epithelia, and cells of the eye and olfactory bulb (93, 94,
96–101). Ineffective I-branch conversion has been linked to loss of
GCNT2 expression and early-onset congenital cataracts (102). In
cancer, GCNT2/I-branched glycans have been correlated both
positively (103–105) and negatively (9, 106) with cancer progres-
sion, regulating malignancy-associated adhesive, migratory, sig-
naling, growth, and metastatic activities as follows.

Breast Cancer. The seminal investigation on the role of GCNT2 in
breast cancer reveals a strong relationship between functional
expression of GCNT2 and breast cancer metastasis (103). Ex-
pression array and immunohistochemical datasets show strong
GCNT2 expression on metastatic breast cancer cell lines, high-
grade breast tumors and tumors of a basal-like histotype, and
breast cancer metastases (103), implicating GCNT2 expression
with breast cancer progression. Functionally, studies using
GCNT2-enforced or -silenced breast cancer cell lines provide
strong evidence that high GCNT2 levels elicit greater cell mi-
gratory, invasive, and metastatic activities, including a promoting
role in TGF-β–induced epithelial to mesenchymal transition and in
AKT and ERK survival/proliferation signaling pathways. Whether

and how GCNT2-synthesized I-branched glycans impact distinct
breast cancer growth factor receptors, integrins, and other
membrane proteins, notably cell adhesion molecules, involved in
malignancy-associated extracellular or intracellular signaling
pathways in breast cancer, however, are still unknown. How
GCNT2 gene and isoform splicing are regulated in breast cancer
cells is also undefined.

Colon Cancer. Using a comparative real-time qPCR for glycogene
approach on primary colorectal cancer and normal colonic mu-
cosal tissue specimens, data show thatGCNT2 gene expression is
severely depressed in the cancer tissues compared with normal
mucosa (106). In fact, all 3GCNT2 gene variants are suppressed in
colorectal cancer tissues. Subsequent experiments on the epi-
genetic factors putatively regulating GCNT2 expression reveal
that these 3 GCNT2 gene variants, which are controlled by unique
promoter regions, appear to be hypermethylated in GCNT2
depressed cell lines, suggesting that GCNT2 expression is
suppressed by methylation (106). However, in lymph node
metastases specimens, closer scrutiny and associative analysis
of the individual GCNT2 variant methylation status shows that
GCNT2 variant 2 promoter is, in fact, hypomethylated compared
with normal colonic mucosa (106). So, while GCNT2 gene levels
are depressed from normal mucosa to malignant transition,
hypomethylation of GCNT2 variant 2 in lymph node metastases
suggests that epigenetic regulation of GCNT2 may help predict
metastatic potential. Whether elevated levels of the I-branched
glycan correspond with GCNT2 hypomethylation to influence
malignancy-associated pathways in colorectal cancer disease
progression is still unknown. However, an interesting follow-up
study on the role of GCNT2 on the malignant activity of colorectal
cancer shows that GCNT2 and its I-branched glycan product, in-
deed, accelerate epithelial-to-mesenchymal transition among other
malignant traits and are regulated negatively by the expression of
microRNA, miR-199a/b-5p (105).

Prostate Cancer. Similar to GCNT2’s association with the ma-
lignant and metastatic activity of breast and colon cancer, re-
spectively, GCNT2 expression in primary prostatic cancer tissue
localizes at invasive protrusions and directly correlates with a
higher risk of prostate-specific antigen recurrence after radical
prostatectomy (104). Furthermore, experiments using GCNT2-
overexpressing or -silenced prostate cancer cell lines show that
high GCNT2/I-branching levels encourage higher invasive and
migratory activity, partially through α5β1 integrin and related
signaling activity. However, I-branching in these cell line models
does not appear to directly affect α5β1 heterodimerization or
fibronectin-binding affinity, suggesting that global cell surface I-
branching can alter membrane protein function via indirect gly-
cocalyx mechanisms (104). Of note, GCNT2/I-branching in
DU145 prostate cancer cells appears to largely occur on glyco-
lipids and partially on O-glycans (104), demonstrating the ability
of GCNT2 to act on poly-LacNAcs present on N- and O-glycans as
well as on glycolipids.

Malignant Melanoma. The most recent study on the role of I-
branched glycans and cancer reveals a striking role for GCNT2/I-
branching in melanoma progression (9). While prior reports in
breast, colon, and prostate cancer indicate an oncogenic role for
GCNT2/I-branching, new data suggest that, in contrast, GCNT2/I-
branching acts as a putative tumor suppressor, inhibiting several
malignancy-associated activities in melanoma cells and xenografts
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(9). N-glycan antennae on normal epidermal melanocytes almost
uniformly display I-branches, whereas primary melanomas
variably express I-branched glycans and metastatic melano-
mas mostly lack I-branches concomitant with depressed
GCNT2 expression (9). Data-mining analysis and immuno-
histochemical analysis of GCNT2 in clinical primary and
metastatic melanoma specimens establish a strong inverse
relationship between GCNT2 expression and melanoma
metastases, suggesting that GCNT2 expression (or loss
thereof) could help serve as a biomarker and predict clinical
outcome. While the regulation of GCNT2 expression in nor-
mal and malignant melanocytes has not yet been addressed,
biochemical data show that GCNT2 catalyzes global I-branch
synthesis to N-glycans on several classes of membrane pro-
teins expressed by melanoma cells (9). The presence of
GCNT2-synthesized I-branches on growth factor RTKs and
α/β integrin chains, such as insulin-like growth factor 1 re-
ceptor (IGF1R) and α4-, β1-, and β3-chains, can inhibit

IGF1 and extracellular matrix-binding activities and attenu-
ate related downstream signaling and prosurvival factors in
melanoma cells (9).

