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The major histocompatibility complex (MHC) is a central compo-
nent of the vertebrate immune system and hence evolves in the
regime of a host–pathogen evolutionary race. The MHC is associ-
ated with quantitative traits which directly affect fitness and are
subject to selection pressure. The evolution of haplotypes at the
MHC HLA (HLA) locus is generally thought to be governed by
selection for increased diversity that is manifested in overdomi-
nance and/or negative frequency-dependent selection (FDS). How-
ever, recently, a model combining purifying selection on haplotypes
and balancing selection on alleles has been proposed. We compare
the predictions of several population dynamics models of haplotype
frequency evolution to the distributions derived from 6.59-million-
donor HLA typings from the National Marrow Donor Program reg-
istry. We show that models that combine a multiplicative fitness
function, extremely high haplotype discovery rates, and exponen-
tial fitness decay over time produce the best fit to the data for most
of the analyzed populations. In contrast, overdominance is not sup-
ported, and population substructure does not explain the observed
haplotype frequencies. Furthermore, there is no evidence of nega-
tive FDS. Thus, multiplicative fitness, rapid haplotype discovery, and
rapid fitness decay appear to be the major factors shaping the HLA
haplotype frequency distribution in the human population.
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The major histocompatibility complex (MHC), and in partic-
ular, the HLA (HLA) loci, have been the primary subject of

numerous studies aimed at understanding the microevolutionary
processes that generate and maintain genetic diversity (1–4). The
MHC has been extensively characterized in many species and
remains a potent model for examining the balance between
stochastic and deterministic evolutionary processes (5). HLA is a
multigene family encoding glycoprotein receptors that bind short
peptides and present them to T lymphocytes which can mount an
immune response upon recognition (6). The architecture of the
MHC complex varies substantially across species (7, 8). How-
ever, in every species, the MHC contains at least one extremely
polymorphic locus. In particular, the HLA (HLA) gene complex
contains the HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-
DQB1 genes, which together account for over 15,000 distinct
allele sequences described to date (9, 10). Accordingly, combi-
nations of different alleles across HLA loci yield a vast, effec-
tively infinite number of haplotypes.
Many distinct, although not necessarily mutually exclusive,

mechanisms have been proposed to explain the enormous vari-
ability at the HLA loci. Because MHC molecules are central to
the immune system, pathogen-driven selection for diversity
(balancing selection) seems to be an obvious key factor, although
the details of the proposed mechanisms differ (1, 2, 11–14).
Additionally, MHC-dependent mate choice (assortative mating)
(15–18) and sexual selection (19, 20) have been argued to shape
the MHC diversity based, in particular, on evidence of MHC

dependence on mother–fetal interactions and the apparent ol-
factory recognition of MHC haplotypes (21, 22). Population
structure, which either emerges as a result of fluctuating selec-
tion driven by host–pathogen coevolution or is imposed by the
environment, can maintain and also enhance diversity generated
by other mechanisms (5, 23, 24).
Two alternative mechanisms have been proposed to underlie

balancing selection. The first, negative frequency-dependent se-
lection, is thought to be driven by the ability of rare MHC alleles
to provide better protection against pathogens that might have
adapted to evade high frequency MHC alleles, leading to se-
lection against these common alleles (14, 25–28). An alternative
mechanism, pathogen-driven overdominance, stipulates that
heterozygotes, in which two variant alleles are expressed, are
resistant to a broader range of parasites and therefore typically
have greater fitness than homozygotes (11, 12, 25, 29).
Despite numerous reports on strong balancing selection at the

