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The pinch-off of a bubble is an example of the formation of a
singularity, exhibiting a characteristic separation of length and
time scales. Because of this scale separation, one expects universal
dynamics that collapse into self-similar behavior determined by
the relative importance of viscous, inertial, and capillary forces.
Surprisingly, however, the pinch-off of a bubble in a large tank
of viscous liquid is known to be nonuniversal. Here, we show
that the pinch-off dynamics of a bubble confined in a capillary
tube undergo a sequence of two distinct self-similar regimes, even
though the entire evolution is controlled by a balance between
viscous and capillary forces. We demonstrate that the early-time
self-similar regime restores universality to bubble pinch-off by
erasing the system’s memory of the initial conditions. Our find-
ings have important implications for bubble/drop generation in
microfluidic devices, with applications in inkjet printing, medical
imaging, and synthesis of particulate materials.
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From dripping faucets to children blowing soap bubbles, we
observe the formation of drops and bubbles on a daily basis.

This seemingly simple phenomenon, however, has long puzzled
and attracted scientists, from the early descriptions of da Vinci,
Savart, Plateau, and Rayleigh (1–3) to advanced experimen-
tal techniques that yield precise observations of the interface
evolution leading to pinch-off (4–9). Most previous studies of
singularities during bubble or drop formation have focused on
unbounded fluid domains (10–17). Many natural phenomena
and industrial processes, however, often involve flows under
confinement (18–23), where the dimensionality of the confined
geometry is known to strongly influence the pinch-off (24–28).
These studies have assumed that a continuous liquid phase coats
all of the bounding surfaces. In many situations, however, one
encounters partially wetting liquids, which naturally lead to the
presence of contact lines, where a fluid–fluid interface meets the
solid surface (29).

Here, we study the pinch-off of a bubble in confinement in
the partial wetting regime. We show that the moving contact
line singularity (30, 31) dominates the viscous dissipation at early
times, leading to an axially dominated flow and the emergence
of an early-time self-similar regime, which then crosses over to
a late-time regime, where the flow is mainly radial and the vis-
cous dissipation is dominated by the pinch-off singularity. While
the observation of different self-similar regimes is expected when
the balance of forces between inertia, viscosity, and capillar-
ity changes (11, 32, 33), here we show that in our system, the
cross-over between self-similar regimes occurs even though the
entire evolution is controlled by a balance between viscous and
capillary forces.

The separation of length and time scales in the vicinity of a sin-
gularity suggests that the local balance of forces should become
independent of the details of the initial or boundary conditions,
making the dynamics of the pinch-off universal (10). Surprisingly,
in the case of the pinch-off of an inviscid bubble in an unbounded
ambient viscous liquid, the local structure of the singularity is
sensitive to the details of the experimental conditions, render-

ing the pinch-off nonuniversal (13, 34–36). Here, we show that
the presence of the early-time regime in a confined geometry
establishes the tube diameter as the only length scale in the prob-
lem and erases the system’s memory of the experimental details
and initial conditions, leading to the universality of the bubble
pinch-off.

We study the bubble generation process in a microcapillary
tube (diameter d =280, 750 µm). The tube is connected to a
syringe pump on one end and is open to the atmosphere on the
other end (Fig. 1). We first fill the tube with a water–glycerol
mixture (viscosity µ=0.2 or 1.4 Pa.s depending on composition,
and surface tension γ=65 mN/m) that is partially wetting to the
tube (θeq ≈ 65◦) and then start withdrawing the liquid using the
pump at a specified flow rate Q . At low flow rates, the meniscus
deforms slightly and moves downstream at a constant velocity
U =4Q/(πd2). When the imposed flow rate is higher than a
critical value, however, a wetting transition occurs: the meniscus
loses its quasi-static geometry and air starts invading the tube in
the form of an extending axial finger, leaving a film of the viscous
liquid on the walls (37). Fig. 1 shows that the entrained liquid
film immediately starts to dewet along the tube walls. As the con-
tact line recedes, the rim ahead of it grows and the bubble neck
shrinks until it finally pinches off and forms a bubble (Movie S1).

