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Abstract

Chimeric antigen receptor (CAR) T-cell therapy is an effective new treatment for hematologic
malignancies. Two CAR T-cell products are now approved for clinical use by the U.S. FDA:
tisagenlecleucel for pediatric acute lymphoblastic leukemia (ALL) and adult diffuse large B-cell
lymphoma subtypes (DLBCL), and axicabtagene ciloleucel for DLBCL. CAR T-cell therapies are
being developed for multiple myeloma, and clear evidence of clinical activity has been generated.
A barrier to widespread use of CAR T-cell therapy is toxicity, primarily cytokine release syndrome
(CRS) and neurologic toxicity. Manifestations of CRS include fevers, hypotension, hypoxia, end
organ dysfunction, cytopenias, coagulopathy, and hemophagocytic lymphohistiocytosis.
Neurologic toxicities are diverse and include encephalopathy, cognitive defects, dysphasias,
seizures, and cerebral edema. Our understanding of the pathophysiology of CRS and neurotoxicity
is continually improving. Early and peak levels of certain cytokines, peak blood CAR T-cell levels,
patient disease burden, conditioning chemotherapy, CAR T-cell dose, endothelial activation, and
CAR design are all factors that may influence toxicity. Multiple grading systems for CAR T-cell
toxicity are in use; a universal grading system is needed so that CAR T-cell products can be
compared across studies. Guidelines for toxicity management vary among centers, but typically
include supportive care, plus immunosuppression with tocilizumab or corticosteroids administered
for severe toxicity. Gaining a better understanding of CAR T-cell toxicities and developing new
therapies for these toxicities are active areas of laboratory research. Further clinical investigation
of CAR T-cell toxicity is also needed. In this review, we present guidelines for management of
CRS and CAR neurotoxicity.
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1. Introduction to CAR T-cell therapy

A chimeric antigen receptor (CAR) is a fusion protein comprised of an antigen recognition
moiety and T-cell signaling domains [1-6]. Clinical trials of CAR T cells targeting the B-cell
marker CD19 have shown clear efficacy in multiple hematologic malignancies, including
ALL [7-13], chronic lymphocytic leukemia (CLL) [14-17], and non-Hodgkin lymphoma
(NHL) [18-28]. CAR T cells targeting B-cell maturation antigen (BCMA) have
demonstrated activity in multiple myeloma (MM) [29-31]. CAR T cells are now also being
investigated in clinical trials of Hodgkin lymphoma [32,33] and in some solid tumor
malignancies [34-37]. The U.S. FDA has approved the anti-CD19 CAR T-cell product
tisagenlecleucel for multiply relapsed or refractory pediatric ALL [38]. Tisagenlecleucel and
axicabtagene ciloleucel are both FDA approved for diffuse large B-cell lymphoma (DLBCL)
subtypes following 2 or more prior lines of therapy [39,40]. With further approvals of CAR
T-cell products expected for use in hematologic malignancies, CAR T cells are anticipated to
be used in an increasing number of patients.

While CAR T-cell clinical trials have shown positive results, severe toxicities are possible
and can be life-threatening [7-9,15,18-22,29, 30,41-44]. The most common severe toxicity
is a systemic inflammatory response termed cytokine release syndrome (CRS), which is
characterized by high fevers, sinus tachycardia, hypotension, hypoxia, depressed cardiac
function, and other organ dysfunction [7-9,14,15,18-20,22,25,29,41-43]. CRS is thought to
be caused by the release of inflammatory cytokines from the CAR T cells and other immune
cells [7-9,14,18-21,42]. CAR T cells can also cause neurologic toxicity, a heterogeneous
and poorly understood disorder with variable clinical presentation and severity [7-
9,14,15,19-22,41]. Toxicities are usually reversible and resolve on their own in most cases,
though severe cases may require intensive care [7,9,14,15,20,25,41] and immunosuppressive
therapy [7,8,11,25,30,41-43]. Deaths due to both CRS [9,13,15,25] and neurologic toxicity
[9,15,26] have been reported, highlighting the gravity of these syndromes and the critical
nature of appropriate intervention.

Here we describe the diversity of toxicities that have been reported following infusion of
CAR T cells, review existing toxicity grading systems and management strategies, and
present our own treatment approach for these patients. Our management recommendations
are based on our institutional experience, are limited to adult patients, and may conflict with
other guidelines developed by other institutions or presented for specific CAR T-cell
products.

2. Clinical manifestations of CAR T-cell toxicity

The first presenting symptom of CRS is usually fever [9,14,20,42], which can occur hours to
several days following cell infusion [9,11]. In a clinical trial of anti-CD19 CAR T cells for
ALL, patients initially developed fever as early as the day of infusion and as late as 9 days
after cell infusion [9]. Similarly, in our experience, patients usually experience the first signs
of CRS within 14 days following CAR T-cell infusion, though infrequent cases of delayed
CRS are possible. CRS in our experience usually peaks and starts to resolve within 7 days.
Following the initial fever, patients may then develop sinus tachycardia, hypo-tension,
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depressed cardiac function, and hypoxia [7-9,11,14,18-22, 29,30,45]. Hypotension may
necessitate vasopressor support [7,9,12,25,29,30,46,47]. Patients may develop dyspnea and
hypoxia due to pulmonary edema in the setting of a capillary leak syndrome caused by
circulating cytokines [7,8,11,21,22]. In severe cases, patients may require mechanical
ventilation due to respiratory failure [7,12,21,46,47]. Other constitutional symptoms that
may occur include fatigue, headaches, and myalgias [11,14,18,19,41]. CAR T-cell toxi-cities
are listed in Table 1.