HLA loci, elucidating the underlying mechanisms has proved
difficult. A fundamental problem is that even in the studies that
muster sufficient statistical power, there seem to be alternative
explanations for the observed frequency and homozygosity
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distributions. Furthermore, competing mechanisms often con-
found the efforts to disentangle their effects (27).
Whereas balancing selection has long been observed at indi-

vidual HLA loci (13, 30–32), there has been little exploration of
the elements shaping the selection of haplotypes, or combina-
tions of HLA alleles across loci. Recently, however, we have
presented evidence that HLA haplotype frequencies are affected
by strong positive frequency-dependent selection (33). We have
showed there that the haplotype frequency family size distribu-
tion is best explained by a model containing a positive frequency-
dependent selection, using the deviation of homozygosity and
linkage disequilibrium measures, as well as from a fit to the full
family size distribution.
Here, we quantitatively assess the mechanisms of selection

that determine HLA haplotype frequency distributions by com-
puting the likelihood of observing the HLA haplotype distribu-
tion in populations in the US Bone Marrow Donor Registry
given different stochastic population models. This approach al-
lows us to determine which of the selection mechanisms is best
compatible with the observations. Comparison of several fitness
functions indicates that the multiplicative form, in which low
fitness haplotypes have a drastic effect on the fitness of a diploid
genotype, is better compatible with the data than other fitness
functions. Among the various evolutionary mechanisms considered—
including overdominance, population structure, frequency-dependent
assortative mating, frequency-dependent selection, and decaying
fitness (34)—we found the strongest support for fitness decay. Our
results indicate that a multiplicative fitness function, combined with
exponential fitness decay of haplotypes over time in some pop-
ulations, fits the data substantially better than any of the other
explored models for populations where we were able to rank the
models. For other populations, we were unable to distinguish be-
tween more complex models of selection and were only able to
conclude that the multiplicative fitness function fitted the data best.

Results and Discussion
The Haplotype Frequency Resource. Because haplotypic diversity is
far greater than allelic diversity, an extensive population genetic
reference panel for HLA haplotypes is essential to enable as-
sessment of haplotype-level selection. High-resolution, five-locus
(A ∼ C ∼ B ∼ DRB1 ∼ DQB1) HLA haplotype frequencies were
estimated for 21 self-reported racial/ethnic categories using an
expectation-maximization (EM) algorithm for 6.59-million-
donor HLA typings from the National Marrow Donor Program
registry (35, 36) (see SI Appendix for the detailed description,
and a table of population acronyms, as well as detailed in-
formation for each population, with the haplotype frequen-
cies and their homozygote frequencies, at https://github.com/
louzounlab/HLA_data.git). For every distinct haplotype i, the
resulting dataset includes the total number of copies ci and the
number of homozygous individuals zi carrying two copies of
haplotype i. Each of the 21 population samples is a snapshot of
the evolutionary processes that affect the frequencies of the
HLA alleles and the homozygosity for each allele. Therefore,
given a population model, in which individuals are identified by
pairs of HLA haplotypes, we can compute the likelihood of
observing the frequency and homozygosity data as a snapshot of
the population model in steady state. Population models with
different mechanisms of selection can then be compared quan-
titatively. We have recently demonstrated the validity of the
frequency estimates of HLA haplotypes and their adequacy for
population structure modeling (33).

Models of Haplotype Frequency Evolution. The key ingredient in
evolutionary models of the haplotype frequency distribution is
the function that assigns a fitness value to a genotype based on its
constituent haplotypes. Models with selection, population struc-
ture, and/or assortative mating are compared with the neutral

model in which mating is random and all individuals have the
same fitness regardless of their genotype. In models with selection,
we assume that each haplotype can be completely specified by a
single continuously varying value h. A genotype is therefore
characterized by a pair (h1, h2) of values. The fitness function
maps the pair (h1, h2) to a positive Malthusian fitness f. We
compare the neutral model, in which all individuals have the same
fitness, to five models with selection and different forms of fitness
function:

1) additive, in which the fitness is f = h1 + h2;
2) additive with overdominance, in which the fitness of a homo-

zygote (h1, h1) is f = h1 (instead of 2h1) whereas the fitness of
the heterozygote is f = h1 + h2;

3) multiplicative, in which f = h1h2;
4) hybrid, in which f = hmax − (hmax − h1) (hmax − h2)/hmax =

h1 + h2 − h1h2/hmax; and
5) hybrid as in 4 but with overdominance, so that homozygotes

have fitness h1.

