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Biological organisms exhibit diverse strategies for adapting to
varying environments. For example, a population of organisms
may express the same phenotype in all environments (“unvarying
strategy”) or follow environmental cues and express alterna-
tive phenotypes to match the environment (“tracking strategy”),
or diversify into coexisting phenotypes to cope with environ-
mental uncertainty (“bet-hedging strategy”). We introduce a
general framework for studying how organisms respond to envi-
ronmental variations, which models an adaptation strategy by
an abstract mapping from environmental cues to phenotypic
traits. Depending on the accuracy of environmental cues and
the strength of natural selection, we find different adaptation
strategies represented by mappings that maximize the long-term
growth rate of a population. The previously studied strategies
emerge as special cases of our model: The tracking strategy is
favorable when environmental cues are accurate, whereas when
cues are noisy, organisms can either use an unvarying strat-
egy or, remarkably, use the uninformative cue as a source of
randomness to bet hedge. Our model of the environment-to-
phenotype mapping is based on a network with hidden units;
the performance of the strategies is shown to rely on having
a high-dimensional internal representation, which can even be
random.

evolutionary theory | fluctuating environments | phenotypic plasticity |
population dynamics | survival strategies

To study the properties of a physical system, a phenomenolog-
ical approach is to characterize how it responds to external

conditions. For instance, materials show particular patterns of
deformation under external forces, which reveals their elas-
tic properties. Biological organisms exhibit far more complex
responses to environmental conditions. As the environment
varies, organisms adapt by changing their phenotypes, including
morphological and behavioral traits. Such phenotypic responses
to the environment are modified through the process of evolu-
tion, which gives rise to different forms of adaptation. Several
adaptation strategies, as described below, have been studied both
experimentally and theoretically (1–8). In this paper, we adopt
the phenomenological approach to study biological adaptation
by modeling general forms of phenotypic responses to environ-
mental conditions. This approach enables us to reveal underlying
connections between different adaptation strategies.

The simplest adaptation strategy is one in which organisms
express the same phenotype in all environments. A population
using this strategy has a narrow distribution of phenotypes that
does not vary with the environment. In such an “unvarying strat-
egy,” the typical phenotype is often fit for most environmental
conditions. For example, birds that feed on a variety of food
sources (“generalists”) have a midsized beak, which is slender
enough for catching insects and conical enough for cracking
seeds (9, 10).

Another strategy is for organisms to follow environmental
cues and express alternative phenotypes to match the environ-
ment. Provided that the cues are accurate, individual organisms
of a population may all express the appropriate phenotype. The

phenotype distribution would thus exhibit a narrow peak that
tracks the environmental variation. Examples of this “tracking
strategy” are seasonal changes of the butterfly’s wing patterns
and the mammal’s coat colors, which are induced by weather
conditions and provide suitable camouflage (11).

A third strategy is such that individual organisms of the same
population express different phenotypes, so that the phenotype
distribution is broad or has multiple peaks. Such diversification
is useful in stochastically changing environments, since there will
always be some individuals in the population that have the right
phenotype to survive. A classical example of this “bet-hedging
strategy” is the seed bank: To cope with unpredictable inclement
weather, some seeds quickly germinate after being dispersed
while others remain in the soil for a prolonged period (12, 13).
Bet hedging can also be combined with cue tracking, such that
the distribution of phenotypes varies according to the environ-
ment. For example, the fraction of seeds that germinate can
depend on environmental factors such as temperature, moisture,
and the presence of other seeds (14, 15).

We show that the above strategies are special limits of a gen-
eral solution for adaptation to varying environments. Depend-
ing on the accuracy of environmental cues and the strength
of natural selection, particular strategies of adaptation emerge
from a continuum of possible strategies. This unifying picture
is obtained using a model of “environment-to-phenotype map-
ping,” which allowed us to explore a wide range of phenotypic
responses to environmental conditions. Essential to our model
is a high-dimensional internal representation of the environment
that allows organisms to develop diverse phenotypic responses.

Significance

A fundamental difference between living and nonliving sys-
tems is that organisms can evolve responsive adaptation
to external conditions. We present a theoretical framework,
which unifies different adaptation strategies encountered in
biology. Central to our approach is the introduction of an
environment-to-phenotype mapping describing how organ-
isms’ traits or behavior depend on the environment. In con-
trast to commonly considered genotype-to-phenotype map-
ping, our approach emphasizes an evolutionary rather than
mechanistic understanding of organisms. Our phenomenolog-
ical model, inspired by artificial neural networks, also allows
us to study the importance of the dimensionality of internal
representations for the adaptation strategies.
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Our results suggest ways to experimentally evolve and identify
different adaptation strategies.

Model of Environment-to-Phenotype Mapping
The phenotypic responses of an organism to environmental
conditions can be conceptualized as a mapping from the envi-
ronment space to the phenotype space. A certain environmental
stimulus that the organism experiences may induce a partic-
ular phenotype. Such an environment-to-phenotype mapping
may represent, for example, how the development of organisms
is affected by the environment (known as “phenotypic plas-
ticity”). A mapping that allows a population to survive better
and reach greater abundance in the long term will generally be
favored by natural selection. We study the optimal form of the
mapping that maximizes the population growth rate in varying
environments.

