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Abstract

Untargeted metabolomic measurements using mass spectrometry are a powerful tool for 

uncovering new small molecules with environmental and biological importance. The small 

molecule identification step, however, still remains an enormous challenge due to fragmentation 

difficulties or unspecific fragment ion information. Current methods to address this challenge are 

often dependent on databases or require the use of nuclear magnetic resonance (NMR), which 

have their own difficulties. The use of the gas-phase collision cross section (CCS) values obtained 

from ion mobility spectrometry (IMS) measurements were recently demonstrated to reduce the 

number of false positive metabolite identifications. While promising, the amount of empirical CCS 

information currently available is limited, thus predictive CCS methods need to be developed. In 

this article, we expand upon current experimental IMS capabilities by predicting the CCS values 

using a deep learning algorithm. We successfully developed and trained a prediction model for 

CCS values requiring only information about a compound’s SMILES notation and ion type. The 

use of data from five different laboratories using different instruments allowed the algorithm to be 

trained and tested on more than 2400 molecules. The resulting CCS predictions were found to 

achieve a coefficient of determination of 0.97 and median relative error of 2.7% for a wide range 
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of molecules. Furthermore, the method requires only a small amount of processing power to 

predict CCS values. Considering the performance, time, and resources necessary, as well as its 

applicability to a variety of molecules, this model was able to outperform all currently available 

CCS prediction algorithms.

Graphical Abstract

Mass spectrometry (MS) is widely used for biomarker discovery and to explore prevailing 

metabolomic processes. Untargeted MS measurements coupled with high-performance 

liquid chromatography (LC) allow for the detection of thousands of ions in a matter of 

minutes. However, even though the resolution, mass accuracy, and sensitivity of mass 

spectrometers continue to improve, the identification of small molecules is still challenging 

due to their limited mass range and number of possible isomers.1–3 To date, most methods 

for metabolite identification are based on mass spectra database comparison. In these 

comparisons, spectra obtained experimentally are matched to the database containing a list 

of known molecular masses and fragmentation patterns. However, the vast majority of 

features in an MS experiment cannot be identified due to limited entries in current databases 

and/or insufficient fragmentation coverage. Furthermore, even if the chemical formula of a 

particular species is convincingly identified, structural identification remains a challenge due 

to the number of isomer species which can exist for any given chemical formula.4

To deal with these challenges, the Metabolomics Standards Initiative has published 

guidelines for metabolite identification,5,6 which give identification confidence levels 

depending on the amount of information discerned for the molecule. On the basis of these 

recommendations, the best way to confidently identify a metabolite is to use two 

independent and orthogonal data types for each authentic compound analyzed, such as GC 

or LC retention time, molecular mass, and tandem mass spectra. However, this step can be 

costly, as numerous authenticated chemical standards are required to attain the highest 

confidence level (i.e., a level 1 identification). Additionally, chemical standards are 

oftentimes unavailable for true unknown molecules (novel compounds), thus requiring 

several orthogonal analytical measurements and/or custom synthesis to support an 

identification.

Recently, the use of ion mobility spectrometry coupled with mass spectrometry (IM-MS) has 

become very promising for adding a structural dimension to MS analysis based on collision 

cross sections (CCSs) in support of metabolomic studies.7 In contrast to other properties, 

such as retention time, CCS is an ion parameter which can be measured with relative 
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standard deviation (RSD) ranging from 0.29 to 6.2% when using different instrumental 

platforms8 and 3% to better than 0.5%, when using a standardized method,9–11 making it a 

valuable property for metabolite identification that is reproducible between different 

laboratories. The use of CCS can reduce the number of possible identifications and the 

number of false positive identifications in untargeted metabolomic studies.12–14 

Additionally, when reference CCS values are not available in a database, it is possible to 

compute theoretical CCS values on structures obtained from molecular simulations. 