The hybrid model introduced the upper bound hmax on the
haplotype contributions. This upper bound must exist in bi-
ologically plausible models simply because the growth rate is
bounded from above. Without loss of generality, we set hmax = 1.
A rescaling of time can transform any upper bound on h to unity.
In addition, negative haplotype contributions are meaningless
because the growth rate is positive by definition. We therefore
postulate that h ∈ (0, 1].
All evolutionary models considered here share several ele-

ments. The population size N is fixed. The population evolves via
discrete, nonoverlapping generations that consist of separate
selection, mating, and mutation rounds. Each individual is
characterized by a pair of haplotypes. During the selection
round, a Wright–Fisher sample of the population is constructed
whereby N individuals are selected with replacement, with
probabilities proportional to their respective fitness values. The
mating round consists of selecting N mating pairs as described in
Materials and Methods. Each mating pair produces a single off-
spring that receives one random haplotype from each parent.
During the subsequent mutation round, each haplotype of each
individual is replaced with probability μ (hereafter, “haplotype
discovery rate”) by a new haplotype for which the fitness con-
tribution h is selected at random from the uniform distribution.
These “mutations” in the context of haplotypes are most likely

recombination events creating new haplotypes rather than point
mutations or deletions, or alternatively, the introduction of a
haplotype from a foreign population. The stochastic population
models are simulated in steady state and the joint probability
distribution of the haplotype abundance and homozygosity is
measured, allowing us to compute the likelihood of observing the
data. Fig. 1 illustrates the joint probability distribution for hap-
lotype abundance and homozygosity obtained under the model
with multiplicative fitness (model 3 above) compared with data
for one of the population groupings in the registry (see further
details below). A detailed description of the optimization and
examples for other populations including the data on the feasi-
bility of testing each model with each population are presented
in SI Appendix, section 4. The SI Appendix further describes all of
the population groups from the registry that we used to fit our
models (SI Appendix, section 5). Some of these include broad
population categories made up of several subpopulations.

Multiplicative Fitness-Based Model Outperforms Other Models. All
populations were analyzed in equilibrium, after enough time
steps not to be affected by the initial conditions (SI Appendix).
Performing the likelihood maximization procedure (seeMaterials
and Methods for details), we obtain the set of optimal model
parameters and the estimate of the maximum log likelihood for
each model–dataset pair. We compared the neutral model with
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the multiplicative fitness model for all populations in the dataset.
The neutral model was found to be vastly inferior to the multi-
plicative model in all cases (SI Appendix, section 8). On average,
introducing fitness variability increases the natural log likelihood
by over 10,000. We therefore concentrate on the less dramatic
differences between the models with alternative fitness func-
tions that have the potential to illuminate specific evolutionary
mechanisms. It was not feasible to run all combinations of
models for all populations in the dataset, in particular, for the

larger populations. SI Appendix, section 7 provides details of the
populations for which different models were compared.
Fig. 2 shows the maximum log likelihood estimates for the

models with the fitness functions described above relative to that
of the model with the multiplicative fitness function (model 3).
Clearly, the multiplicative fitness model, in which the fitness of a
genotype is the product of its haplotype contributions, fits the
haplotype frequency data far better than any of the other tested
models in all included populations. In contrast, overdominance,
which can be introduced in the additive and hybrid fitness models,
clearly lacks support, and is the worst model for most populations.

Implications of the Model: Dominance of Deleterious Effects and High
Haplotype Discovery Rate. Under the premise that MHC mole-
cules differ by their ability to serve in peptide presentation and
that maximum diversity is beneficial, one would expect a model
with the hybrid fitness function of the form h1 + h2 − h1h2 = 1 −
(1 − h1) (1 − h2), under which it is sufficient to have one “good”
allele, to be superior to other individuals. The finding that the
data instead support the multiplicative fitness function implies
that the reverse is true: one dominant low-fitness allele is suffi-
cient to substantially suppress the fitness of an individual.
Another surprising finding of the model fits is the high value of

the haplotype discovery rate μ which maximizes log likelihood.
As shown in Fig. 3, in the model with multiplicative fitness, the
estimated values of μ range from 0.1 to 0.25. The model with
additive fitness yields lower estimates for μ in the 0.05–0.1 range,
which could be considered more realistic values. However, the
additive fitness model provides a significantly inferior fit to the
data. This high discovery rate is a consistent feature of all models
providing a good fit.
Based on current estimates of recombination intensity in the