Consider a population of organisms that reproduce asexu-
ally in discrete numbers of generations. The environment they
live in may vary from generation to generation. An environ-
mental condition is described by an n-dimensional vector ε,
whose components represent different environmental factors,
such as temperature, light, and amount of food. We assume
that the environment switches between several different condi-
tions, labeled by εµ for µ= 1, . . . ,m . Each individual organism
receives an environmental cue, which is correlated with the envi-
ronmental condition and can potentially be used to distinguish
the actual environment. This environmental cue is denoted by a
vector ξ, which is assumed to belong to the n-dimensional envi-
ronment space. Note that, in the same environment εµ, each
organism may receive a different cue ξ.

Similarly, the phenotype of an organism is described by a
p-dimensional vector φ, whose components represent different
characteristic traits, such as the shape of body parts or the speed
of movement. The phenotype that an organism expresses may
depend on the environmental cue ξ that it receives. We describe
such dependence by a function, φ= Φ(ξ), which represents a

mapping from the n-dimensional environment space to the p-
dimensional phenotype space, as illustrated in Fig. 1A. Different
forms of the mapping will correspond to different adaptation
strategies.

The fitness of an organism in a given environment εµ is mea-
sured by how many offspring it produces. This depends on its
phenotype φ and is described by a function f (φ; εµ). Thus, in
each generation, labeled by a number t , an individual organism
that receives an environmental cue ξt will express a phenotype
φt = Φ(ξt) and produce as many as f (φt ; εt) offspring, where εt
is the environmental condition. Let Nt be the population size in
the tth generation; then in the next generation it will be

Nt+1 =Nt

∑
ξt

P(ξt | εt)f (Φ(ξt); εt), [1]

where P(ξt | εt) is the probability that a cue ξt is received when
the environment is εt . In the long term, the growth rate of the
population is given by Λ≡ 1

T
log NT

N0
for T→∞. This long-term

growth rate can be calculated as

Λ =
∑
µ

pµ log
∑
ξ

P(ξ | εµ)f (Φ(ξ); εµ), [2]

where pµ is the probability that each environmental condition εµ

occurs. We use Λ as the measure of evolutionary success for a
population. The optimal phenotypic response is determined by
the function Φ that maximizes the value of Λ.

For simplicity, we assume that the environmental cue ξ is ran-
domly distributed around the actual environment εµ according
to a Gaussian distribution, P(ξ | εµ) = 1

(2πσ2)n/2 exp{− (ξ−εµ)2
2σ2 },

where σ represents the noisiness of the environmental cue. The
fitness is also assumed to be a Gaussian function, f (φ; εµ) =

Fµ exp{− γ
2(φ−ψµ)2

2
}, where Fµ is a constant representing the

maximum number of offspring in the environment εµ, and ψµ is

BA

Fig. 1. Schematic illustration of our modeling framework. (A) Phenotypic responses described by a mapping from an n-dimensional environment space to
a p-dimensional phenotype space. The environment can be in one of m conditions, labeled by εµ, each favoring a phenotype ψµ. In a given environmental
condition (distinguished by color), each individual organism receives a noisy cue ξ (distribution represented by color shade in environment space) and
expresses a phenotype according to the mapping Φ (distribution of phenotypes induced by the mapping is represented by color shade in phenotype space).
The fitness of a phenotype depends on its distance to the favorable phenotype (illustrated by the fitness landscape in phenotype space). Note that the
organism sees only the cue and does not know the true environment. (B) A network model with one hidden layer. The input ξ has n components, ξa.
The hidden layer has q components, given by ηα = g(

∑
a Hαaξa), where Hαa is the representation matrix and g is a sigmoid function. The output φ has p

components, determined by φi =
∑
α Giαηα, where Giα is the expression matrix.

13848 | www.pnas.org/cgi/doi/10.1073/pnas.1903232116 Xue et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1903232116


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

the most favorable phenotype in that environment. The param-
eter γ represents the strength of natural selection, which is
assumed to be the same for all environments (see SI Appendix,
Fig. S3 for a different case). Note that σ and 1/γ serve as
characteristic scales for the environment space and the pheno-
type space, respectively. Under those assumptions, the long-term
growth rate Λ is evaluated numerically according to Eq. 2, as
described in Materials and Methods.

We are interested in the ideal function Φ∗ that maximizes Λ,
which satisfies the variational equation δΛ/δΦ(ξ) = 0. Unfortu-
nately, this equation cannot be solved explicitly in general (but
see Materials and Methods for special cases). To proceed further,
we need to specify the function Φ in a parametric form, so that
we can optimize over the parameters numerically. The form of
the function should be sufficiently general to allow all possible
types of phenotypic responses. In the following, we introduce a
particular form of the function that is biologically motivated as
well as computationally convenient.

Our model of the function Φ takes the form of a feed-forward
network with a hidden layer. The input layer has n nodes, cor-
responding to the n components of the environmental cue ξ;
the output layer has p nodes, corresponding to the p compo-
nents of the phenotype φ; the hidden layer is chosen to have
q nodes, a potentially large number compared with n and p,
as illustrated in Fig. 1B. These hidden nodes can be thought
to form an internal representation of the external environment;
their values are determined by the input vector ξ through a “rep-
resentation matrix” H and a nonlinear transformation g , such
as a tanh function. The output vector φ depends on the inter-
nal variables through an “expression matrix” G . Altogether, the
function Φ takes the form

φi = Φi(ξ) =
∑
α

Giα g

(∑
a

Hαaξa

)
. [3]

(Each matrix has an additional column that represents a constant
[“bias”] term; e.g.,

∑
a Hαaξa ≡

∑n
a=1 Hαaξa +Hα0, where Hα0

is the constant term that is optimized as part of the matrix.) With
sufficiently many internal variables, such a multilayered feed-
forward network [known as a “perceptron” (16)] can approx-
imate any smooth function and hence capture all possible
phenotypic responses.