CAR T cells can cause multiple end-organ toxicities, which are reversible in most cases. In
addition to sinus tachycardia, other arrhythmias [11,20,21,29,30], QT prolongation [8],
troponinemia [29,48], and decreased left ventricular ejection fraction [8,20-22, 30,48] have
been reported. Transient increases in hepatic enzymes and bilirubin have been observed
[8,18,21,22,29,30,45,47,49]. Similarly, renal insufficiency suggested by a transient rise in
serum creatinine may occur [8,18,19,22,29,47]. In severe instances, patients have required
temporary hemodialysis support [22,30]. Various electrolyte derangements can occur,
including hyponatremia [8,11,21,22,29,30], hypokalemia [8,45], and hypophosphatemia
[8,22,29,30,45]. Tumor lysis syndrome has been observed [14], even in patients receiving no
conditioning chemotherapy prior to their CAR T-cell infusion [48]. Elevation in creatine
phosphokinase, suggesting inflammatory muscle damage, has been reported [8,29,30,45].
While the above end organ toxicities are almost always reversible, maintaining good end
organ function is especially a priority for patients with ALL for whom allogeneic stem cell
transplant is planned once a remission is achieved following CAR T-cell therapy.

Multiple hematologic toxicities may occur following CAR T-cell infusion. Conditioning
chemotherapy regimens contribute to the development of anemia [8,21,22,29,49],
thrombocytopenia [8,21,22,29, 30], and neutropenia [8,11,14,20-22,29,30], though all have
been reported in absence of chemotherapy conditioning as well [45]. Prolonged duration of
cytopenias is possible [12,30]. Because anti-CD19 CAR T cells deplete normal B cells as
well as malignant cells, B-cell aplasia and hypogammaglobulinemia are common following
anti-CD19 CAR T-cell infusions; patients sometimes receive intravenous immunoglobulins
to address this [8,9,14,18,20-22,45,50]. Prolongation in the prothrombin time (PT) [7],
partial thromboplastin time (PTT) [7,8,21,29,30,45], decreased fibrinogen [7,29,30], and
disseminated intravascular coagulation [9] have occurred. Hemorrhagic events following
CAR T-cell therapy have resulted in patient deaths [12,20,22,51], though these events had
multifactorial causes, and the contribution of the CAR T-cell infusions was unclear.
Hemophagocytic lymphohistiocytosis (HLH) has been described during CRS [14,25,46].
The mechanism of post-CAR T cell HLH is not well understood, and this form of secondary
HLH may represent the most severe progression of CRS. Diagnostic criteria for CAR T-cell
related HLH have been proposed [43]. To fulfill these criteria, an elevated ferritin of >
10,000 ng/mL is required, along with at least two organ toxicities, including presence of
hemophagocytosis in bone marrow or organs, or at least grade 3 transaminitis, renal
insufficiency, or pulmonary edema [43].

CAR T cells may cause certain neurologic effects, sometimes referred to as CAR T-cell
related encephalopathy syndrome, or CRES. Here, we will refer to these effects as
“neurologic toxicities,” or “neurotoxicities.” Neurologic toxicities caused by CAR T cells
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are diverse and do not localize to one region of the central nervous system (CNS). Patients
may experience delirium [7,9,11,14,19-22,25,52], hallucinations [7,14,21,22], cognitive
defects [25], tremors [8,20-22,52], ataxia [8,19,21], dysphasias [7,8,19-22,25,52], nerve
palsies [19], focal motor or sensory deficits [21,52], myoclonus [19,52], somnolence
[21,22,52], obtundation [11,19], or seizures [7,9,12,21,52]. Intubation and mechanical
ventilation may be required for airway protection in obtunded patients [9,11,21]. Cerebral
edema has led to deaths in a small number of patients [15,53]. Neurologic toxicities may
occur simultaneously with signs of CRS such as hypotension, but neurologic toxicities may
occur in patients not having typical signs of CRS or after CRS abates [7,9]. Neurologic
toxicities have been reported to occur as early as the day following CAR T-cell infusion [9],
to the third or fourth week after CAR T-cell infusion [43], demonstrating a highly variable
course. Close monitoring for neurologic toxicity is required throughout the treatment course.

Patients receiving CAR T-cell infusions may be significantly immunosuppressed due to
conditioning chemotherapy and their underlying malignancy and are therefore susceptible to
infections, including viral, bacterial, and invasive fungal infections [54,55]. Deaths have
been reported due to infections in patients participating in clinical trials of CAR T cells
[14,18,54,55]. Patients with ALL, more lines of prior therapy, receiving a higher cell dose,
and experiencing higher grade CRS may be at greater risk for infection [54,55]. These
complications highlight the importance of monitoring patients who are febrile following
CAR T-cell infusion for any sign of infection that may be concurrent with CRS.