HLA locus, and assuming that each recombination event yields a
novel haplotype, roughly 3% of the gametes carry novel haplo-
types (37). Thus, recombination can explain only about 20% of
the inferred rate of haplotype discovery. Gene flow between
populations potentially could be the dominant contribution to

Fig. 2. Peak log likelihood for models with different fitness functions relative to that of the model with multiplicative fitness. For the model with multi-
plicative fitness, all relative log likelihood values are equal to zero, and accordingly, the respective bars are not visible. Not all populations were studied with
all models. The population samples shown are only the ones simulated with the appropriate models.

Fig. 1. Model joint probability distribution P(c; h) measured via stochastic
simulations for the model with the multiplicative fitness function and
without additional selection mechanisms. Each circle corresponds to a pair
(c,h) that occurred at least once among 105 uncorrelated snapshots of the
population in steady state. The color represents ln P(c,h) (see color bar).
Crosses are the (c,h) pairs observed in the HAWI (Hawaiian) sample of the
MHC haplotype data. Cross size is proportional to the logarithm of the
number of pairs present in the sample.
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the high inferred μ values. If different populations are isolated
from each other by distance or by a barrier, the rate of gene flow
into a particular population is proportional to the length of the
boundary that it shares with the surrounding semi-isolated
populations. Under the assumption of an approximately con-
stant population density, larger populations will have smaller
relative gene influx because the length of the boundary scales
sublinearly with the population size (in the simplest case, pop-
ulation size scales with the area occupied by the population). As
shown in Fig. 3, the predicted negative correlation between the
population size estimated by our model and the estimated hap-

lotype discovery rate is indeed strong and significant (Spearman
ρ = −0.704, P value = 0.0005). Although some populations are
more deeply sampled than others, sample size in the registry
scales approximately with the population sizes estimated by our
model. Higher values of μ are observed in populations based
on regional categories (for example, “Native North American,”
“African Black”) that contain several geographically and lin-
guistically isolated subgroups. These populations are likely to
have a particularly long boundary across which the gene flow
occurs, supporting our argument that μ approximates gene flow.
Relatively homogeneous populations also seem to have relatively
lower μ values (Fig. 3) although not all of the populations with a
low μ value are homogeneous. However, the possibility also re-
mains that the current estimates of recombination rates are far
too low, and extremely high mutation and recombination rates
could be the main mechanisms driving the evolution of the
enormous amount of HLA polymorphism.

Selection in the Multiplicative Fitness Model. We further compared
four additional selection mechanisms that have been proposed to
operate at the HLA locus. All three models extend the multi-
plicative fitness function that, as shown above, fits the data
substantially better than the other tested functions. Obviously,
not all combinations of fitness functions have been tested. The
additional selection mechanism introduces a new parameter δ,
which has different meanings in each of the three models.
In the first model with assortative mating, the procedure for

selecting the mating pairs that give rise to the next generation is
designed to suppress mating of individuals that carry the same
haplotype. During the mating round, each member of the pop-
ulation receives a mate. The mate is selected at random. A
mating probability factor p = e−δ1(f1 + f2) is computed, where f is
the frequency of the haplotype if it is shared by the putative
mating pair and 0 otherwise. The mating partner is kept with
probability p. If the partner is not kept, another one is selected at

Fig. 3. Negative correlation between the estimated population size N and
haplotype discovery rate μ. Each point represents the fit of the model with
multiplicative fitness to a sample labeled by a distinct ethnic identifier. The
Spearman rank correlation coefficient is ρ = −0.704 with the P value of
0.0005. More genetically homogeneous island or peninsula populations are
marked in gray.