In the case of bubble formation in a large quiescent tank,
the balance of radial viscous flow and surface tension causes
the bubble neck diameter to shrink linearly in time (35, 38).
In contrast, here, during the process of bubble pinch-off in a
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Fig. 1. Displacement of a partially wetting liquid from a microcapillary
tube. As the glycerol (white) is withdrawn from the right end of the tube
with a constant flow rate Q, air (black) invades the tube from the left end
at atmospheric pressure and entrains a thin film of the glycerol on the tube
walls (the white stripe in the middle of the tube is due to light refraction;
SI Appendix, section 1). The entrained liquid film then starts receding along
the tube axis with a velocity Ucl, forming a growing dewetting rim ahead of
the contact line, where the liquid, solid, and air meet at a nonzero apparent
contact angle θap. As the liquid rim grows, the bubble neck diameter shrinks
and ultimately leads to pinch-off and the formation of a bubble.

microcapillary tube, the evolution of the diameter of the bubble
neck indicates the presence of two distinct self-similar regimes
(Fig. 2A), as illustrated with the results from 12 different exper-
iments: the bubble neck diameter initially follows a τ1/5 scaling
before transitioning to the familiar linear scaling regime, where
τ =(t0− t) is the time to the singularity with t0 as the pinch-off
time (Fig. 2B). The Reynolds number is defined as Re= ρUl/µ,
where ρ is the liquid density, and U and l are the characteris-
tic velocity and length scales. At early times, the characteristic
velocity and length scales are set by the moving contact line
and the tube diameter, leading to U ∼Ucl ∼ (γ/µ)θ3eq and l ≈
h2
r /w , where hr and w represent the height and width of the

dewetting rim, respectively (Fig. 1). At late times, in the vicinity
of the pinch-off, the bubble neck can be idealized as a cylin-
drical thread of radius r0 that is shrinking in time, leading to
U ∼ dr0/dτ and l ∼ r0. During the entire evolution, Re� 1 and
inertia can be neglected.

To gain an understanding of this early-time self-similar regime
for the time evolution of the bubble radius, we consider the
dynamics of the growing dewetting rim (Fig. 1). This can be
analyzed using a long-wave approximation (37), which assumes
that the flow is mainly parallel to the tube axis. Near the
point of pinch-off, we postulate that the shape of the pro-
file becomes self-similar: R̃(ξ)= r̃(z̃ , τ̃)/τ̃α, and ξ=(z̃ − z̃0)/τ̃

β

with α and β as constants (Fig. 2A, Inset); here, all of the length
scales are nondimensionalized by the tube diameter d , and the
dimensionless time to the singularity is defined as τ̃ = τ/t∗,
where t∗=µd/γ is the visco-capillary time scale. Unlike the
inertia-viscocapillary regime, where fluid properties introduce
an intrinsic length scale into the problem lν =µ2/γρ (10), the
visco-capillary regime discussed here requires an external length
scale—the tube diameter d . Using this ansatz, we arrive at an
ordinary differential equation for the neck profile (SI Appendix,
section 2):

(−αR̃+βξR̃′)τ̃α−1

=
1

(16)2
1

R̃

([
− 2

R̃
3 R̃
′2
+

1

R̃
2 R̃
′′
]
τ̃−2(α+β) + R̃′′′′τ̃−4β

)
, [1]

where primes indicate differentiation with respect to ξ. The
left-hand side of Eq. 1 represents the viscous forces, and the
right-hand side represents the capillary forces: the first two terms
represent the out-of-plane curvature and the last term repre-
sents the in-plane curvature. The only way for all of the terms
to balance in time is to have α=β=1/5, leading to R̃(ξ)=

r̃(z̃ , τ̃)/τ̃1/5, and ξ=(z̃ − z̃0)/τ̃
1/5. This result is consistent with

the experimentally observed scaling of the neck diameter as a
function of time to pinch-off in the early-time self-similar regime
shown in Fig. 2B. The self-similar ordinary differential equation
governing the neck profile in the early-time regime therefore has
the following form:
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5
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1
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− 2

R̃3
R̃
′2 +

1

R̃2
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]
+ R̃′′′′

)
. [2]

The early-time self-similar regime is an example of self-similarity
of the first kind, in which the scaling exponents can be uniquely
determined based on dimensional analysis (39), as outlined
above. The cross-over to the late-time self-similar regime, how-
ever, hints at the breakdown of the long-wave model very close
to the point of pinch-off.