The structure of this model is inspired by many biological sys-
tems. The hidden nodes of the network may represent internal

variables of the organism. For example, a plant’s phenotypic
responses to environmental conditions can be described by a
growth-regulatory network, where a large group of molecules,
such as growth factors and gene promoters, act as hidden nodes
of the network (17). The formation of a high-dimensional inter-
nal representation, which allows organisms to better perceive the
environment and produce more refined phenotypic responses,
has also been suggested. Cellular signaling networks, for exam-
ple, involve many proteins that often have multiple modification
sites, interacting with each other and giving rise to a large num-
ber of possible states (18). Similarly, biological neural networks,
such as the olfactory systems of insects and mammals, have mul-
tiple layers of neurons for processing sensory information; some
intermediate layers of neurons may play the role of expanding
the dimensionality of input signals to facilitate later stages of
cognition (19, 20).

In our network model, the environment-to-phenotype map-
ping is specified by the representation matrix H and the expres-
sion matrix G . These matrices may represent information that
is encoded in the organism’s genotype, which undergoes evolu-
tion. For simplicity, we consider the case where individuals of
the population share the same matrices, and we look for the opti-
mal values of H and G that maximize the long-term population
growth rate Λ.

Emergence of Different Adaptation Strategies
The adaptation strategy resulting from the optimized network
will depend on the level of environmental noise σ and the
strength of natural selection γ. We explore the range of adap-
tation strategies in the (σ, γ) parameter space using numerical
examples. Consider a 2D environment space (n = 2), a 3D phe-
notype space (p = 3), and a 20D internal space (q = 20). The
environment switches between three conditions (m = 3), with
arbitrarily chosen positions in the environment space (marked in
Fig. 2A) and probabilities of occurrence (pµ = 0.2, 0.5, and 0.3,
respectively). For each environmental condition εµ, we assign a
most favorable phenotype ψµ, called an “archetype” hereafter,
in the phenotype space (Fig. 2B). In a given environment εµ,
organisms receive a distribution of cues, as illustrated in Fig. 2A.
The mapping given by the optimized network generates a dis-
tribution of phenotypes, as illustrated in Fig. 2B. The shape of
the phenotype distribution, and how it changes under differ-
ent environmental conditions, characterizes the corresponding
adaptation strategy.

A B

Fig. 2. Example of an adaptation strategy produced by an optimized network. (A) Distribution of environmental cues ξ represented by points in the envi-
ronment space (color represents the actual environmental condition εµ). (B) Distribution of phenotypes produced by the optimized network, represented
by points in the phenotype space. All points fall on a plane (gray shaded) spanned by the archetypes ψµ. For these plots we used parameter values σ= 1
for environmental noise and γ= 1 for selection strength, which represent characteristic scales that are of the same order as the distance between two
environments εµ and between two archetypes ψµ, respectively.
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A prominent feature of the emerged geometric structure,
shown in Fig. 2B, is that all phenotypes lie on a flat plane
spanned by the archetypes, {ψµ}. This structure can be explained
by a “Pareto efficiency” argument as follows. Since the fitness
of a phenotype depends on its distance to the archetypes, a
phenotype located off the plane will always be less fit than its
perpendicular projection onto the plane. Therefore, in the opti-
mal phenotype distribution, all phenotypes should fall on the
plane. In general, if there are m archetypes, the optimal phe-
notype distribution will be contained in a (m − 1)-dimensional
subspace spanned by those archetypes. If m is small com-
pared with the dimensionality of the original phenotype space,
p, then the dimensionality of phenotypes will be significantly
reduced.

Such dimensional reduction, as well as the Pareto efficiency
argument, is similar to that found in the model in ref. 10. In that
model, the archetypes represent different biological tasks that
every individual organism must perform during its lifetime, with
varied degrees of importance to its overall fitness. To compare
with our model, we can associate the tasks with environmen-
tal conditions that individuals may encounter and need to adapt
to, with varied probabilities of occurrence. From this perspec-
tive, the model in ref. 10 corresponds to the situation where the
phenotype does not depend on the present environment (i.e., no
phenotypic plasticity), and the phenotype distribution of a popu-
lation is simply localized at a given point in the phenotype space.
This form of phenotypic response and the resulting phenotype
distribution are characteristic of the unvarying strategy, which is
discussed later. In contrast, by allowing the phenotype to depend
on environmental cues through the environment-to-phenotype
mapping, our model encompasses a wider range of adaptation
strategies, as we describe below.

Examples of Strategies. In the following, we examine the distribu-
tion of phenotypes for different parameters σ and γ, represented
by the density of points in the archetype plane, as shown in
Fig. 3 (see SI Appendix, Fig. S1 for clarity). In many cases, the
density is high near the archetypes. We divide the plane into
regions surrounding each ψµ, marked by boundary lines in Fig. 3;
Insets show fraction of phenotypes lying inside each region. By
comparing those fractions as well as the shape of the pheno-
type distribution between different environmental conditions, we
identify a wide range of adaptation strategies.
Tracking strategy under low noise. Examples of low environmen-
tal noise are shown in Fig. 3 G–I. In these cases, the width
of the noise distribution is much smaller than the typical dis-
tance between two environmental conditions (chosen to be '1);
i.e., σ� 1. Therefore, the environmental cue is very accurate
about the present environmental condition. As a result, in each
environment εµ, the phenotype distribution is highly concen-
trated near the corresponding archetype ψµ—the surrounding
region contains almost 100% of the phenotypes, so the plots in
Fig. 3 G–I, Insets look diagonal. This means that the organisms
can express the most favorable phenotype that tracks the vary-
ing environmental condition. The picture hardly changes as the
selection strength γ is varied (compare among Fig. 3 G–I). It
is understandable since, without a significant cost for sensing,
organisms should always use environmental cues when those are
reliable.
Unvarying strategy under high noise and weak selection. The
opposite case where the environmental noise level is high (σ�
1) is shown in Fig. 3 A–C. In these examples, the environmental
cue has a broad distribution and is largely uninformative about
the actual environment. Therefore, we expect the optimal phe-
notype distributions to look similar in all environments. This is
verified by Fig. 3 A–C, Insets, which show that there is a signifi-
cant fraction of phenotypes in each region and the fractions vary
slightly between different environments (see also SI Appendix,