3. Factors contributing to CAR T-cell toxicity

CRS is an inflammatory syndrome caused by multiple cytokines produced by the CAR T
cells themselves and by other cells. Cytokines and inflammatory markers associated with
more severe CRS include C-reactive protein (CRP), ferritin, interferon (IFN)-T, interleukin
(IL)-1, IL-2, soluble IL2Ra., IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-a,
granzyme B, granulocyte/macrophage colony stimulating factor (GM-CSF), soluble gp130,
macrophage inflammatory protein-1a (MIP-1a) and monocyte chemoattractant protein-1
(MCP-1) [7-9,11,12,14, 19,20,25,42,46]. The pathogenesis of neurologic toxicity remains
poorly understood, though recent advancements have been made. Severe neurologic toxicity
occurs almost exclusively in patients who develop CRS and usually occurs after the first
fever [52,56]. Neurologic toxicity can occur at the same time as CRS, but in some instances
may not occur at the same point, but instead before CRS or days later [52,56]. Higher
neurologic toxicity grade has been observed to associate with higher grade CRS [12,52,57],
suggesting independent mechanisms for each process, but with overlapping risk and
causative factors.

Higher peak /in vivo proliferation of CAR T cells has been associated with CRS grade and
with development with severe neurologic toxicity [8,9,13-15,20,21,25,46,52,56,58].
Determinants of both CAR T-cell expansion and toxicity include patient-specific factors and
treatment-related factors.

In terms of treatment-related factors, higher cell doses and conditioning chemotherapy
containing fludarabine have been associated with development of severe CRS and with
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neurotoxicity [9,20,52, 56-58]. The addition of lymphodepleting chemotherapy or radiation
has been shown to increase the efficacy of adoptively-transferred T cells in mice, and
clinical results strongly suggest that lymphocyte-depleting chemotherapy enhances the
activity of CAR T cells in humans [59-62]. Possible mechanisms for this enhancement
include increasing levels of certain cytokines, such as interleukin-15, and depletion of T
regulatory cells. Multiple chemotherapy regimens have been used in CAR T-cell trials.
These regimens include varying doses of cyclophosphamide alone [9-11,13,15,20,63],
fludarabine and cyclophosphamide [8,9,12,13,15, 18-22,25,57], pentostatin and
cyclophosphamide [14], bendamustine-based regimens [14,26], as well as several disease-
specific regimens determined by physician discretion [7,14,26]. The addition of
lymphodepletion chemotherapy has been anecdotally shown to increase persistence of CAR
T cells [63]. No one regimen has been clearly shown to be superior in terms of efficacy in
optimizing CAR T-cell activity, or clearly more toxic than another. The addition of
fludarabine to a regimen of cyclophosphamide alone may increase peak blood levels and
persistence of CAR T cells [9], response rates [20], rates of CRS [20], and neurotoxicity
[20], for the given cell product; though these effects have not been observed in all studies in
which both regimens have been used [13]. Our institutional preference is for a
cyclophosphamide and fludarabine conditioning regimen [29].

In terms of patient-specific factors, ALL rather than NHL, higher burden disease, baseline
thrombocytopenia, and baseline elevated markers of endothelial activation, such as
angiopoietin-2 (ANG2) and von Willebrand factor, have been associated with the
development of severe CRS and severe neurotoxicity [7-9,11,13,15,26,52,56,58,64]. Higher
burden malignancy involvement in the bone marrow has been established as a risk factor for
toxicity in both patients with B-cell malignancies receiving anti-CD19 CAR T cells [58] and
in patients with multiple myeloma receiving anti-BCMA CAR T cells [29,30]. ANG2 is
elevated in the blood of patients with severe CRS and in patients with severe neurologic
toxicity, suggesting that endothelial activation is an underlying process in both [52,56,58].
Patients with severe CRS and with severe neurologic toxicity may demonstrate signs of
consumptive coagulopathy, with elevated markers of disseminated intravascular coagulation
(DIC), including elevated PT, PTT, D-Dimer, and low fibrinogen [46,52,56,58]. Risk-
adapted dosing of CAR T cells, with lower cell doses given to patients with higher disease
burden, may ameliorate toxicity [9,13], possibly without compromising efficacy, as higher
malignancy burdens may cause greater antigen stimulation, resulting in adequate CAR T-cell
proliferation to induce remissions. Such risk-adapted approaches should be further
prospectively evaluated.

Severe neurologic toxicity is associated with higher peak blood CRP, early peak of IL-6, and
higher blood levels, at peak or at the third day following cell infusion, of multiple serum
cytokines and other proteins: IL-2, sIL-2Ra., IL-6, IL-8, IL-10, IL-15, INF-T, TNF-a,
granzyme B, soluble GM-CSF, and MCP-1, among others [9,15,20,21,25,52,56]. Severe
neurologic toxicity is also correlated with elevated CSF protein after cell infusion, possibly
reflecting enhanced CSF permeability [52,56], and patients with neurologic toxicity have
significantly elevated levels of multiple cytokines in the cerebrospinal fluid (CSF) [8,52,56].
In this state of blood-brain-barrier breakdown, CAR T cells are known to penetrate the CSF
[8,19,21,52,56], and may in part be responsible for driving higher levels of cytokines in the
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CSF compared with the blood [52]. Models to predict development of severe CRS and
neurologic toxicity based on serum cytokine levels early after cell infusion have been
developed and may in the future guide early intervention with immunosuppression in high
risk patients [9,46,52,56,58]; however, limited availability of cytokine profiles in real-time is
currently a barrier to routine use.