An important point here is that the long-wave approximation
is developed for the dewetting rim, and not for the bubble neck.
The relevant length scales are therefore the height (hr ) and width
(2w) of the dewetting rim (Fig. 1), the ratio of which deter-
mines the apparent contact angle as θap =2hr/w ≈ 30◦, which
is small enough for the long-wave approximation to be valid (40,
41). This observation is further confirmed in our earlier work,
showing an excellent match between the experimentally observed
profiles and the theoretical prediction (37). Of course, the long-
wave approximation ultimately breaks down as the slope of the
meniscus near the point of singularity diverges, leading to a cross-
over to the late-time self-similar regime. While both regimes are
governed by a balance of capillary and viscous forces, the cross-
over occurs due to a change in the nature of the viscous flow in
the dewetting film from axially dominated to radially dominated,
as the dominant dissipative process changes from the moving
contact line singularity to the pinch-off singularity (Movie S2).

To estimate the cross-over time between the two regimes, we
compare their corresponding radial velocities. In the early-time
regime, the growth rate of the dewetting rim is proportional to
the velocity of the receding contact line, i.e., dr0/dτ ∼Ucl∼
(γ/µ)θ3eq , which is nearly constant for a given wettability (37, 41).
In the late-time regime, the thin bubble neck close to the point of
singularity can be approximated as an axisymmetric cylinder, and
the flow in the outer viscous fluid can be approximated as purely
radial. The normal viscous stress generated by the radial flow is
balanced by surface tension, leading to dr0/dτ ∼ (γ/µ)e−τ/t

∗

as an estimate for the radial velocity in the late-time regime
(SI Appendix, section 3). Note that very close to the point of
pinch-off (τ/t∗� 1), we recover the familiar linear scaling in
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A B

Fig. 2. Evolution of the neck diameter versus time τ = (t0− t) to pinch-off at t0. (A) Data from 12 different experiments are shown: light blue symbols
correspond to d = 750 µm and µ= 1.4 Pa.s; the cyan symbols correspond to d = 280 µm and µ= 1.4 Pa.s; the dark blue symbols correspond to d = 750 µm
and µ= 0.2 Pa.s. Each color represents data corresponding to four different flow rates with Ca =µU/γ ∈ [0.008, 0.02], where U = 4Q/(πd2) and Q is the
liquid flow rate. While changing the flow rate does not influence the evolution of the bubble neck diameter (2r0), changing µ or d shifts the curves. (B) When
time and length scales are nondimensionalized with the visco-capillary time scale t* =µd/γ and the tube diameter d, respectively, the data corresponding
to all 12 experiments collapse onto a single curve (τ̃ = τ/t* = γτ/(µd), and r̃0 = r0/d). Here, two self-similar regimes can be observed: an early-time regime,
which follows a 1/5 power-law scaling in time, and a late-time regime very close to the point of pinch-off, which follows a linear scaling in time.

time (13, 38). Equating the two radial velocities correspond-
ing to the early- and late-time regimes, we obtain an estimate
of the cross-over time τc ∼ t∗=µd/γ, indicating that the visco-
capillary time scale sets the point of transition between the two
regimes. Fig. 2B shows that, indeed, using the visco-capillary
time scale and the tube diameter as the characteristic time

and length scales leads to the collapse of all data correspond-
ing to 12 different experiments with different tube diameters
(d =280, 750 µm), liquid viscosities (µ=0.2, 1.4 Pa.s), and flow
rates (Ca=µU /γ ∈ [0.008, 0.02]).

To test the self-similarity of the bubble neck profile, we
probe its evolution in time in Fig. 3A (for the experiment with

A

C D E

B

Fig. 3. Self-similarity of the neck profile. (A) The evolution of the bubble neck profile in time (data corresponding to d = 750 µm, µ= 1.4 Pa.s, and
Ca = 0.008); blue and green symbols represent the data corresponding to the early and late-time self-similar regimes, and red symbols represent the
transition between the two. (B) Scaling the neck profile with the minimum neck diameter collapses the data corresponding to the early-time self-similar
regime, where R̃(ξ) = r̃(z̃, τ̃ )/τ̃1/5 and ξ= (z̃− z̃0)/τ̃1/5. The dashed line, overlaying the blue symbols corresponding to the early-time self-similar regime,
represents the self-similar solution of the long-wave model (SI Appendix, section 2). The data corresponding to the late-time self-similar regime, however,
deviate from the predictions of the long-wave model. (C) The definition of parameters used to characterize the bubble neck profile. (D) The evolution
of the axial length scale defined as ζ̃=