Fig. S1). However, depending on the selection strength γ, the
phenotype distribution has very different characters. Fig. 3A
shows the case of weak selection, where the characteristic scale
1/γ is much larger than the typical distance between two phe-
notypes (chosen to be '1); i.e., γ� 1. In this case, the pheno-
types are centered near the average phenotype, ψ̄=

∑
µ pµψ

µ,
regardless of the environmental condition. It means that the
organisms may ignore the cue when it is noisy and exhibit a
constant phenotype. The optimal constant phenotype strikes
a balance between all of the archetypes, similar to the result
in ref. 10.
Bet-hedging strategy under high noise and strong selection.
When the cue is noisy and the selection is strong (σ, γ� 1),
however, the unvarying strategy fails because the average phe-
notype ψ̄ suffers from low fitness values in all environments. In
this case, surprisingly, the organisms do not ignore the uninfor-
mative environmental cue, but use it in a completely different
way—each organism expresses one of the archetypes according
to the cue, so that the population diversifies into multiple sub-
populations due to the randomness of the cue. As shown in
Fig. 3C, the phenotype distribution is sharply peaked around
every archetype ψµ, and the size of each peak changes little with
the environmental condition. This bet-hedging strategy guaran-
tees that, in any environment εµ, a subpopulation expressing the
corresponding archetype ψµ will have a high fitness value. The
relative size of each subpopulation depends on the probabil-
ity pµ that each environment occurs. In the limit of extremely
strong selection (γ→∞), we expect to recover the result of
previous bet-hedging models (e.g., ref. 21), in which the prob-
ability of expressing the archetype ψµ matches the probability of
encountering the environment εµ (Materials and Methods). This
is indeed the case, as the fraction of phenotypes near each ψµ

agrees well with the environment probability pµ (SI Appendix,
Fig. S1C).
Intermediate strategies. Besides the above extreme cases that
correspond to well-categorized adaptation strategies, interme-
diate cases are also found. A combination of bet-hedging and
tracking strategies is seen in the case of a medium noise level
(σ' 1) and strong selection (γ� 1). As shown in Fig. 3F, the
phenotype distribution is peaked around the archetypes, but
the relative sizes of the peaks are biased toward the one that
matches the actual environment (see also SI Appendix, Fig. S1F).
This case may represent the situation of bet hedging with par-
tial environmental information, in which the population uses an
imperfect cue to moderately adjust its phenotype distribution
(21, 22). Similarly, we can see intermediate cases between bet-
hedging and unvarying strategies (high noise σ� 1 and medium
selection γ' 1, Fig. 3B), as well as between unvarying and track-
ing strategies (medium noise σ' 1 and weak selection γ� 1,
Fig. 3D).

The transition of adaptation strategies with the parameters
σ and γ, illustrated by the examples in Fig. 3, can also be
understood analytically using approximate solutions of the ideal
function Φ∗ for extreme parameter values (Materials and Meth-
ods). Those approximate solutions do not rely on the para-
metric form of the function, Eq. 3, showing that our results
are more general than the numerical examples. Generally, the
accuracy of environmental cues, measured by the noise level
σ, determines the bias of the phenotype distribution toward
the archetype in a given environmental condition. The selection
strength γ, on the other hand, modifies the shape of the phe-
notype distribution, which tends to be more clustered near the
archetypes when the selection is strong and more scattered into
the interior space between the archetypes when the selection
is weak.

Quantification of Strategies. The shape of the phenotype distri-
butions illustrated above can be characterized quantitatively.
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G H I

Fig. 3. (A–I) Phenotype distributions produced by networks optimized for different values of the noise level σ and the selection strength γ. Colored circles
represent phenotypes plotted in the archetype plane, with ϕ1,ϕ2 as new coordinates. Dashed lines divide the plane into regions that are close to each ψµ;
the intersection point corresponds to the average phenotype, ψ̄=

∑
µ pµψµ. Insets show the fraction of phenotypes inside each region under different

environmental conditions.

Two main properties of the phenotype distributions are how
much they vary with the environment and how concentrated
they are near the archetypes. To describe these properties,
we introduce two characteristic quantities and examine how
they vary with the environmental noise σ and the selection
strength γ.

Specifically, in each environment εµ, the phenotype distribu-
tion can be denoted by a conditional probability distribution
π(φ | εµ), as defined in Eq. 15 (Materials and Methods). Given the
environment probabilities pµ, the overall distribution of the phe-
notype is π(φ) =

∑
µ pµπ(φ | εµ). The total variance of the phe-

notype can be decomposed as V[φ] =V[E[φ | εµ]] +E[V[φ | εµ]].