The structure of the chimeric antigen receptor may contribute to patterns of toxicity. CARs
with costimulatory domains have increased efficacy compared to first-generation CARs
[3,49,65]. CRS has been observed to begin earlier when CAR T-cell products with a CD28
costimulatory domain are administered, compared with CAR T-cell products with a 4-1BB
costimulatory domain [43], and cell products with a 4-1BB costimulatory domain might
have greater persistence [66]. Neurotoxicity with T cells expressing CD28-containing CARS
[21,25] and deaths from cerebral edema in the ROCKET trial, which evaluated a CAR with
a CD28 domain [53], have raised the question of whether CARs with a CD28 costimulatory
domain pose additional risk of severe neurotoxicity. However, there is no conclusive
evidence of a direct link between costimulatory domain and neurologic toxicity. Cerebral
edema has been reported with CARs containing a 4-1BB costimulatory domain [15].
Neurologic toxicity in a trial of a CAR utilizing a CD28 costimulatory domain for pediatric
ALL was favorably low [8]. It is also possible that the CD28 hinge and transmembrane
domains, rather than the costimulatory domain alone, may be significant contributors to
development of toxicity, as CARs with CD28 hinge and transmembrane domains have
increased production of cytokines compared with CARs with the same single chain variable
region and CD8 hinge and transmembrane domains [67]. An anti-CD19 CAR T-cell product
with a CD28 costimulatory domain and CD8 hinge and transmembrane region was observed
to have an incidence of Grade 3—-4 neurologic toxicity of just 5% [68].

It is unclear if the antigen target of the CAR affects rate of CRS or neurologic toxicity.
Information is limited as there has been substantially less experience with CARs targeting
antigens other than CD19. A report of anti-CD22 CAR T cells used to treat ALL
demonstrated a favorable toxicity profile, with comparatively low rates of CRS and
neurologic toxicity [69]. Anti-BCMA CAR T cells have been shown in some instances to
cause severe and sometimes life-threatening CRS, similar to anti-CD19 CAR T cells
[29,30,70]. Severe neurologic toxicity appears overall less frequent following anti-BCMA
CAR T cells [30,70], though non-fatal cerebral edema following anti-BCMA CAR T cells
has been reported [70]. The mechanism of these slight differences in toxi-city profiles, and
whether they are related to target antigen or to other structural differences in the CARs, is
unknown.

Preclinical models of CRS and neurologic toxicity have historically been limited. However,
in the last year, mouse models of CRS and neurologic toxicity have been developed [71-73],
which have allowed /n vivo assessment of the efficacy of different immunosuppressive
agents against toxicity [72,73]. A rhesus macaque model of CRS and neurologic toxicity,
using autologous CD20-targeting CAR T cells, has demonstrated CAR T-cell penetration
into the CSF and brain parenchyma, as well as elevated CSF cytokines, very similar to what
is observed in humans experiencing neurologic toxicity following CAR T-cell infusion [74].
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These animal models will likely be valuable tools in improving our understanding of these
toxicities, and in developing better treatment and prevention strategies.

4. CAR T-cell toxicity grading systems

Multiple systems have been used to grade CRS and neurologic toxicity (Table 2). A
consensus group grading system published by Lee and colleagues in 2014 first attempted to
provide a unified grading system for CRS [42]. The Memorial Sloan Kettering Cancer
Center (MSKCC), the University of Pennsylvania, and the CAR-T-cell therapy-associated
toxicity (CARTOX) Working Group (CARTOX group) have also published their own
grading systems for CRS [11-14,43]. However, the grading systems differ in multiple
aspects (Table 2). Hypo-tension is an important component of CRS grading in all systems,
but hypotension with requirement of a single vasopressor may be Grade 2 in the 2014
Consensus Group and CARTOX systems, but may be Grade 3-4 in the University of
Pennsylvania or MSKCC systems. Hypoxia likewise is incorporated in all four systems, but
hypoxia requiring low-dose nasal cannula may be Grade 3 in the University of Pennsylvania
system, while it is Grade 2 in the other three systems. Organ toxicity as graded by the
Common Terminology Criteria for Adverse Events (CTCAE) is included in all systems,
except for the MSKCC system, which includes only pulmonary status and hemodynamic
parameters.

In recent years, neurotoxicity has come to be better understood as a related but separate
process from CRS, and centers have been grading it separately. Many centers use the
CTCAE system for grading of neurologic toxicity. The CARTOX consensus group have
published a grading system for CAR T-cell neurologic toxicity [43]. This model includes a
10-point scoring system that assesses cognitive tasks such as orientation, naming, writing
and counting backwards [43]. Cognitive scores determine neurotoxicity grade. Seizures, new
motor weakness, and papilledema result in a neurotoxicity grade of 3—4 regardless of
cognitive assessment score [43]. The Pediatric Oncology Group at the NCI and colleagues
have developed their own grading system for neurologic toxicity, incorporating a brief
computerized cognitive test and an observer-reported checklist [75]. Universal grading
systems for CRS and for neurotoxicity are greatly needed as they would allow comparisons
among trials of toxicities of different CAR T-cell products. Cell products with similar
efficacy may be differentiated only by their toxicity profiles, making accurate comparisons
of toxicity grades essential. Frequencies of high grade toxicities for various CAR T-cell
products are outlined in Table 3.