Currently this approach requires choosing the proper theory and approach for converting 

candidate structures to CCS, many of which are computationally expensive without being as 

precise as an experimental measurement.12,15 A more efficient process to produce CCS 

values for small molecules is through machine learning approaches.16 By using a training 

set, the algorithm attempts to identify the relation between an input (usually a set of 

molecular descriptors) and the CCS values. If the learning step is successful, the function 

can be applied to new inputs to obtain accurate and efficient predictions. The performance of 

the model is verified using validation and testing sets that were not used during the training 

step.

Deep neural networks (DNN), a type of machine learning algorithm, are now commonly 

used in multiple domains, such as self-driving cars, medical diagnosis, drug optimization, 

and speech recognition.17–19 Compared with other machine learning algorithms, such as 

support vector machines and random forests that learn models directly from a set of user-

provided features, deep learning algorithms are composed of a cascade of layers which 

extract increasingly complex features (i.e., combinations of the original features) from the 

initial input (Figure 1). The DNN models are trained to build a representation which is then 

used to perform a prediction task. Convolutional neural networks (CNN), a subtype of DNN, 

are widely used in image recognition due to their capability to resist translation and 

transformation of features present in the input.20 CNN structures can be separated in two 

components (Figures 1 and 2). The first is the feature-learning component, which is 

constituted of multiple successions of convolution filter layers and maximum pooling layers 

(Figure 2). The output of the feature-learning component is a hidden internal representation 

of the input constructed by the neural-network. The second component, known as the 

predictive section, performs classification or regression depending on the task at hand, 

through a series of fully connected layers using the internal representation as input. DNN 

and CNN have already been used successfully in chemoinformatics for predicting molecular 

properties and protein-ligand interactions.21

CCS prediction using machine learning has been addressed on multiple occasions in prior 

studies.12,2,23 Although results from these previous works were published, the prediction 

models and the code needed to reconstruct the models are unavailable. Moreover, previously 

published prediction models might not generalize well to new data from multiple 

laboratories because these models were mostly trained on data sets produced in a single 

laboratory and on a single instrument, making them highly specific to a certain context. 

Furthermore, most if not all prediction models to date use a set of molecular descriptors as 

the input for predictions. This transfers the problem of predicting CCS to the issue of finding 

or computing the values for a set of molecular descriptors (e.g., polar surface area, molar 

refractivity, etc.), which is not straightforward and thus is prone to user error. Simplified 
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molecular-input line-entry systems (SMILESs) are structurally descriptive notations which 

can be readily assigned to any compound with a known structure, and they are already used 

as input by different methods to compute molecular descriptors.24 In this work, we utilized a 

chemical SMILES, a chain of characters easily found in chemical compound databases, as 

the input of a CNN model to predict CCS for different types of molecules. We generated a 

neural network structure based on CNN for CCS prediction and measured the performances 

of the generated models on different testing sets. We also evaluated the reusability of the 

SMILES internal representation learned by the model on a multitask learning problem. 

Finally, we offer a simple command line tool to use the generated model for CCS 

predictions.

■ EXPERIMENTAL SECTION

Data Sets.

Five data sets containing CCS and mass information were collected from multiple sources, 

including measurements from drift tube ion mobility (DTIM) and traveling wave ion 

mobility (TWIM) instruments, in order to constitute a learning database that includes a large 

panel of molecules. These sources included the following data sets.

MetCCS.25

The 779 CCS values were measured on an Agilent 6560 DTIM-QTOF-MS instrument 

(Agilent Technologies, Santa Clara, CA). This data set is already separated between a 

training (n = 648) and testing (n = 131) set.

Astarita.11

The 205 CCS values were measured on a Waters Synapt G2 Q-TWIM-TOF-MS instrument 

(Waters Corporation, Manchester, UK). The positive and negative ion mode data sets were 

used as an independent testing sets for comparison with MetCCS web server predictions.

Baker.26

The 857 CCS values were measured using the Agilent 6560 DTIM-QTOF-MS instrument 

customized for increased precision and reproducibility. This data set contains multiple types 

of small molecules.