Fig. 4. Peak log likelihood for models with multiplicative fitness and additional mechanisms of selection. The values are compared with the multiplicative
selection model with time decay (therefore, the relative likelihood values for this model are all equal to 0, and the corresponding bars are not visible).
Accordingly, a value of 0 for any other model means a likelihood similar to that of the multiplicative selection with time decay model. Negative values
represent a worse fit. Except for the additive model with FDS, all models are extensions of the multiplicative fitness model.
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random and the procedure is repeated until a mating partner is
selected for every member of the population.
In the second model with population structure, the population

has a one-dimensional ring topology. A mating partner is se-
lected at a random distance, which is exponentially distributed
with mean δ2. This length-scale δ2 sets the size of the interwoven
local communities from which mating partners are likely to
be selected.
In the third model with frequency-dependent selection, the

fitness of an individual is the product of the intrinsic haplotype
contributions h1h2 and the frequency-dependent factor e –δ3(f1 + f2),
where f1 and f2 are the population frequencies of the two haplotypes.
Positive δ enhances the fitness of common haplotypes more than
that of rare haplotypes.
In the fourth model, the fitness decays as a function of time.

The fitness of an organism is a product of its haplotype contribu-
tions and mating is random. The distribution of each haplotype to
fitness decays exponentially with the number of generations since
that haplotype was discovered. The initial contribution of a haplo-
type in its birth generation is drawn from a uniform distribution
(0;1). In this model, δ4 is the decay rate of the haplotype fitness.

Positive Frequency-Dependent Selection and Fitness Decay. The re-
sults shown in Fig. 4 indicate that, when sufficient data are
available, the assortative mating mechanism is not supported by
the data, and the model with population structure is only weakly
supported (for other populations, the parameter estimates were
too noisy; see SI Appendix, section 9). In contrast, frequency-
dependent selection is strongly supported, and the improve-
ment over the models without frequency-dependent selection is
highly significant. Surprisingly, however, the sign of the FDS on
haplotypes is positive, in contrast to the observations for indi-
vidual loci (33). As shown in Table 1, the magnitude of δ is
moderate such that the fitness of a common haplotype with a
frequency of 0.5 increases by about 10–15% as a result of FDS.
However, for some populations, the best model by far is the one
with fitness rapidly decaying over time. The optimal decay rate is
of the order of 3–20 generations (Table 2) amounting to 50–
500 y. In other words, a haplotype that was highly advantageous
in the beginning of the previous century could have lost most of
this advantage by now. For other populations, the optimal decay
rate was 0. This can be either the solution of a convergence to a
local minimum, or alternatively, might reflect a difference be-
tween populations with low variability/haplotype discovery rates
(JAPI and AMIND) and populations with high variability.
So far, we combined more complex models with the multipli-

cative fitness function that our first round of simulations identified
as providing the best match to the data. We additionally fitted a

model combining an additive fitness function with FDS, but such a
model was not supported by the data (Fig. 4).

Selection Against Low Fitness Haplotypes.Our main findings are: 1)
the multiplicative fitness model, in which the impact of delete-
rious haplotypes on the fitness of the diploid genotype, domi-
nates the evolution of human MHC; 2) high rate of haplotype
discovery; 3) fitness decay over time; and 4) if there is FDS, it is
positive, i.e., rare haplotypes are selected against. We conjecture
that these findings can be understood together if the fitness
contribution h of a haplotype is due, largely, to deleterious ef-
fects. Such effects can have multiple origins which might differ
among populations, based on the history of their encounters with
pathogens. Other factors that could affect fitness contributions
of haplotypes might autoimmune effects, interactions between
killer Ig-like receptors (KIR) on natural killer cells and their
HLA ligands (38), or preferential gene flow with selection
against specific genes (which might even be a bystander effect).
Among the putative mechanism(s) driving the observed se-