Mechanistically, the I-branches on normal and malignant me-
lanocytes do not appear to contain sialylated or fucosylated
moieties, indicating that the effects of I-branching are likely not
through ancillary sialo-fucosylations, but rather as bulky capping
moieties causing either direct or indirect steric interference of
receptor–ligand interactions. Further studies are needed to ex-
plore: (i) how GCNT2 expression is regulated in melanomas, (ii)
whether GCNT2 expression can predict which patients with thick
primary melanomas will (or will not) metastasize, and (iii) how I-
branches antagonize RTK/integrin function in melanoma cells. To
help cement GCNT2’s negative regulatory role in melanoma
progression in vivo, additional murine studies could be performed
using an inducible melanoma mouse model (107) in a wild-type or
GCNT2 null background.

Metasta�c Melanoma Cell

Malignant/Metasta�c
Progression

i-linear
Poly-LacNAcs

Melanocy�c-associated glycans in melanoma progression

Normal Epidermal
Melanocyte

hG

nch

G
h

G

ch

G
h

G

ch

G
nc

h

G

ch

I-branched
Poly-LacNAcs

GCNT2

R

GCN
T2

ar

GCNT2

r

GCNT2

R

GCNT2

ar

GCNT2
r

GCNT

r

R

GCNT2

ar

R

GCNT2

r

GCNT2

r

Key
N-acetylneuraminic Acid (NeuAc)

Galactose (Gal)

N-acetylglucosamine (GlcNAc)

N-acetyllactosamine (LacNAc)

(            )n Poly-LacNAc

i-linear Poly-LacNAc I-branched Poly-LacNAc

ß3

ß4

ß4

ß3

ß4

ß4

ß3

ß4

ß4

ß3

ß6
ß4

ß3

ß4

ß4

ß3

GCNT2
ß6

ß6
ß4

I-branched Glycans and Malignant Progression

ß4GalT

ß4
ß6

Glyco-enzyma�c I-branching ac�vity
± ± ±

GCNT2/I-branching in breast, colon & prostate malignancies

Normal
Epithelium Malignant/Metasta�c 

Progression

h

G
ch

G

nchh

GCNT

r

GCNT2
r

GCNT

r

GCNT2

i-linear
Poly-LacNAcs

I-branched
Poly-LacNAcs

G
ch

G

ch

R
GCNT

r

R

GCNT2

ar

α2,3/6 α2,3/6 α2,3/6

UDP- UDP-

R R R

A

B

C

Fig. 2. I-branched glycans and malignant progression. (A) I-branching activity of GCNT2 and subsequent β1,4 galactosyltransferase (β4GalT)
activity on i-linear poly-LacNAc is depicted. The current models of GCNT2-regulated I-branched glycans driving the malignant or metastatic
progression of breast, colon, and prostate cancer (B) or, alternatively, slowing the progression of malignant melanomas (C) are illustrated.
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Implications for I-Branched Glycans Controlling Galectin-
Binding Activities
In that I-branched glycans—Galß1,4GlcNAc moieties linked in a
β1,6 conformation to internal galactose residues on linear poly-
LacNAcs—can potentially serve as β-galactoside-binding de-
terminants for galectins and that galectins possess key immu-
noregulatory and protumorigenic functions, GCNT2/I-branching
activity could function as a critical regulator of cancer progres-
sion. Because β3GnT extension activity is necessary for linear
poly-LacNAc synthesis, β3GnT(s) and GCNT2 could theoretically
compete to dually regulate the synthesis of linear vs. I-branched
poly-LacNAc. GCNT2/I-branching activity, however, appears to
serve as an end-stage glycosylation event. GCNT2 and
B3GNT2, when coexpressed, have a cooperative relationship,
in which I-branched poly-LacNAcs are synthesized from linear
poly-LacNAcs and the level of I-branched poly-LacNAcs di-
rectly correlates with GCNT2 expression (9, 94, 95). Such end-
stage glycosylation events, akin to α2,6 sialylation and
α1,3 fucosylation, often have profound effects on galectin-
binding activities (21, 108–110). Indeed, data in studies on
GCNT2/I-branching in melanoma progression (9) reveal a po-
tential role for GCNT2/I-branching activity as a native inhibitor
of Gal-3 binding activity. As opposed to Gal-1, Gal-3 binds
linear poly-LacNAcs on melanoma cells more avidly than to
GCNT2-synthesized I-branched glycans, which is consistent
with Gal-3’s preference for linear poly-LacNAcs on glycan
microarrays (111, 112). Additional observations from our lab-
oratory demonstrate that GCNT2/I-branching activity also
blunts Gal-9 ligand activities in numerous melanoma cell
lines. Because melanoma progression is directly related to
Gal-3 expression in melanoma cells (113), melanoma-intrinsic
GCNT2 action could theoretically offset functional activities
triggered by Gal-3 binding. That is, in melanoma patients
with moderate- to late-stage disease where GCNT2 expression
is progressively lost (9), renewing GCNT2/I-branching activity
could potentially antagonize Gal-3–dependent malignant
activities and slow melanoma progression. This therapeutic
notion is dependent, however, on the future discovery
and engagement of regulatory factors controlling GCNT2
expression.