McLean.27

The 211 CCS values were measured using the Agilent 6560 DTIM-QTOF-MS instrument. 

This diverse data set contains CCS values for amino acids, lipids, metabolites, and peptides.

CBM2018.22

The 357 CCS values were measured using a Waters Vion TWIM-QTOF-MS instrument. 

This data set contains pharmaceuticals, drugs of abuse, and their metabolites.
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Data Preparation.

For each molecular entry, the SMILES notation was retrieved from PubChem except for 

amino acids sequences for which the SMILESs were generated using the Python RdKit 

module. The data sets were filtered to keep only SMILES with less than 250 characters/

chemical symbols. This removed only a few entries and allowed the network input to be kept 

at a reasonable size. The only ions considered in this evaluation were (M + H)+, (M + Na)+, 

(M − H)−, and (M − 2H)2− in order to have at least 50 examples per ion type.

The different data sets were split into a training, validation, and testing set following the 

schema in Figure 3. The Astarita data sets were all included in the DeepCCS testing set to 

allow for a valid comparison to MetCCS predictors, while 20% of the Baker, McLean, and 

CBM2018 data sets were included in the testing set to better evaluate the generalization of 

the models.

To feed the neural network, SMILESs and ions were encoded using one-hot vector encoding 

and padded to a length of 250 characters. This resulted in binary matrices of 250 × 36 for 

SMILESs and binary vectors of length 4 for the ions.

Neural Network Structure Optimization and Training.

The decision to use a CNN was justified by the intuitive way this type of DNN learns. The 

CNN looks for features in the input, and in the case of image recognition, these features can 

be lines, points, or a combination of these, leading to more complex objects (e.g, eyes or 

wheels). In our case, these features can be chemical groups and substructures. Since these 

groups of atoms can be anywhere in the SMILES representation, the translation resistance 

characteristic of CNN was a good fit. Furthermore, it was shown that using CNN with 

SMILES as input can give results equivalent or better than the state-of-the-art in many 

chemo-informatics applications.28

A CNN structure is modulated by a set of hyperparameters that affect the number and width 

of layers, convolution filter size, and maximum pooling window size, among others. 

Different hyperparameters have a different impact on the capability of a model to learn and 

generalize. In this work, hyperparameter optimization was performed by a 5-fold cross 

validation using a random search approach. Implementation and experiments were 

performed in Python. The CNN was built using the Keras library with the Tensorflow 

backend. After training, the model giving the best score on the validation set at the end of 

the different epochs was retained (Figure 4). The training of a model using the standard data 

set partitioning (Figure 3) took around 25 min on a Nvidia Tesla P100 GPU. Prediction of 

100 CCS values using the DeepCCS command line tool took approximately 3 s on a 

standard desktop computer without the use of a GPU. Additional information about model 

optimization and construction are available in the Supporting Information. All the codes 

needed to train the network and to reproduce the results on the different testing sets 

presented in this article are available at github.com/plpla/DeepCCS/.
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Evaluation of the Internal Representation Reusability.

In order to evaluate the reusability potential of the internal representation learned by a CNN 

using SMILES as input, a multitask experiment was performed. The SMILES and molecular 

properties of every compound in the Human Metabolome Database (HMDB)29 were 

extracted. Only compounds with a valid SMILES and valid values for polar surface area, 

logS, refractivity, polarizability, logP (ALOGPS), and logP (Chemaxon) were retained. This 

allowed for the extraction of 71 232 compounds. This data set was randomly separated 

between the training, validation, and testing set using 72, 8, and 20% of the complete data 

set. The SMILES encoder previously learned was adjusted to include new chemical symbols 

not seen in the CCS data sets. A new CNN based on the DeepCCS structure (Figure 4) was 

built with the following changes. The second input (ion type) was removed; the 

concatenation layer was removed; and six different dense sections, one per property, 

replaced the single dense section. The resulting multitask CNN structure can be consulted in 

Table S4. The task of the network was to predict the different properties using a common 

internal representation. This allowed the network to learn a general internal presentation of a 

SMILES. After the first training phase, a DeepCCS model was reconstructed using the 

convolution and maximum pooling layers that were trained on the multitask problem. The 

weights of the feature learning part layers were locked to prevent further learning. The new 

half-trained network was retrained for 150 epochs using the CCS data after encoding using 

the updated SMILES encoder and the exact same data set split.