In the first term, E[φ | εµ] is the conditional expectation of the
phenotype for a given environment εµ, and V[E[φ | εµ]] is the
variance of the conditional expectation with respect to the envi-
ronment probabilities pµ, and similarly for the second term.
We can use these two terms to characterize different adapta-
tion strategies. Essentially, the first term characterizes how much
the phenotype varies with the environment, whereas the sec-
ond term characterizes how much the phenotype varies in a
given environment. For clarity, we take the trace of the vari-
ance matrices and normalize the terms by the variance of the
archetypes, V[ψ] (according to the Pareto efficiency argument,
the optimal phenotype distributions are contained in between

Xue et al. PNAS | July 9, 2019 | vol. 116 | no. 28 | 13851



A B

Fig. 4. Characterization of adaptation strategies using quantities VE and EV. (A) Plot of the parameter space showing how VE and EV vary with the noise
level σ and the selection strength γ. Circles represent data points from numerical calculations, with values of VE and EV illustrated by grayscale; thick colored
circles correspond to examples shown in Fig. 3. (B) Plot of VE−EV space showing examples from Fig. 3. Dashed line represents the bound VE + EV≤ 1. Corners
of the VE−EV space represent special limits that correspond to the tracking, unvarying, and bet-hedging strategies.

the archetypes; hence V[φ]≤V[ψ]). Thus, our characteristic
quantities are

VE≡ tr (V [E[φ | εµ]])

tr (V[ψ])
, EV≡ tr (E [V[φ | εµ]])

tr (V[ψ])
. [4]

Fig. 4A shows how the values of these quantities change
according to the parameters σ and γ.

To see how these quantities help characterize different adap-
tation strategies, consider the three strategies described above.
For the tracking strategy, the phenotypes are concentrated near
the corresponding archetype in each environment, and hence
E[φ | εµ]≈ψµ and V[φ | εµ]≈ 0; therefore, VE≈ 1 and EV≈ 0.
Similarly, for the unvarying strategy, the phenotypes are always
concentrated near the center of the archetypes, which means
E[φ | εµ]≈ ψ̄ and V[φ | εµ]≈ 0; therefore, VE≈ 0 and EV≈ 0.
Finally, for the bet-hedging strategy, the phenotype distributions
are largely independent of the environment and are concentrated
near the archetypes in proportion to the environment probabili-
ties pµ; this leads to VE≈ 0 and EV≈ 1. Therefore, those three
strategies can be clearly distinguished by different limits of the
characteristic quantities, as shown in Fig. 4B.

Dimensionality of Internal Representation
So far we have fixed the dimensionality of the network’s hidden
layer at a relatively large number, q = 20, compared with that
of the environment space, n = 2. The motivation was to create
an adequate expansion of dimensionality from the input layer to
the hidden layer, q/n = 10, so that the network can be used to
approximate well the ideal function Φ∗ in all cases. The approxi-
mation is verified in the limit γ→ 0, where explicit solutions can
be found (Materials and Methods); the numerical solutions we
obtained are very close to the ideal function Φ∗ (SI Appendix,
Fig. S2 B and C).

Let us now explore how the results change if we vary the
dimensionality q . Fig. 5 shows how the maximum value of Λ
increases with q . For a small q , the network model becomes very
restrictive because it does not have many parameters that can be
tuned. In that case, the phenotype distribution that results from
optimizing the network will be deformed from that for the ideal
function Φ∗ (SI Appendix, Fig. S2A). In particular, in the limit
q→ 0, the intermediate layer of the network vanishes, so the out-
put becomes disconnected from the input. This means that the
phenotype can no longer depend on the environmental cue, and
hence the organism is forced to express the same phenotype in

all environments. In other words, the organism can use only the
unvarying strategy, even though it is not favorable in many situ-
ations. On the other hand, a large q enables organisms to form
various types of adaptation strategies, as we have seen for q = 20.
The price, however, is having to tune a lot of parameters. This
could mean a much longer time for a population to adapt to a
varying environment.

In our numerical computation, we found that it is much slower
to optimize over the representation matrixH than over the expres-
sion matrix G , because the latter is directly connected to the
output phenotype being selected but the former is not. This sug-
gests that it is harder for an organism to adjust the way it creates
an internal representation of the environment than to adjust the
mechanism that produces the phenotype directly. It is therefore
interesting to ask whether one can keep the representation matrix
H fixed while optimizing over the expression matrix G alone.

Fig. 5. Long-term population growth rate Λ vs. the dimensionality q of the
intermediate layer of the network. Each point represents a network with
a random, fixed representation matrix H (entries drawn from N (0, 1) inde-
pendently) and an optimized expression matrix G. (To aid visualization of
the density of points, a small random horizontal displacement is added.)
Dashed and solid (Inset) lines show the mean and SD of the values of Λ.
Horizontal bars mark the maximum values of Λ when the matrix H is also
optimized for each q; dotted line (Inset) shows the difference between the
maximum and the mean values. For this example the parameter values σ= 1
and γ= 1 are used.
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To address this point, we consider the case where the represen-
tation matrix is chosen randomly. For a given dimensionality q ,
let each entry of H be drawn independently from a standard nor-
mal distribution N (0, 1). For each of such random, fixed matrix
H , the network is optimized over G to maximize the long-term
population growth rate Λ. The results are shown in Fig. 5. We
find that, for a relatively small q (such as q = 4), the values of
Λ are low and widely spread; however, for a very large q (such
as q = 100), the values of Λ are not only high but also narrowly
distributed. Moreover, the distribution of Λ values moves closer
to the maximum value as the dimensionality q increases. Hence,
with a sufficiently high dimensionality, a random representation
can be almost as good as the optimal one. This suggests that
having a high-dimensional, sufficiently complex, internal repre-
sentation of the environment would allow organisms to flexibly
and quickly adapt to many situations. Of course, maintaining a
large number of internal variables may incur additional costs.