5. Management approaches for CAR T-cell toxicity across institutions

Guidelines for supportive care for hospitalized patients following CAR T-cell infusion are
similar with minor variations among treatment centers, with an emphasis on frequent vital
signs, neurologic assessment, and frequent monitoring of blood counts, electrolytes,
coagulation assays, and inflammatory markers [41,43]. However, there is variability among
centers and among cell products as to preference of administering the product on an
inpatient or outpatient basis. Tisagenlecleucel has been administered in clinical trials in both
an inpatient and an outpatient setting [12], while axicabtagene ciloleucel was administered
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to clinical trial patients exclusively in an inpatient setting [22,43]. It is unclear if these
differences are due to institutional preferences or are a reflection in differences in the
toxicity profiles of the cell products. Patients being monitored as outpatients following CAR
T-cell therapy should be counseled to monitor their temperature and present for medical
attention immediately if they are febrile [64]. Patients who present with hypotension or
neurologic toxicity should be triaged early for close inpatient monitoring.

In contrast, thresholds for administering immunosuppressive drugs and doses of these agents
vary greatly among centers. The IL-6 receptor antagonist tocilizumab has been widely used
to treat severe CRS [7,11,14,26,29] and is FDA approved for this indication [76].
Tocilizumab has in many cases resulted in rapid and complete resolution of hemodynamic
instability [7,26,46]. However, there are possible drawbacks to tocilizumab use. Tocilizumab
has been shown to confer increased risk of cytopenias and infections in patients with
rheumatoid arthritis [77]; whether these effects are relevant in patients receiving tocilizumab
for CRS is unknown. Tocilizumab may hypothetically increase the incidence and severity of
neurologic toxicity, as neurologic toxicity has anecdotally been observed to occur shortly
after tocilizumab administration [42]. CRS in some instances may resolve spontaneously
even when tocilizumab is not administered [18,19,21]. Conversely, in some cases,
tocilizumab administration does not ameliorate CRS [29,30]. Many patients receiving
tocilizumab went on to obtain complete remissions of their malignancies [7,11], but subtle
impairment of anti-malignancy responses by tocilizumab has not been completely ruled out,
especially if tocilizumab is given early after T-cell infusion. Despite these drawbacks,
tocilizumab clearly has a role in toxicity management, and its use should not be withheld in
cases of moderate to severe CRS in favor of awaiting spontaneous improvement. It should
also be noted that in many cases of severe CRS additional immunosuppression with
corticosteroids is needed.

In a retrospective analysis, pediatric ALL patients treated with tocilizumab and low-dose
dexamethasone for persistent fevers, requirement for supplemental oxygen, or hypotension
not responsive to an initial fluid bolus had no change in rates of complete remission
compared to patients who received immunosuppression only for occurrence of dose-limiting
toxicity, suggesting that a pre-emptive immunosuppression approach may not compromise
anti-malignancy activity [78]. This is consistent with the finding in xenograft mouse models
that administration of tocilizumab did not affect CAR T-cell cytotoxicity [79]. A randomized
clinical trial of early versus late immunosuppression would clarify the effects of tocilizumab
on toxicity resolution and duration of malignancy response. A clinical trial of earlier
tocilizumab administration for children with higher bone marrow burden of ALL is ongoing
(NCT02906371).

In some clinical trials of CAR T cells, a substantial proportion of patients received
corticosteroids in addition to tocilizumab for treatment of CRS, demonstrating that anti-1L-6
targeting immunosuppression does not resolve CRS in all instances [7,8,14,20,22,28,30,47].
Corticosteroids have established efficacy in treating CRS [7,11,14]; but because
corticosteroids might impair CAR T-cell activity [11], especially at high doses; they are
usually reserved for refractory CRS not responding to tocilizumab [11,14,42,64].
Controversy exists as to whether corticosteroids should be initiated for any higher-grade
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CRS, before response to tocilizumab has been assessed [43,64]. However, in retrospective
reviews, patients receiving corticosteroids for immunosuppression have had similar anti-
malignancy responses [25,57]; effects on long-term remission durability are undetermined.
Other monoclonal antibodies which have been less thoroughly studied in treating CRS
include siltuximab [15], infliximab [42], and etanercept [9,42]. Mouse models suggest that
inducible nitric oxide synthase (iNOS), and IL-1, an inducer of iNOS, significantly
contribute to CRS development, and are both potentially targets for toxicity management
with inhibitors of iINOS and IL-1 [73]. Multiple groups have demonstrated the successful use
of the IL-1 antagonist anakinra to ameliorate CRS in mouse models [72,73]. In cases of
HLH occurring with CRS, the addition of etoposide may be considered if toxicity does not
improve with tocilizumab or corticosteroid immunosuppression [43].