■ RESULTS AND DISCUSSION

DeepCCS Network Structure.

Convolutional neural networks are known to learn an internal representation of the input 

through a series of convolution and maximum pooling steps. This internal representation is 

then used as the input for a multilayer perceptron to perform predictions. The network 

structure of DeepCCS that was obtained after optimization uses the same principle, 

transformation of the SMILES provided an input to an internal representation and prediction 

using this representation and the ion type for which the CCS prediction must be made. The 

use of a second input allows DeepCCS to separate the internal representation of the input 

and the ion type to let the network focus only on the molecular structure in the feature-

learning part. The final structure of the DeepCCS neural network is presented in Figure 4, 

and details can be found in Table S3 and in the source code. It contains a series of 7 

convolution and maximum pooling layers to study the molecular structure of the SMILES 

provided in input. It is worth mentioning, that the downscaling factor (strides parameter) was 

increased to a value of 2 on the last maximum pooling layer to significantly reduce the 

number of trainable weights in the network without impacting the prediction accuracy.

CCS Prediction.

To evaluate the robustness of the training step, two different experiments were performed 

(Table 1). First, ten different models were trained on a single data set partition. Since the 

initialization of the trainable weights are different for each model, the resulting model 

explored different paths to finally converge to a final state that produced similar predictions. 

The second experiment consisted of training ten different models using ten different data 
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splits generated randomly. This allowed to study the impact of the training and testing set 

composition on the performances of the model. For example, if a set of molecules exhibiting 

a molecular substructure that the network could not interpret properly because of a lack of 

example was exclusively in the training set from the first experiment, it would have 

erroneously resulted in good results. As shown in Table 1, the results are very similar 

between the two experiments showing that data set splitting, and the network initial weights 

values have a minimal impact on the performances of the various trained models.

When all testing sets were merged into a single, global testing set, the coefficient of 

determination (R2) was greater than 0.97, and the absolute median relative error (MRE) was 

below 2.6%, indicating an excellent accuracy of prediction when compared to 

experimentally measured values. Considering that this global testing set was not used during 

the training step and that it contains data originating from five different laboratory and 

multiple instruments, one can conclude that the model achieved a state of generalization 

where it can be applied to new molecules. Furthermore, since the reported deviation for ion 

mobility CCS measurement can be as high as 6.2%,8 these results appear acceptable. Similar 

results were obtained when removing the test sets of the SMILES–ion combinations that are 

present in the training set with different CCS values, thus making sure no similar examples 

were already seen by the model before generating predictions (Table S5). Using the 

compounds classification provided in the Baker data set, Figure 5 shows that the model 

performs well for different types of compounds, such as amino acids, fatty acids, and lipids; 

hence, the model correctly discriminates the differences between multiple types of chemical 

structures and can predict the CCS value properly. With the exception of a few outliers, the 

concordance between measured and predicted CCS values is close to the reference line 

which indicates overall good predictions (Figure 5).