The idea that a high-dimensional and potentially random
representation of the input can encode complicated output pat-
terns is related to the kernel method and reservoir computing
in machine learning (23). In general, more complex patterns
require higher dimensionality of the internal representation (see
refs. 16 and 24 for discussion on the limitation of such methods).
Similar ideas have been explored in biological contexts (19, 20).

Discussion
We have presented a general model of organisms’ phenotypic
responses to varying environments; the optimal responses show
patterns of adaptation observed in nature. The form of such
adaptation strategies depends on the noisiness of environmental
cues and the selectivity of environmental conditions. In spe-
cial limits of the parameter values, we have recovered three
well-known strategies—unvarying, bet hedging, and tracking.
The capacity of forming these and other adaptation strategies
depends on the richness of the organisms’ internal represen-
tation of the environment, characterized in our model by the
number of internal variables.

Separation of Timescales. Our model implicitly assumes the sep-
aration of characteristic timescales of phenotypic responses,
environmental changes, and evolution. In particular, by con-
sidering time in discrete numbers of generations, we do not
model explicitly the dynamics of phenotypic development and
environmental changes within a generation. This simplification
is easily understood in cases where the timescale of environ-
mental changes is much longer than that of the developmental
process. In other cases, where the environment and the phe-
notype vary significantly within the lifetime, the vectors ε and
φ can in principle represent time courses of the environment
and the phenotype, respectively, such as growth conditions and
behavioral traits during the lifetime of an organism. This would
naturally make those vectors high dimensional and the mapping
more complicated, which may inspire additional consideration
on modeling the dynamics of phenotypic responses.

We have also assumed that the timescale of environmental
changes is much shorter than that of evolutionary changes. This
allowed us to consider the effect of evolution in varying envi-
ronments by optimizing the environment-to-phenotype mapping
with respect to the environmental statistics, without explicitly
treating the dynamics of the evolutionary process. It should be
noted that, when the timescale of environmental changes is com-
parable to that of evolutionary changes (such as the time for
genetic mutations to arise and spread in a population), different
modes of evolutionary dynamics may occur. Such situations have
been theoretically studied in models of population genetics. For
example, during a prolonged period of constant environment,
organisms may lose the plasticity to express alternative pheno-
types due to the accumulation of mutations affecting unused

phenotypes (25, 26). Similarly, bet hedging can be selected
against in such a situation (27), and the population could go
extinct before profiting from environmental changes.

When the environment is correlated over multiple gener-
ations, it is possible to reduce uncertainty in estimating the
environment by tracking the history of environmental cues. This
can be done by having organisms pass down information about
their environment to their offspring, e.g., through epigenetic
inheritance. Our current model does not include such a possi-
bility, since the phenotype of an organism depends only on the
environmental cue it receives and not on its parent’s cue or phe-
notype. To incorporate transgenerational effects, one could, for
example, let the state of the network in one generation depend
on that in the previous generation, thus making the network
recurrent across generations. Such generalization would allow
the organisms to use temporal structures in the environmental
variation.

Relation to Experiments. The geometry of phenotypic responses
associated with different adaptation strategies can be looked for
in experimental studies. Such studies should involve measuring
the phenotype distribution in a wide range of controlled envi-
ronmental conditions. Each strategy may be recognized by a
particular shape of the phenotype distribution. For instance, an
unvarying strategy is characterized by a phenotype distribution
with a single peak that is stable under environmental variations.
A pure bet-hedging strategy is associated with a multimodal phe-
notype distribution that does not depend on the environment. A
tracking strategy, on the other hand, features a phenotype distri-
bution with a single peak that changes position according to the
environmental condition.

Our model predicts that specific adaptation strategies emerge
under different levels of environmental noise and selection pres-
sure. These predictions can be tested by experimental evolution.
Indeed, several experiments have demonstrated that particular
forms of adaptation can be evolved. For example, phenotypic
plasticity, crucial for the tracking strategy in which organisms
express distinctive phenotypes under varied environmental con-
ditions, has been observed in larval development under tempera-
ture treatments (28). The evolution of bet-hedging strategies has
been shown in bacteria subject to repeated selection in contrast-
ing growth conditions (29). The random choice of phenotypes
in a bet-hedging strategy may come from stochasticity in bio-
chemical processes inside the organism. Alternatively, our model
suggests that, when environmental cues are noisy and selection
is strong, organisms can evolve to bet hedge using the cue as a
source of randomness. Remarkably, a recent experiment in yeast
showed that, indeed, bet hedging can be generated by plastic
responses to an uninformative cue (30). Ultimately, a full test of
our model requires varying the noise level of environmental cues
and selection strength of environmental conditions and show-
ing that different patterns of adaptation emerge from evolution.
Such experiments would require quantitative and systematic
measurements of the relation between organisms’ phenotype and
their environment.

Conclusion
We have introduced here the environment-to-phenotype map-
ping as an effective approach for studying the response of organ-
isms to environmental conditions. This approach allowed us to
explore a wide range of possible responses beyond the details
of underlying molecular mechanisms. Compared with the com-
monly studied genotype-to-phenotype mapping, which describes
how genetic variation affects phenotypes and emphasizes a
mechanistic perspective (31–33), the environment-to-phenotype
mapping provides a phenomenological perspective by describing
organisms as a set of input–output relations that can be mea-
sured in experiments. This description is potentially useful for
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studying evolution, since the same form of phenotypic responses
may be naturally selected even if it is implemented by different
molecular mechanisms. For instance, many bacteria can stochas-
tically switch from a normal growth state to a dormant persister
state, which prevents cell death from unforeseeable antibiotic
attack (34). Different molecular mechanisms have been found
to underlie such bacterial persistence (35). Nevertheless, the
growth benefit of this particular adaptation strategy can be
understood without using those mechanistic details (36). Such
methods have recently been applied to other types of adaptation
strategies (21, 37).