Tocilizumab has been observed to have limited efficacy in resolving neurologic toxicity
[9,52,56], possibly because CAR T cells and inflammatory cytokines are known to cross the
blood-brain barrier, but tocilizumab has poor CNS penetration [80]. For this reason, at some
centers corticosteroids are the first-line therapy for isolated neurologic toxicity, with anti-
IL-6 therapy given for concurrent CRS [21,25,42,43], though thresholds for administration
and dosing schemas vary and have not been prospectively compared. Preclinical models
suggest that anakinra may also have activity in managing neurotoxicity [72].

Suicide genes, such as truncated epidermal growth factor receptor and inducible caspase 9,
have been investigated as a method of effecting abrupt cessation of CAR T-cell toxicity [81-
87]. Administration of antibody or small dimerizer molecule agents induces apoptosis of
cells transduced with the transgene [82,83]. A disadvantage of these systems is a
corresponding abrogation of anti-malignancy efficacy, so these systems may be most
appropriately used in cases of life-threatening toxicity not controlled with
immunosuppression, or in the setting of ongoing long-term toxicities occurring when
malignancy remission has already been achieved. These systems have been shown to be
effective at eliminating CAR T cells in /in vivo mouse models [81,83,86,88]. Suicide systems
have been shown in clinical trials to deplete alloreactive T cells following allogeneic stem
cell transplant [83], though robust clinical data of these systems for CAR T-cell therapy are
lacking.

6. Recommendations for management of CAR T-cell toxicities

The initial evaluation and management of patients experiencing CAR T-cell related toxicity
and supportive care guidelines used by the authors when treating adult patients at the
National Cancer Institute are summarized in Table 4. Our guidelines for administering
immunosuppression for toxicity are summarized in Fig. 1. These guidelines are written for
adult patients and are not meant to be applied to pediatric patients. Because CAR T cells are
a new therapy and because different CAR T-cell treatment regimens are associated with
somewhat different toxicities, definitive, generally applicable treatment recommendations
cannot be given. We are providing treatment recommendations based mainly on the
published experience of others and on our own experience treating leukemia, lymphoma and
multiple myeloma patients [7,8,11,19,21,29,30,41,42,45].
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An important component of toxicity management is a baseline patient evaluation, to ensure
the patient will not be exposed to inordinate toxicity due to the patient’s underlying
comorbidities. We proceed with CAR T-cell therapy only for patients with close to normal
end organ function, including pulmonary, renal, hepatic function, and cardiac function, with
a requirement for a normal cardiac ejection fraction, as previously described [41], due to
concerns about patient safety. The larger published clinical trials of the FDA-approved CAR
T-cell products have in large part excluded patients with baseline active CNS involvement
with malignancy [12,25], such that the safety of these products for patients with CNS
malignancy has not been fully explored. For this reason, we do not administer CAR T-cell
therapy to patients with active CNS involvement with malignancy. Similarly, we do not offer
CAR T-cell therapy to patients with a history of epilepsy, even if it is well-controlled.

In terms of patient monitoring, we hospitalize patients for monitoring prior to their CAR T-
cell infusion and monitor hospitalized patients for at least 9 days following cell infusion.
Baseline laboratory evaluation should include a complete blood count with differential
(CBC), comprehensive metabolic panel (CMP), coagulation studies, CRP, lactate
dehydrogenase (LDH), uric acid, and ferritin (Table 4). We recommend drawing a laboratory
evaluation including a CBC, CMP, coagulation studies, CRP, LDH, and uric acid at least
daily, though some patients may require more frequent lab analyses for cases of electrolyte
wasting, coagulopathy, or need for transfusion support. When patients are discharged from
the inpatient service, they continue monitoring for toxicity on an outpatient basis. Patients
are instructed to monitor their temperature twice a day and present for immediate evaluation
if they have a fever, as described above. Patients are counseled to monitor for neurologic
toxicity, and patients are mandated to have a caregiver to assist in monitoring, and to assist
in seeking medical attention for the patient if any encephalopathy develops.

According to our institutional guidelines (Table 4), any patient for whom there are concerns
of developing CRS or other toxicity undergoes an initial evaluation including a complete set
of vital signs, with temperature and oxygen saturation by pulse oximetry. The review of
systems and physical exam focuses on the pulmonary, cardiovascular and neurologic organ
systems, and should survey for occult infection. A CRP more elevated than a prior value
may be a marker of escalating CRS. Patients with fevers have blood and urine cultures
drawn and undergo targeted imaging based on symptoms to evaluate for infectious sources.
All patients with tachycardia undergo an ECG to assess for arrhythmia. Patients with
hypotension or persistent tachycardia undergo an echo-cardiogram to evaluate for decreased
ejection fraction. All patients experiencing neurologic toxicity have urgent imaging of the
brain with a head CT, followed by an MRI when it is available and once the patient is stable
for the study. Patients with seizures or any severe neurologic toxicity should receive
dexamethasone by IV push. This should not be delayed in order to obtain imaging studies.
Supportive care for patients experiencing toxicity includes volume resuscitation,
vasopressors as needed, transfusion support, growth factors, electrolyte repletion, and
empiric broad spectrum antibiotic therapy in select patients. Due to the potential for
capillary leak and pulmonary edema following CAR T-cell therapy, intensivists managing
hypotension may need to transition from intravenous fluid support to vasopressor support
more quickly than would be necessary for a patient experiencing hypotension from other
causes. Optimized supportive care for patients experiencing CAR T-cell toxicity requires

Blood Rev. Author manuscript; available in PMC 2020 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Brudno and Kochenderfer Page 11

multidisciplinary training and awareness. This includes involvement of nursing staff,
intensivists, pharmacist, and emergency department staff, to identify patients experiencing
toxicity and intervene in a timely manner.