lection on haplotypes, the KIR-HLA interactions seem to merit
special attention. If the diversity of the molecules that trigger an
inhibitory response, such as KIR, grows with the population size,
adaptation in large populations would be hampered by this
greater diversity, and accordingly, there will be a smaller fitness
difference between common and rare haplotypes in larger pop-
ulations. This conjecture predicts a negative correlation between
the strength of the FDS ðδ3Þ and population size N. As shown in
Fig. 5, a strong and significant negative correlation is indeed
observed in the data (Spearman ρ = −0.855, P value = 0.0016). If
the KIR-HLA interactions affect fitness, a single haplotype that
decreases the probability of a fetus formation can reduce the
survival of any individual carrying this haplotype.
Moreover, if the fitness of HLA haplotypes is a function of

their interactions with rapidly evolving KIR haplotypes, fitness
could drop when the KIR haplotype distribution changes, which
might result in a decline in the fitness of HLA haplotypes with
time. High haplotype discovery rate entails stronger selection
(more low-fitness haplotypes to eliminate; Fig. 6). The haplotype
discovery rate is higher in small populations (Fig. 3), and
therefore, in these populations, selection is also stronger (Figs. 5
and 6). It should be noted, however, that in some populations, in
particular, AMIND, CARB, and JAPI, fitness decay over time is
not supported by the data. In such populations, other factors
could shape the haplotype frequency distribution, or else, the
sample size could be too small to detect the effects of
fitness decay.

Allele-Based Models. The model fits in this work so far assumed
that each haplotype is associated with a fixed fitness contribution,

Table 1. Estimated parameters for the model with
multiplicative fitness and frequency-dependent selection

Sample N μ δ3

HAWI 6,000 ± 300 0.208 ± 0.002 0.27 ± 0.01
CARIBI 7,000 ± 500 0.168 ± 0.001 0.52 ± 0.02
NAM 13,700 ± 600 0.247 ± 0.001 0.20 ± 0.01
AFB 10,000 ± 600 0.282 ± 0.001 0.54 ± 0.01
CARB 17,000 ± 800 0.264 ± 0.001 0.49 ± 0.01
SCSEAI 17,400 ± 600 0.185 ± 0.001 0.16 ± 0.01
JAPI 29,000 ± 500 0.139 ± 0.001 0.072 ± 0.0004
AMIND 25,600 ± 700 0.127 ± 0.001 0.094 ± 0.0037
FILLII 56,800 ± 700 0.143 ± 0.001 0.058 ± 0.0017
VIET 34,100 ± 600 0.171 ± 0.001 0.112 ± 0.003

N, population size; μ, haplotype discovery rate; δ, strength of frequency-
dependent selection.

Table 2. Estimated parameters for the model with
multiplicative fitness, rapid haplotype discovery and fitness
decay

Sample N μ δ4

HAWI 8,100 ± 630 0.301 ± 0.02 2.06 ± 0.05
CARIBI 12,100 ± 1,800 0.487 ± 0.06 20.17 ± 0.03
NAM 24,600 ± 1,100 0.369 ± 0.01 17.37 ± 0.03
AFB 13,400 ± 1,500 0.308 ± 0.07 5.01 ± 0.03
CARB 35,660 ± 1,955 0.197 ± 0.01 0
JAPI 51,005 ± 2,019 0.13 ± 0.01 0
AMIND 31,001 ± 960 0.15 ± 0.1 0
FILII 71,420 ± 2,110 0.145 ± 0.01 0

The population samples were: HAWI, Hawaiian or Pacific Islander; CARIBI,
Native Caribbean; NAM, Native American; AFB, African Black; CARB, Carib-
bean Black; SCSEAI, Southeast Asian; JAPI, Japanese; AMIND, Native North
American; FILII, Filipino; VIET, Vietnamese.
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regardless of what other haplotype it pairs with. Although this
assumption seems plausible for complete haplotypes, it is less
supportable at the level of individual alleles. The fitness value
of particular alleles could depend on what other alleles com-
prise the haplotype. Nevertheless, it is instructive to perform
the fitting of the allele level abundance and homozygosity data
to the model with FDS, variability in the intrinsic fitness values
of the allele variants and multiplicative fitness.
As in the case of haplotypes, the neutral model, in which all

alleles have the same fitness and there is no FDS, can be confidently
rejected. As shown in Table 3, the majority of sample/allele datasets
do not seem to support FDS because the estimated strength δ is
consistent with a zero value. The remainder of sample/allele com-
binations exhibits weak positive or negative FDS. The estimated
strength of selection δ is an order of magnitude smaller than it is at
the level of haplotypes. Therefore, it appears that the intrinsic
variability of fitness contributions is mostly sufficient to explain
the deviation from neutrality previously detected via the
Ewens–Watterson homozygosity test (33).