√
r̃0 r̃c versus time to pinch-off. In the early-time regime, ζ̃=

√
r̃c r̃0∼ τ̃1/5, consistent with the predictions of the

long-wave model. In the late-time regime, however, r̃0∼ τ̃ and ζ̃∼ τ̃1/2, which indicates that the axial radius of curvature becomes constant, i.e., the neck
profile becomes a parabola that simply translates in time (13, 42). (E) Scaling the axial length scale with the expressions obtained in D leads to the collapse
of all bubble neck profiles during the entire pinch-off process (shown in A) onto a single parabolic curve: r/r0 = 1 + [(z− z0)/ζ]2 (dashed line).
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d =750 µm, µ=1.4 Pa.s, and Ca=0.008), where the blue and
green symbols correspond to the early- and late-time regimes,
respectively, and red corresponds to the transition between the
two regimes. The long-wave model predicts that the bubble
neck diameter and also its axial extent both scale as τ̃1/5. In
Fig. 3B, we show that, indeed, scaling both the neck diame-
ter and axial dimension with the the minimum neck diameter
collapses the profiles in the early-time regime (blue symbols).
The self-similar solution of the long-wave model Eq. 2 (black
dashed line) fits the data in this regime. This observation further
confirms the validity of the long-wave model in the early-time
self-similar regime. The data in the late-time regime (green
symbols), however, deviate from the predictions of the long-
wave theory.

Very close to the point of pinch-off, in the late-time self-
similar regime, we can simplify the balance of normal viscous
stresses and the surface tension to obtain ∂r/∂τ = γ/(2 µ) (13,
42). Assuming the scale invariance of the dynamics close to
the singularity, and using the ansatz R̃(ξ)= r̃(z̃ , τ̃)/τ̃α, and ξ=
(z̃ − z̃0)/τ̃

β , we obtain:

−ατ̃α−1R̃+βτ̃α−1ξR̃′=−1, [3]

where the prime indicates differentiation with respect to ξ. For
all of the terms to balance in time, we need to have α=1. The
exponent β, however, remains undetermined; this is one of the
hallmarks of self-similarity of the second kind (39). The value of
the exponent β can be obtained from matching the solution close
to the pinch-off to the outer solution and imposing the regular-
ity and stability of the solution (43). This leads to an eigenvalue
problem, the solution of which shows that β=1/2 (SI Appendix,
section 4).

In the local neighborhood of the minimum neck radius,
we expect the profile to be parabolic: r(z , t)= r0(t)+
(z − z0)

2/rc(t), where r0 is the minimum neck radius, and rc is
the axial radius of curvature. Scaling the profile with the radius
r0(t), we then obtain r/r0 =1+ (z − z0)

2/ζ2, where ζ =
√
rcr0

represents the axial extent of the parabola. We fit a parabola
to the neck profile in the vicinity of the minimum neck radius
to extract the axial length scale ζ. In the early-time self-similar
regime, the long-wave model predicted that ζ̃ ∼ τ̃1/5. In the late-
time self-similar regime, we further showed that Eq. 3 indicates
the axial extent of the profile scales as ζ̃ ∼ τ̃1/2. Both of these
detailed predictions are supported by the experimental data in

Fig. 3D. Using ζ as the axial length scale, we can therefore col-
lapse the neck profiles over the entire pinch-off process onto a
single parabolic curve (Fig. 3E).

In the early-time self-similar regime, both the neck radius,
r0(τ), and the corresponding axial radius of curvature, rc(τ),
are time-dependent. However, in the late-time regime, we have
r̃0∼ τ̃ (Fig. 2B), and the axial scale of the profile scale as ζ̃ =√
r̃c r̃0∼ τ̃1/2 (Fig. 3C), indicating that the axial radius of cur-

vature of the neck profile becomes independent of time: rcf ≡
limτ→0 rc(τ)= constant. The temporal invariance of the axial
radius of curvature of the bubble neck might suggest that the
separation of scales is lost and the singularity formation becomes
nonuniversal. In other words, the axial extent of the neck profile
retains an imprint of the details of the experimental system, and
the memory of the initial conditions will persist all of the way to
the point of pinch-off (13, 42).