Our indications for tocilizumab include hypotension requiring >5 pg/min norepinephrine or
equivalent, hypoxia requiring FiO, = 40%, cardiac ejection fraction decrease to < 45%,
significant dyspnea, and coagulopathy (Fig. 1). As CRS can sometimes be refractory to
tocilizumab, and toxicities may not be reversible in later stages, we administer high-dose
corticosteroids immediately for toxi-cities such as a severe reduction in cardiac ejection
fraction, dyspnea making mechanical ventilation likely, or hypotension that does not
improve with vasopressors.

Our management of a patient experiencing neurologic toxicity is summarized in Fig. 1.
Patients having seizures, potential airway compromise due to mental status changes, or any
neurologic toxicity precluding activities of daily living (ADLS) should receive corticosteroid
therapy. Immunosuppression should be continued until life-threatening toxicities have
resolved and the patient can function independently.

Future considerations

The CAR T-cell field is still quite new, and, likewise, the management of CAR T-cell
toxicities is in its early stage. Toxicity management is certain to change significantly in the
coming years as more data become available. The development of universal grading scales
for CRS and neurologic toxicity is an essential step in building generalizable guidelines for
managing toxicity. Risk-adapted strategies for tailoring CAR T-cell dose based on
malignancy burden and expected /7 vivo antigen stimulation should be evaluated
prospectively in larger numbers of patients. Different clinical thresholds for administering
immunosuppression should be evaluated, ideally in a randomized setting, to clarify if more
liberal use of immunosuppressive agents has any effect on long-term remission rates.

Research priorities include achieving a better mechanistic understanding of the role of
cytokines and other inflammatory proteins in mediating toxicity. Improved animal models of
CAR T-cell toxicity will likely prove valuable in addressing this research question. Cytokine
panels that can be used in real-time to predict severity of toxicity and to direct intervention
with immunosuppression in select patients should be further developed. Alternative
immunosuppressive agents, other than tocilizumab and corticosteroids, are likely to have
increasing clinical use as our understanding of the mechanisms of toxicity improve.
Additionally, preclinical studies are hoped to lead to the development of optimal CAR
structures that minimize toxic effects while maintaining efficacy. The development of later-
generation CARs, which may incorporate multiple costimulatory domains or enable the
transduced T cell to secrete specific cytokines, may enhance anti-malignancy efficacy, but
may also alter expected toxicity profiles [3,89]. CAR T-cell therapy is increasingly evaluated
for use in solid tumor malignancies. Malignancy-associated antigens of solid tumors may in
some cases be more widely expressed on normal tissues, which may increase the likelihood
of CAR-mediated damage to essential normal cells [6,89,90].
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8. Conclusions

CAR T-cell therapy is a great advance in the treatment of hematologic malignancies. While
CRS and neurologic toxicity remain barriers to widespread use of this therapy, improved
understanding of the pathophysiology of these processes will aid in the development of
optimum strategies of immunosuppression and supportive care.
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Practice Points

Mild to moderate CRS and neurologic toxicities may resolve without
intervention with immunosuppression. However, severe CRS and neurologic
toxicities may be life-threatening, and may require intensive care and
immunosuppressive therapy.

Cytokine release syndrome and neurologic toxicity may not occur at the same
time. Resolution of CRS does not preclude the development of neurologic
toxicity.

Patients with higher burden malignancy, especially those with higher
malignancy burdens in the bone marrow, may be at increased risk of toxicity.
Patients receiving higher CAR T-cell doses may be at higher risk of toxicity.

Some CAR T-cell products may be given in the outpatient setting. Fevers in
the days following CAR T-cell infusion are an indication to hospitalize
patients, as fevers are often the first symptoms of developing CRS.

Patients with neutropenic fevers or fevers with hemodynamic instability
should receive broad spectrum antibiotic coverage, even if CRS is suspected
as the underlying etiology.

The IL-6 receptor antagonist tocilizumab is used as the first-line agent to
manage severe CRS. However, tocilizumab does not reverse all cases of CRS.

Corticosteroids should be administered for patients with immediately life-
threatening CRS and for CRS that does not respond to tocilizumab.

Corticosteroids are the preferred first-line immunosuppressive agent for
severe neurologic toxicity.

Blood Rev. Author manuscript; available in PMC 2020 March 01.
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Research Agenda
Continued improvement in preclinical animal models of CRS and neurologic
toxicity.

Development of cytokine panels that can be used in real-time to predict
severity of toxicity and to direct intervention with immunosuppression in
select patients.

Randomized clinical trials to evaluate strategies of early versus late
administration of immunosuppression for CRS.

Prospective evaluation of risk-adapted strategies of CAR T-cell dosing to
reduce toxicity while maintaining efficacy.

Optimization of CAR T-cell structure to minimize toxicity while retaining
efficacy.

Blood Rev. Author manuscript; available in PMC 2020 March 01.
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Does the patient have any of the following?