Conclusions
To summarize, here we developed a quantitative framework for
comparing an extensive data set of estimated HLA haplotype
abundance and homozygosity values with predictions of evolu-
tionary models. Under this framework, we compared models
subject to distinct mechanisms of selection, alternative fitness
functions and other factors, including FDS, population structure,
and frequency-dependent assortative mating. We found that the
data do not support fitness functions with overdominance. A
multiplicative fitness function, whereby unfit haplotypes have a
major effect on the genotype fitness, fits the data significantly
better than all tested alternatives. Among additional mechanisms
of selection, the data most strongly support a rapidly evolving
fitness landscape for the populations where the fit was good
enough to determine a mechanism. This finding implies that
some haplotypes tend to have lower fitness and are selected
against, even in the presence of other high fitness haplotypes.
This fitness difference can be lost over time. As mentioned
above, the simplest explanation for such fitness loss seems to
involve interactions with other, rapidly evolving loci, such as
KIR. In addition, recent theoretical analysis and empirical ob-
servations (31, 39) indicate that balancing selection in the HLA
locus leads to accumulation of deleterious alleles in non-HLA

genes associated with this locus (so-called “sheltered load” ac-
cumulation), thus incurring a fitness cost, which could translate
into positive FDS.
Taken together, the results of this analysis imply that the ob-

served frequency distributions of the HLA haplotypes are shaped
by the trade-off between the high rate of new haplotype dis-
covery, largely caused by extensive gene flow between pop-
ulations and rapid haplotype fitness decay over time. However,
these findings are not incompatible with pathogen-driven bal-
ancing selection at individual loci. The source of the deleterious
effect of some haplotypes requires further exploration.

Materials and Methods
Haplotype Frequency Datasets. Five-locus high resolution HLA A ∼ C ∼ B ∼
DRB1 ∼ DQB1 haplotype frequencies were estimated using the EM algo-
rithm for 6.59-million-donor HLA typings from the National Marrow Donor
Program registry (US) (36, 40). Given typing ambiguities, a large number of
very low probability haplotypes emerge as artifacts from the EM. We re-
moved low probability haplotypes by assigning each person in the sample a
single pair of their most probable haplotypes with the remainder of their
haplotype pair probability distribution discarded. The population haplotype
frequencies were thus recalculated with a single haplotype pair assigned for
each individual. Allele frequencies were derived as marginal sums of the
haplotype frequencies.

Likelihood Computation and Comparison of Model Fits to the Data. To compare
the fits of the models to the data, we computed the likelihoods of observing
different haplotype datasets, i.e., sets of (abundance, homozygosity) pairs,
given a particular model. The likelihood is calculated using the joint prob-
ability P(c,z) that a random haplotype of a random individual in a sample
occurs c times and there are z homozygous individuals in the sample which
carry this haplotype. Given P(c,z), the log likelihood of observing a particular
set of (abundance, homozygosity) pairs is approximated by

L=
X

logPðci , ziÞ.

In general, the c and h values for different haplotypes are not independent.
However, when c � N, the coupling between different haplotypes is neg-
ligible, and therefore the product of individual probabilities P(c,z) can be
used to calculate the likelihood.

P(c,z) is not analytically computable even under the simplest model. The
approximate joint probability distribution is therefore computed via a sto-
chastic simulation. An initial homogeneous population is evolved until

Fig. 5. Dependency of the estimated selection strength on the population
size. Estimated strength δ of positive frequency-dependent selection at the
level of haplotypes is plotted against the estimated population size N. The
Spearman rank correlation is ρ = −0.855 and the P value is 0.0016.