We have used a network model as a simple example of pos-
sible forms of the environment-to-phenotype mapping. In our
model the connections of the network store information about
the environmental conditions and their statistics, as well as
about the favorable phenotypes. Besides varying the dimension-
ality of the internal representation or the number of intermedi-
ate layers (38), a possible further generalization of our model
would be to consider a recurrent network with evolvable internal
dynamics (39). Such a network could allow organisms to store
information about their past phenotypes and encode temporal
structures of the environmental history. The environment for the
organisms can also include ecological interactions with individu-
als of the same population or other species. Such generalizations
could lead to potentially more complex adaptation strategies.

Materials and Methods
Numerical Methods. Our goal is to maximize the long-term growth rate
Λ with respect to the phenotypic response function Φ. The function Φ is
parameterized by the matrices H and G, as in Eq. 3. The value of Λ, according
to Eq. 2, is given by

Λ =
∑
µ

pµ log Fµ +
∑
µ

pµ log
〈

e−
γ2
2 (Φ(ξ)−ψµ )2

〉
ξ∼N (εµ ,σ)

[5]

where 〈·〉 represents the expectation value with respect to the Gaussian
random variable ξ. The first term does not depend on the parameters of Φ

and is ignored. The optimization is done numerically by iterating over two
steps: calculating the expectations in Eq. 5 given the current values of H and
G, then updating these matrices to improve the value of Λ.

For the first step, we calculated the expectation values by numerically
integrating over the Gaussian distributions. We used the python package
“scipy.integrate,” which calls the Fortran library QUADPACK. An alterna-
tive approach to numerical integration is to generate a random sample of
ξ from the Gaussian distribution and use it to estimate the expectation val-
ues. This approach represents a finite sampling of the environmental cues,
which allows for the analysis of the effect of finite population sizes and the
stability of the optimal solutions. We tried both approaches and did not find
significant differences in performance.

For the second step, we searched parameters using the python package
“scipy.optimize” with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm. This step involves calculating the gradient of the function Λ over the
matrices H and G and then using the gradient to update their values. One
could update the matrices simultaneously or optimize one while holding the
other fixed and then iterate. It turns out that optimizing the matrix G alone
is efficient, because G is directly connected to the output without having a
nonlinear transformation. Using this observation, we chose to optimize G
at every step of updating H. In this case, the gradient of Λ(G∗(H), H) over H

can be simply calculated as ∂Λ
∂H

∣∣∣
G∗

because ∂Λ
∂G

∣∣∣
G∗

= 0.

For the examples shown in Fig. 3, the coordinates of the environments
and the archetypes are ε1 = [−0.1, 0.9], ε2 = [−0.8,−0.4], ε3 = [0.9,−0.5],
ψ1 = [−0.6, 0.5, 0.8], ψ2 = [0.4, 0.6,−0.9], ψ3 = [0.5,−0.8, 0.4]; the envi-
ronment probabilities are [p1, p2, p3] = [0.2, 0.5, 0.3]. The same values are
used for Figs. 4 and 5. In Fig. 4, for each pair of parameter values σ and
γ, we ran eight replicate optimizations starting from random initial values
(every entry of H and G drawn i.i.d. fromN (0, 1)); the order parameters are
averaged over these replicates. In Fig. 5, for each dimensionality q, we ran
100 examples, each having a fixed H with random entries.

Analytic Limits. Nonparametrically, the ideal response function Φ∗ that
maximizes Eq. 5 should satisfy the variational equation δΛ/δΦ(ξ) = 0,

which cannot be solved analytically. Here we derive approximate solutions
for some extreme values of the parameters σ and γ. Our results in this
subsection do not rely on the network ansatz, Eq. 3, of the function Φ.
Weak selection, γ → 0. In this limit, we can expand the integrand in Eq. 5,
to first order in γ2, yielding

Λ≈− γ
2

2

∑
µ

pµ

∫
dξ P(ξ | εµ)

(
Φ(ξ)−ψµ

)2, [6]

where P(ξ | εµ) is the Gaussian distribution of ξ. To maximize the value of
Λ, we set its variational derivative over the function Φ(ξ) to zero,

δΛ

δΦ(ξ)
=−γ2

∑
µ

pµP(ξ | εµ)
(
Φ(ξ)−ψµ

)
= 0. [7]

Solving this equation yields

Φ
∗(ξ) =

∑
µ pµP(ξ | εµ)ψµ∑
ν pνP(ξ | εν )

=

∑
µ pµψµ e

− 1
2σ2 (ξ−εµ )2

∑
ν pν e

− 1
2σ2 (ξ−εν )2

. [8]

This result can also be written succinctly as Φ∗(ξ) =
∑
µ P(εµ | ξ)ψµ, using

Bayes’ rule. The same expression has been derived in ref. 37.
In the subcase where σ is small, i.e., when the cue ξ is accurate, the prob-

ability P(εµ | ξ) is nearly 1 for the correct environment εµ, and hence the
phenotypes are concentrated at the corresponding archetypeψµ. This yields
the tracking strategy. However, when σ is large, i.e., when the cue is noisy,
all environments εµ are likely; Eq. 8 becomes Φ∗(ξ)≈