Although global performances of the algorithm were satisfactory, the Astarita data sets 

showed poorer correlation compared to the other data sets, with an average R2 lower than 

0.9 and a MRE close to 5% for positive ions. Since the performances on the other testing 

data sets were better, we hypothesized that either the measurement accuracy of the Astarita 

data sets were lower than the other data sets or that a bias in measurement between data sets 

is present. To investigate this further, CCS values for identical SMILES and ion type were 

compared, which allows for the variation between data sets to be evaluated (Table 2). The 

average difference between the Astarita positive data set and Baker (n = 57) or McLean (n = 

14) data sets was approximately 5% for overlapping measurements, which is significantly 

higher than the differences observed between other data sets. This seems to indicate that a 

CCS measurement bias is present in these data sets, which serves to decrease the 

performance of the model during the testing step. In fact, previous studies have 

demonstrated that large (>5%) differences in CCS can exist when comparing measurements 

obtained from drift tube (e.g., Baker and McLean data sets) and traveling wave instruments 

(e.g., Astarita data sets).8 Since both Astarita data sets were not included in the training step, 

this bias does not affect the model directly. The comparison of CCS measurement in 

multiple laboratories using different experimental conditions also allows us to get a better 

idea of the real variation that can be expected when comparing experimental CCS values 

from different studies.
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On the basis of our results, CCS measurements can be reproducible well below the reference 

2% values (Baker vs McLean, n = 54), but it can also be as high as 5% (Astarita vs Baker, n 
= 57). These results corroborate what was observed by Schmitz et al. when comparing CCS 

values obtained from different IM instrumentation and techniques.8 The differences between 

TWIMS (i.e., Astarita, CBM2018) and DTIMS (i.e., MetCCS, Baker, McLean) are not 

systematic for most molecule types, but some show appreciable differences.8 Once again, an 

appropriate calibration for TWIMS is critical to obtain a high quality measurement using 

this technique. These results also put emphasis on the importance of using data from 

different contexts, such as instruments (DTIMS and TWIMS) and laboratories, to obtain a 

predictor that can generalize to every context when insufficient training data from a specific 

context are available. As more data sets are published and included in the training step of 

DeepCCS, the real variation of CCS measurements will become more precise, and the 

DeepCCS model will improve such that it should be able to predict values closer to the 

average CCS, therefore increasing its performance. The addition of the IMS measurement 

technique could also be included in the model as more data become available, making the 

model adaptable to the different contexts.

Outliers Detection for Database Validation.

Outliers in Figure 5 (points A–E) were further investigated. These data points, respectively, 

correspond to 1,2-diacyl-sn-glycero 3-phosphocholine, methyl behenate, D-maltose, 

sophorose, and L-threonine. All outliers, except sophorose, were confirmed as measurement 

error by remeasuring the CCS value of the compounds (Supporting Information and Figure 

S1). For sophorose, we hypothesize that the error is similar to the one for D-maltose. 

Carbohydrates are prone to aggregation, and these multimers readily dissociate between the 

IM and the MS stage, resulting in ion signals at higher CCS values (Figure S1C). Since the 

measured value is, like for D-maltose, higher than the predicted value, we hypothesis that it 

might also be a case of aggregation–dissociation of sugar molecules leading to an erroneous 

measurement.

Outlier investigation detected four confirmed and one unconfirmed but highly probable 

erroneous measurements. These results highlight on another potential utility of CCS 

prediction tools, database validation. By comparing predicted and measured CCS values, 

one can easily detect suspect measurements and further investigate their validity. The ease of 

use and good performances of DeepCCS make it ideal for this task.

Comparison to Existing Tools.

The DeepCCS model uses SMILES notation as input, which is easy to obtain for most small 

molecules. When performing metabolite identification using MS data, a popular approach is 

to compare the empirically measured spectra to reference spectra from a database. This 

reference database necessarily contains the structure of the compounds, and therefore, the 

SMILES notation is either already present or easily computed. In contrast, other CCS 

predictors use molecular descriptors as input, which are not always available in databases 

and can require licensing commercial software to compute them.
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The MetCCS web server is a CCS prediction tool based on Support Vector Regression and 

uses 14 common molecular descriptors available in the HMDB database. MetCCS has been 

used to generate over 176 000 CCS values for over 35 000 small molecule metabolites from 

the HMDB.12 Although MetCCS does not allow CCS prediction for molecules other than 

metabolites, a separate tool, LipidCCS, has been developed by the authors for lipids and 

fatty acids.30 In contrast, CCS prediction for all molecule types can be done directly in 