Fig. 6. Dependency of the estimated selection strength on the haplotype
discovery rate. Estimated strength δ of positive frequency-dependent se-
lection at the level of haplotypes is plotted against the estimated haplotype
discovery rate. The populations are divided into heterogeneous (gray) and
homogeneous (blue). The Spearman rank correlation is ρ = −0.703 and the P
value is 0.022.

Lobkovsky et al. PNAS | July 9, 2019 | vol. 116 | no. 28 | 14103

EV
O
LU

TI
O
N



steady state is reached according to the following criterion. The total
number kt of distinct haplotypes in the population is measured every Nsamp =
(log N)/μ generations. Two sets of measurements are compared: the last Nmeas

measurements and the set of Nmeas measurements immediately preceding
the last Nmeas. The steady state is considered to be reached when the hy-
pothesis that the means of these two sets are the same cannot be rejected
with significance level 10−4 using the two-sample t test; Nmeas = 105 is as-
sumed throughout this study. Once the model is in steady state, we perform
Nmeas measurements separated by Nsamp generations. In each measurement,
the counts of (abundance, homozygosity) pairs are incremented for each
haplotype of each individual in the population. These counts normalized by
2NNmeas approximate the joint probability distribution P(c,z).

To address the issue of numerical noise in the estimate of P(c,z), we use
Gaussian kernel smoothing to compute the log likelihood L Smoothing is
performed in logarithmic space where z is incremented by unity to assure that
it remains positive. The kernel has a single parameter λwhich is the smoothing
length scale in logarithmic space. We checked that the results are only weakly
sensitive to λ which was accordingly fixed at λ = 0.02. Fig. 1 demonstrates the
relative size of the smoothing scale λ and displays an example of the measured
noisy joint probability distribution together with the sample data.

Gaussian kernel smoothing does not completely eliminate noise. The
level of noise is higher when the (abundance, homozygosity) pairs that are
present in the dataset are rarely observed in the simulations. When the
haplotype discovery rate μ is high, haplotypes do not often reach high
frequencies in the simulations and therefore the estimate of the joint
probability distribution for high values of c is less reliable. However, the
contributions of the high frequency haplotypes to the log likelihood are
the most important. To deal with the higher noise in the more important
region of parameter space, we estimated the model parameters that
maximize the likelihood L by fitting a general parabolic surface to the
measured noisy log likelihood as a function of the model parameters.
Before the parabolic fit, the model parameters were scaled so that their
means are unity in the fitting region. The fit provides the estimates of the
error in the maximum log likelihood as the mean deviation of the com-
puted values from the fitted parabolic surface. The confidence intervals
for the estimated model parameters are computed as the values at which
the fitted log likelihood is reduced by three units. Not all populations and
all models were studied because some of the populations were too large
to simulate, and moreover, in some populations, the optimization did not
converge (SI Appendix, section 7).
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Table 3. The estimated strength δ of FDS at the level on individual alleles

Allele HAWI CARIBI NAM AFB CARB AMIND

A 0.0152 ± 0.0073 −0.0121 ± 0.0053 0.0213 ± 0.0012 −0.0059 ± 0.0028 −0.0046 ± 0.0024 0.0023 ± 0.0006
B 0.0074 ± 0.0040 −0.0156 ± 0.0075 −0.0042 ± 0.0039 −0.0048 ± 0.0032 −0.0061 ± 0.0022 −0.0036 ± 0.0021
C −0.0174 ± 0.0065 −0.0140 ± 0.0044 −0.0057 ± 0.0065 0.0038 ± 0.0029 0.0113 ± 0.0023 0.0050 ± 0.0026
DRB1 0.0006 ± 0.0074 −0.0147 ± 0.0055 −0.0080 ± 0.0054 −0.0067 ± 0.0034 −0.0014 ± 0.0024 −0.0037 ± 0.0012
DQB1 −0.0099 ± 0.0035 −0.0057 ± 0.0057 0.0106 ± 0.0040 0.0088 ± 0.0036 0.0193 ± 0.0029 0.0024 ± 0.0004

Negative values of δ correspond to negative FDS.
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