∑
µ pµψµ≡ ψ̄, which

means that an average phenotype ψ̄ is produced regardless of the cue. This
corresponds to the unvarying strategy.
Low noise, σ → 0. In this limit, the Gaussian distribution of ξ in Eq. 5 is
concentrated near its mean, εµ, so we can expand the integrand around
that point. This yields, to first order in σ2,

Λ≈− γ
2

2

∑
µ

pµ
[(

Φ(εµ)−ψµ
)2

+σ
2 (
∂aΦi(ε

µ)∂aΦi(ε
µ) + · · ·

)]
. [9]

This expression depends on the local values of the function Φ and its deriva-
tives, Φ(εµ), ∂Φ(εµ), etc. To maximize Λ, we should have Φ∗(εµ)≈ψµ and
∂Φ∗(εµ)≈ 0. It means that the ideal function Φ∗ maps each environment εµ

to its archetype ψµ, and the mapping is locally “flat”—the function value
changes little in the neighborhood of εµ. Since, for low noise, the cues ξ
are close to the actual environment εµ, they will all be mapped to near the
correct archetype ψµ. This leads to the tracking strategy for any value of
the selection strength γ.

High noise, σ →∞. In this limit, the cue ξ has a broad distribution that
varies little with the environment εµ, and hence P(ξ | εµ)≈ P(ξ). As a result,
the phenotype distribution will also be independent of the environment
and can be defined as

π(φ)≡
∫

dξ P(ξ) δ(φ−Φ(ξ)). [10]

Using this phenotype distribution, the long-term growth rate Λ can be
written as

Λ≈
∑
µ

pµ log
∫

dφπ(φ) e−
γ2
2 (φ−ψµ )2

. [11]

The distribution π∗(φ) that maximizes Λ will constrain the ideal function Φ∗

through Eq. 10.
Let us treat the subcases of small and large γ separately. For a small γ, i.e.,

weak selection, we once again expand Λ to first order in γ2, which yields

Λ≈− γ
2

2

∑
µ

pµ

∫
dφπ(φ) (φ−ψµ)2

=− γ
2

2

(∫
dφπ(φ)

(
φ− ψ̄

)2
+V[ψ]

)
, [12]

where V[ψ] =
∑
µ pµ(ψµ)2− ψ̄2. From this expression it is clear that the

optimal phenotype distribution is π∗(φ) = δ(φ− ψ̄), which agrees with the
unvarying strategy found above.

For a large γ, it can be seen from Eq. 11 that the distribution π(φ) should
become sharply peaked at points where φ=ψµ. We can use the ansatz
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Fig. 6. Fitness sets (shaded area) for different values of the selection
strength γ. Here f1 and f2 are fitness values of a phenotype in each of
the two environments, with the corresponding archetypes separated by a
distance d = 1.

π(φ) =
∑
µ πµ δ(φ−ψµ), which is a discrete distribution with weights only

at the archetypes ψµ. Inserting this ansatz into Λ yields

Λ≈
∑
µ

pµ logπµ. [13]

This expression recovers the model of bet hedging (e.g., ref. 21). The optimal
values of πµ are given by π∗µ = pµ. Therefore, the phenotype distribu-
tion will consist of separate peaks at each ψµ, their relative sizes being
proportional to the probability pµ that each environment εµ occurs. To gen-
erate such a phenotype distribution, the function Φ∗(ξ) has to partition the
environment space such that each partition has a total probability pµ.
Strong selection, γ →∞. In this limit, the archetypes are far from one
another as measured by the characteristic scale 1/γ. Since a phenotype can
be close to only one of the archetypes, there is a trade-off between the
fitness values in different environments. In this case, the shape of the phe-
notype distribution can be understood by analyzing the geometry of the
“fitness set” (8, 40).

Specifically, for each phenotype φ, the fitness values fµ(φ)≡ f(φ; εµ) for
µ= 1, . . . , m can be represented by a point in an m-dimensional fitness

space. The collection of such points for all phenotypes φ forms the fit-
ness set. Then, the average fitness of a population with a given phenotypic
response function Φ(ξ) can be written as

fµ[Φ]≡
∫

dφπ(φ | εµ)fµ(φ), [14]

where the phenotype distribution π(φ | εµ) is given by

π(φ | εµ)≡
∫

dξ P(ξ | εµ) δ(φ−Φ(ξ)). [15]

The collection of those points, {fµ[Φ]} for all possible phenotypic responses
Φ(ξ), forms the “extended fitness set.” Geometrically, each fµ in the
extended set can be considered as a linear combination of points from the
original fitness set, weighted by the phenotype distribution in Eq. 14. By
locating the point within the extended fitness set that maximizes the long-
term growth rate, Λ =

∑
µ pµ log fµ, one can find the optimal phenotypic

response and the phenotype distribution (8).
As an example, consider two environments, µ= 1, 2. The fitness values

are given by f1 = e−γ
2(φ−ψ1)2/2 and f2 = e−γ

2(φ−ψ2)2/2, where the two
archetypes are assumed to be at a distance d = 1 without loss of general-
ity. In this case, the fitness set is shown in Fig. 6. It can be seen that, when
γ� 1, the fitness set is highly concave. As a result, the extended fitness
set will be largely formed by linear combinations of points near the cor-
ners at (1, 0) and (0, 1). This means that the phenotype distribution mainly
consists of phenotypes near the archetypes ψ1 and ψ2. Hence, regard-
less of the cue, the optimal phenotype distribution will be peaked at the
archetypes.
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