DeepCCS. Results from the DeepCCS model were compared with those obtained using the 

MetCCS server in order to evaluate the performance of each machine learning approach 

(Figure 6). The MetCCS testing data sets and the Baker data set were used, as MetCCS does 

not work for all molecule types and requires HMDB identifiers to collect the associated 

molecular descriptors. The MetCCS prediction server produces the most extreme values on 

most data sets. This could be explained by the sub representation of certain molecule types 

in the MetCCS training set that is much smaller. Overall, both predictors perform similarly 

with most predictions within a 5% window, but we can discern the impact of the different 

training sets of the predictions. Both models were trained almost exclusively with data from 

DTIMS (DeepCCS used a fraction of the CBM2018), but MetCCS was trained with data 

from a single laboratory. The Baker and McLean CCS values are far more distant than the 

MetCCS training set value to Astarita values.

When considering the MRE and R2 (Table 3), the performances were found to be similar 

when using the MetCCS testing set, but MetCCS performed better when the Astarita data 

sets were used. This might be explained by the close proximity of MetCCS and Astarita 

CCS values (Table 2). Although, when evaluating the performances using the Baker data set, 

DeepCCS performed better and could predict the CCS for more molecules (171 instead of 

134). This shows that the model improves on current methods through better generalization 

and by providing accurate predictions on multiple compound types.

Even with these advances, DeepCCS has its own limitations. It can only perform predictions 

using features that have already been observed. For example, only chemical symbols of 

atoms contained within the data set are available for encoding, therefore only SMILES with 

these symbols can be used for predictions. This limitation is in place to ensure predictions 

are based on features that are recognized by the CNN; that is, the model cannot perform 

predictions using items it has never seen. Similar limitations apply to molecule types, thus 

while DeepCCS can perform CCS prediction on any compound, the predictions might be 

less accurate for molecule types and substructures not seen during the initial training stage. 

Figure 7 shows molecule distribution at the superclass level from the ClassyFire taxonomy.
31 Even though the training set contains multiple examples, it clearly does not cover all 

possible molecules. In all cases, these limitations can be solved by generating sufficiently 

large and diverse CCS data sets to train a new model.

Generalization of the Internal Representation.

The SMILES input contains all of the structural information on the molecule, and as such, 

the CNN internal representation should be generalizable to predicting other molecular 

properties. This assumption was evaluated by performing molecular property predictions on 

a multitask problem. Six different chemical properties available in the HMDB (polar surface 
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area, logS, refractivity, polarizability, logP (ALOGPS), and logP (Chemaxon)) were 

predicted with the objective to learn an internal representation. The resulting model 

predicted these chemical properties with very good accuracy (R2 > 0.98) and a median 

relative error below 0.7% (Table S2).

This generalized internal representation incorporating the data set from the single split 

experiment was subsequently used for CCS prediction. Performances similar to what was 

obtained in previous experiments were also obtained (Table 4). When predicting CCS, this 

new model performed with a global R2 of 0.968 and a median relative error of 2.6%. The 

results of this experiment showed that the internal representation learned by a CNN using 

SMILES can be reused to predict different molecular properties beyond CCS, and that 

significantly increasing the number of SMILES used to learn the internal representation does 

not have an impact of the accuracy of CCS predictions. Therefore, we hypothesize that, to 

further increase CCS prediction accuracy, the predictive part of the network would need 

additional data for a better understanding of the link between the network internal 

representation and the CCS value. The other possibility, and probably the best way to 

increase prediction accuracy, would be to decrease the variations between CCS measurement 

in the different data sets used for training the model. A large CCS database (n > 3800) 

exhibiting high measurement precision has recently been developed by the authors and will 

include further CCS measurement as they will be published.14 It will be used in future work 

to further improve the predictive capabilities of DeepCCS.