Coincident with evidence of GCNT2/I-branching antagonizing
melanoma galectin ligand activity, intensive glycomic in-
terrogation of human B cell subsets depicts GCNT2 as a major
factor controlling Gal-9 binding activity (95). In contrast to ro-
bust binding on naïve and memory B cells, Gal-9 binding to
germinal center B cells is markedly less due, in part, to up-
regulation of GCNT2/I-branching activity. Gal-9, in the ab-
sence of I-branched glycans, imposes a regulatory activity via
CD45 binding and downstream suppression of B cell receptor
signaling and cell activation (95). Notably, our laboratory also
finds that elevated GCNT2/I-branching activity in human B cell
lines associates with depressed Gal-3 binding, suggesting that
GCNT2 indeed elicits its galectin inhibitory effects across
normal and malignant settings.

Collectively, the putative tumor-intrinsic and immunological
consequences of GCNT2/I-branching on Gal-3 and Gal-9 function
provide opportunities for anticancer therapeutic targeting of
GCNT2. Whether tuning galectin-dependent immunoregula-
tion of antitumor immune cells or malignancy-associated ac-
tivities intrinsic to cancer cells, GCNT2/I-branching could
provide an attractive therapeutic target to the burgeoning field
of cancer immunotherapy.

Conclusions
The field of glycobiology is now penetrating the interests of most
cancer researchers, because nearly all malignancy-associated
pathways are impacted by glycan modification. As the meth-
ods for detection, isolation, and characterization of glycans
and their enzymatic regulators continue to improve, cancer
glycomics is poised to provide exciting new insights on the
pathogenesis of cancer. Studies on cancer cell surface sialylation,
fucosylation, N-/O-glycan maturity and now i-linear/I-branched
poly-LacNAcs dominate much of our current interests due to
their importance in uncovering regulators of membrane pro-
tein folding, clustering, organization, recycling, lectin-/ligand-
binding, and signaling. Moreover, growth factor RTKs, such as
EGFR, IGF1R, and VEGFR2, along with other Ig superfamily
members and integrins, are some of the most vulnerable
biosynthetic targets due to their abundance of glycans (9, 11,
13, 16, 19, 30, 45, 73, 84, 114, 115). EGFR contains N-glycans
that comprise ∼30% of its molecular mass (114, 115), and
α/β-chains of IGF1R and all α/β-integrin chains are heavily N-
glycosylated (9), implicating RTKs and integrins governing
growth/survival activity as prime candidates for modulation
by a cancer glyco-phenotype. Where GCNT2/I-branching
plays a role in cancer progression, these protein candidates
can also potentially be influenced by Gal-3– or -9–binding ac-
tivities that are known regulators of membrane protein dynamics
and function.

Importantly, through the pioneering efforts to reengage the
host immune system to fight cancer, cancer-associated glycans
can also be targeted in these revitalized anticancer therapeutic
strategies. Development of vaccines, anticarbohydrate-drug
conjugate Abs, and chimeric antigen receptor T cells against
cancer-specific glycans are rapidly evolving as promising can-
cer immunotherapeutic approaches (116–120). As reviewed
here, there are several cancer-associated glycan features that
can be leveraged to design rational drug or immune system
targets. To maximize antitumor activities and overcome
mechanisms of cancer neoantigen evolution, multiple cancer
glycome features/glyco-enzymatic regulators should be tar-
geted as more standard treatment paradigm. The emergence
of I-branched glycans and enzymatic regulator GCNT2 now
provides additional opportunities to target glycome peculiar-
ities of cancer and elicit anticancer activity. Whether boosting
or blunting GCNT2/I-branching activity (depending on GCNT2’s
effects on a given cancer subtype) (Fig. 2 B and C), anticancer
glycan therapeutics is now armed with new glycome target. Fur-
thermore, monitoring GCNT2/I-branch expression through facile
immunohistochemical methods can potentially be used to predict
metastatic potential and help guide long-term treatment deci-
sions. There are still unexplored aspects of GCNT2 action, such
as gene and enzymatic regulation and the impact of I-branching
on galectin-binding sensitivities, that need to be explored to
ensure the most appropriate mode of intervention with minimal
side effects.
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