In our system, however, this late-time self-similar regime is
preceded by an early-time self-similar regime of the first kind,
which sets the axial length scale of the late-time regime at the
cross-over between the two regimes. This characterization is
captured in Fig. 3D, which shows a cross-over in the scaling
of the axial length scale at τ̃ ≈ 1 (see also SI Appendix, sec-
tion 5). In the early-time regime, we have r̃0≈ 0.09τ̃1/5, and
r̃c ≈ 0.19τ̃1/5, leading to ζ̃ =

√
r̃c r̃0≈ 0.13τ̃1/5 as the scaling of

the axial length scale. In the late-time regime, we also have
ζ̃ =
√
r̃c r̃0≈ 0.5τ̃1/2

√
r̃cf . Therefore, at the point of cross-over,

τ̃ ≈ 1, the early-time self-similar regime sets the axial length
scale of the late-time regime (ζ̃ ≈ 0.13), leading to r̃cf ≈ 0.07.
Fig. 4A shows a plot of the axial radius of curvature as a function
of time to the pinch-off for each experiment. When nondi-
mensionalized, we observe that, indeed, the data corresponding
to all 12 experiments collapse onto a single curve (Fig. 4B),
with an asymptotic universal radius of curvature of r̃cf ≈ 0.07.
This observation indicates that the early-time self-similar regime
effectively erases the system’s memory of the initial conditions
and restores universality to bubble pinch-off in a viscous liquid.

We therefore conclude that the combined effect of geomet-
ric confinement and contact-line motion leads to the emergence
of an early-time self-similar regime of the first kind, which at
late times crosses over to a regime of self-similarity of the sec-
ond kind. While the balance between viscous and capillary forces
controls the dynamics of interface evolution in both regimes, the
cross-over occurs due to a change in the dominant contribution
to the viscous dissipation; from the spatially localized moving

A B

Fig. 4. Axial radius of curvature versus time. The evolution of the axial radius of curvature rc versus time to the pinch-off shows that as the point of pinch-
off is approached, the curvature asymptotes to a constant value (symbols are the same as in Fig. 2). (A) The time evolution of axial radius of curvature is
independent of the flow rate but changes when the liquid viscosity or the tube diameter is varied. (B) The data corresponding to all 12 experiments collapse
on a single curve when the nondimensional axial radius of curvature is plotted against the nondimensional minimum neck diameter. The nondimensional
late-time axial radius of curvature asymptotes to a universal constant limτ̃→0 r̃c(τ̃ ) = r̃cf ≈ 0.07.
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contact-line singularity at early times to the temporally local-
ized bubble pinch-off singularity at late times. This change in
the dominant contributor to the viscous effects is accompanied
by a change in the direction of the flow, from axially dominated
in the early-time regime to radially dominated in the late-time
regime. The late-time regime is also observed in the pinch-off of
bubbles in unbounded fluid domains, where the flow is mainly
radial and the axial length scale characterizing the bubble neck
is sensitive to the details of the experimental system, making the
pinch-off nonuniversal (13, 34–36). Here, in the case of bubble
pinch-off in confined domains, however, we observe that the axial
length scale of the neck region is set by the early-time self-similar
regime, effectively erasing the system’s memory of the initial
conditions and restoring universality to the pinch-off process.

While we have focused on the case of bubble pinch-off in a vis-
cous liquid, we expect our observation of the universality of the

pinch-off process to persist for any other (at least viscously dom-
inated) fluid–fluid displacement process in a confined medium
involving moving contact lines. The restoration of universality
has important consequences for controlled generation of bub-
bles, drops, and emulsions in microfluidic devices with a myriad
of applications in medicine (44, 45) and material science (46–
50), as well as for understanding of multiphase flows in geologic
media (22, 51), where geometric confinement and liquid–solid
physicochemical interactions play a key role.

Materials and Methods
Materials and Methods are described in SI Appendix.
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