■ CONCLUSION

CCS prediction using machine learning is necessary to populate the numerous possible small 

molecule CCS values with high speed and accuracy. The DeepCCS prediction algorithm 

uses SMILES notation as an input instead of a more traditional set of molecular descriptors, 

which allows DeepCCS to be fast (100 predictions in ~3 s) and, due to the CNN structure 

used, is also generalizable to a large number of different molecule types. Additionally, the 

DeepCCS command line tool provides an easy way to train a new model using newly 

generated data or to simply predict CCS values using the provided model. The precision of 

empirical CCS measurements used as a training set was found to have a significant impact 

on the overall prediction accuracy of the model. In this case, the wide variations observed 

(2% to more than 5%) in measured CCS are certainly a limiting factor on the capability of 

the model to predict CCS with less than 3% error. The performance of machine learning 

models, such as DeepCCS, will improve as more high-quality CCS measurements are made 

available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison between DNN and classical machine learning for CCS prediction. Blue sections 

are purely computational, making DNN an almost completely computational approach. 

Classical machine learning requires an input of well-defined and comprehensive molecular 

descriptors, which can be adversely influenced by domain knowledge (e.g., CCS is 

correlated with the m/z value), reducing its accuracy.
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Figure 2. 
Schematic representation of the different operations performed by a convolutional neural 

network.
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Figure 3. 
Partitioning of the different source data sets between the training, validation, and testing set 

of DeepCCS.
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Figure 4. 
DeepCCS neural network structure. The upper part, in blue, performs a series of convolution 

and maximum pooling steps to learn an internal representation of the encoded SMILES 

input. This representation is flattened and concatenated with the ion type to be processed by 

the lower part of the network, in orange, to perform CCS prediction through a series of 

dense layers. The detailed network structure is available in Table S3.
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Figure 5. 
Comparison of IMS measured and predicted CCS values for all compound from the testing 

set. Compound classes are from the Baker data set, others are unclassified. The solid line 

(ref) represents a reference line of perfect fit (a slope of 1). The dotted line indicates a 2nd-

order polynomial spline fit to the data to show overall tendency. Letters A–E indicate 

outliers, respectively, methyl behenate, 1,2-diacyl-sn-glycero 3-phosphocholine, D-maltose, 

sophorose, and L-threonine (see the Supporting Information).
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Figure 6. 
Comparison of the error distribution on five different testing sets between DeepCCS and 

MetCCS. Previously detected database errors were removed from the comparison.
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Figure 7. 
Classification at the superclass level of the molecules from DeepCCS data sets using the 

ClassyFire taxonomy. The “Others” group contains the following classes, organohalogen 

compounds, organic polymers, organosulfur compounds, and homogeneous nonmetal 

compounds. (A) Organic oxygen compounds. (B) Alkaloids and derivatives. (C) 

Phenylpropanoids and polyketides. Classification tables at the subclass and class levels are 

available in Tables S6 and S7.
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Table 3.

Comparison of DeepCCS and MetCCS Predictive Performances Using Different CCS Testing Sets

R2 median relative error (%)

DeepCCS MetCCS DeepCCS MetCCS

MetCCS test positive 0.97 0.95 1.63 1.74

MetCCS test negative 0.98 0.97 2.30 1.54

Astarita positive 0.93 0.93 4.22 2.96

Astarita negative 0.97 0.97 2.21 1.47

Baker testing set
(n = 171 and 134) 0.95 0.9 2.50 3.00
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Table 4.

Model Performances on CCS Prediction after Training the Feature Learning Section of the Network on a 

Multi-Output Problem
a

data set R2 median relative error (%)

global 0.968 2.55

MetCCS test pos. 0.928 2.43

MetCCS test neg. 0.941 2.37

Astarita pos. 0.878 4.27

Astarita neg. 0.945 2.89

Baker 0.950 2.15

McLean 0.986 1.50

a
The dataset split is identical to the single split previously used.
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