« Hypotension with vasopressor requirement of > 5 mcg/ norepinephrine or equi vasopressor

« Hypotension with vasopressor requirement of > 3 meg/mi norepinephrine or equi lasting > 36 hours
* Hypoxia requiring FiO, 2 40%

* Dyspnea with a respiratory rate > 25 breaths/minute for > 2 hours

« Left ventricular ejection fraction < 45%

* Creatinine increase > 2-fold over baseline

* PT T or INR > twice the upper limit of normal

* Hemorrhage possibly related to cytokine release syndrome

* CPK elevation > § times upper limit of normal

; Ye\s\
Aggressive supportive care Does the patient have any of the following?
Continue to monitor CRS and neurologic toxicity * Hypotension with SBP < 90 mm Hg not resp ing to = 15 mcg/mi norepinephrine or equi
* Hypotension requiring > 15 meg/mii norepinep 2 4 hours

or eq y
* Respiratory compromise such that need for mechanical ventilation is likely within 4 hours
« Left ventricular ejection fraction < 30%

/ hN

Give tocilizumab 8 mg/kg IV infused over 60 minutes Give.tocillizllmab 8 mg/kg IV infused over 60 minutes unless administered
previously

Improvement in CRS in response to tocilizumab?

And start methylprednisolone 200 mg IV q 6 hours
Yes No

/

Aggressive supportive care

Treatment of isolated neurologic toxicity for patients
Start methylprednisolone 50 mg IV q 6 hours with any of the following:
Continue to monitor CRS and neurologic toxicity * Seizure

* Somnolence with risk of limiting airway protection

+ Inability to follow simple commands

+ Ataxia severe enough to preclude ambulation

* Disorientation lasting > 48 hours

* Any neurologic toxicity inhibiting ADLs for > 2 hours
¢+ Cerebral edema on MRI of the brain

Start dexamethasone 10 mg IV q 6 hours. Taper once
toxicity improved to Grade 1 or less.

. Management of severe CRS and neurologic toxicity in adults following CAR T-cell
infusion. The approach to CAR T-cell toxicity management currently used in adult patients
at the National Cancer Institute is shown. We administer a single dose of tocilizumab at the 8
mg/kg dose. We do not re-dose for persistent toxicity but instead move to corticosteroids in
cases of persistent toxicity following tocilizumab. It is important to note that management of
CRS varies among clinical trials, and some centers give tocilizumab and/or low-dose
corticosteroids earlier in the course of CRS than outlined here. If the toxicities of concern do
not significantly improve within hours after administration of tocilizumab, intermediate-dose
corticosteroid therapy is administered. For certain severe hemodynamic toxicities, high-dose
methylprednisolone is emergently administered concurrently with tocilizumab. Patients
experiencing severe neurologic toxicity following CAR T-cell infusion should receive
corticosteroids for immunosuppressive therapy. Imaging of the brain should not delay the
administration of the first dose of corticosteroid therapy for clinically severe neurologic
toxicity. These regimens have been effective to alleviate toxicities in our experience, but we
do not have formal clinical trial evidence to support these regimens. In general,
corticosteroids should be discontinued as soon as toxicity returns to a tolerable level. Please
note that thresholds for vasopressor requirements and corticosteroid doses are based on our
institutional experience and not on validated published data. ADLSs: activities of daily living.
CPK: creatine phosphokinase. CRS: cytokine release syndrome. FiO,: fraction of inspired
oxygen. INR: International Normalized Ratio. MRI: magnetic resonance imaging. PTT:
partial thromboplastin time. SBP: systolic blood pressure.
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Table 1

Organ system

Toxicities

Constitutional

Cardiovascular

Respiratory

Renal

Hepatic and
Gastrointestinal

Hematologic

Immunologic

Musculoskeletal

Neurologic

Fever
Fatigue and malaise

Headache

Sinus tachycardia Hypotension

Decreased left ventricular ejection fraction
Arrhythmias

QT prolongation

Troponinemia

Hypoxia Dyspnea
Increased respiratory rate Respiratory failure

Pleural effusions Capillary leak syndrome

Increased serum creatinine
Renal insufficiency
Hyponatremia
Hypokalemia
Hypophosphatemia

Tumor lysis syndrome

Increases in liver transaminases: elevated aspartate aminotransferase (AST), alanine aminotransferase (ALT),
alkaline phosphatase, or direct bilirubin

Nausea, vomiting

Diarrhea

Anemia

Thrombocytopenia

Neutropenia

B-cell aplasia Hypogammaglobulinemia

Prolongation of partial thromboplastin time (PTT) or prothrombin time (PT)
Decreased fibrinogen

Disseminated intravascular coagulation (DIC) Hemophagocytic lymphohistiocytosis

Risk of viral infections
Risk of bacterial infections

Risk of fungal infections

Creatine phosphokinase (CPK) elevation

Myalgias

Delirium, encephalopathy

Somnolence, obtundation

Blood Rev. Author manuscript; available in PMC 2020 March 01.
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Organ system

Toxicities

Cognitive disturbance
Dysphasias

Tremors

Ataxia

Myoclonus

Focal motor and sensory defects
Seizures

Cerebral edema

Blood Rev. Author manuscript; available in PMC 2020 March 01.
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