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Three-dimensional genome structure plays a pivotal role in gene
regulation and cellular function. Single-cell analysis of genome
architecture has been achieved using imaging and chromatin
conformation capture methods such as Hi-C. To study variation in
chromosome structure between different cell types, computational
approaches are needed that can utilize sparse and heterogeneous
single-cell Hi-C data. However, few methods exist that are able to
accurately and efficiently cluster such data into constituent cell
types. Here, we describe scHiCluster, a single-cell clustering algo-
rithm for Hi-C contact matrices that is based on imputations using
linear convolution and random walk. Using both simulated and real
single-cell Hi-C data as benchmarks, scHiCluster significantly im-
proves clustering accuracy when applied to low coverage datasets
compared with existing methods. After imputation by scHiCluster,
topologically associating domain (TAD)-like structures (TLSs) can be
identified within single cells, and their consensus boundaries were
enriched at the TAD boundaries observed in bulk cell Hi-C samples.
In summary, scHiCluster facilitates visualization and comparison of
single-cell 3D genomes.
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In recent years, there has been a rapid increase in the devel-
opment of single-cell transcriptomic and epigenomic assays (1),

including single-cell/nucleus RNA sequencing (RNA-seq) (2), as-
say for transposase-accessible chromatin using sequencing (ATAC-
seq) (3, 4), bisulfite sequencing (5), and Hi-C (6–11). Such
powerful techniques allow the study of unique patterns of molecular
features that distinguish each cell type. Computational methods
have been developed to identify different cell types in heteroge-
neous cell populations based on various molecular features such as
transcriptome (12, 13), methylome (14), and open chromatin (15–
17). However, unbiased and efficient algorithms for single-cell
clustering based on 3D chromosome structures are limited. In
previous studies, cells have been organized by their contact decay
profiles, which is useful for distinguishing different stages of the
cell cycle (9). However, separating different cell types at the same
cell cycle stage is still challenging. Principal-component analysis
(PCA) performed on both intrachromosomal and interchromo-
somal reads was unable to completely distinguish between four
cancer cell lines (7). Tan et al. (11) showed that annotated features
in bulk Hi-C data could be used to separate single-cell Hi-C data
into corresponding cell types. However, this approach would be
limited to features identified in the few tissues or cell lines with
published Hi-C data, and may be difficult to generalize to
unprofiled cell types. Several methods have been developed to
examine the reproducibility of bulk Hi-C data, which mainly focus
on computing different types of similarity scores between contact
matrices (18–21). These methods have been benchmarked by
Yardimci et al. (22), and HiC-Rep was found to perform the best
when generalized to single-cell Hi-C data. An embedding method
for single-cell Hi-C data based on HiCRep has been specifically

designed for capturing structural dynamics of the cell cycle state
(23). However, cell cycle state is continuous in nature, and this
approach has not explicitly been tested for the purpose of clus-
tering, and thus it remains unclear how well this method would
perform for cell type identification from single-cell Hi-C data.
Clustering of single cells based on Hi-C data faces three main

challenges. 1) Intrinsic variability. 3D chromosome structures are
highly spatially and temporally dynamic. Imaging-based tech-
nologies have suggested a large degree of heterogeneity of
chromosome positioning and spatial distances between loci even
within a population of the same cell type (24–27). How this
fluctuation between cells of the same cell type compares to
fluctuations between different cell types remains unclear.
2) Data sparsity. The sparsity of single-cell Hi-C data are higher
than most other types of single-cell data. State-of-the-art single-
cell DNA assays typically cover only 5–10% of the linear ge-
nome. Since Hi-C data are represented as 2D contact matrices,
this level of sensitivity leads to coverage of only 0.25–1% of all
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Chromosomes are compactly folded in nuclei, and their specific
3D structures play a role in the regulation of gene expression.
While cell type specificity of gene regulation has been revealed
through transcriptomic and epigenomic assays, comprehensive
analysis of genome conformation patterns in different cell
types is still lacking. Single-cell approaches have facilitated our
understanding of cell type heterogeneity, and profiling chro-
mosome architecture at the single-cell level has been achieved
using Hi-C. However, unbiased and efficient computational
methods are needed to distinguish different cell types utilizing
these data. Here, we describe scHiCluster, a computational
framework to study cell type-specific chromosome structural
patterns. We demonstrate that scHiCluster allows clustering of
single cells with high accuracy and identifies their local chro-
mosome interaction domains.
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contacts to be captured. 3) Coverage heterogeneity. It is often
observed that the genome coverage of cells extends over a wide
range within a single-cell Hi-C experiment. We find this bias
often acts as the leading factor to drive clustering results, making
it difficult to systematically eliminate. For example, this bias
could be alleviated by removing the first principal component
(PC1) before clustering and visualization. However, PC1 is not
guaranteed to represent only cell coverage in these experiments
as it may also contain information related to other biological
variables (SI Appendix, Fig. S1 A and B).
To address these challenges, we developed a computational

framework, scHiCluster, to cluster single-cell Hi-C contact ma-
trices. To overcome the sparsity problem, we performed two
steps of imputation on the chromosome contact matrices to
better capture the topological structures. To solve the hetero-
geneity problem, we selected only the top-ranked interactions
after imputation, which were proved to be sufficient to represent
the underlying data structure. This framework significantly im-
proved upon the clustering performance using low coverage
datasets as well as facilitated the visualization and comparison of
chromosome interactions among single cells.

Results
Overview of scHiCluster. As shown in Fig. 1, scHiCluster consists
of four major steps. In the first step, every element of the contact
matrix is replaced by the weighted average of itself and its sur-
rounding elements, in a type of linear convolution. Then a ran-
dom walk (with restart) algorithm (28) is applied to smooth the
signal to further capture both the local and global information of
the contact maps. In particular, the convolution step only allows
the information to pass among the linear genome neighbors,
while the subsequent random-walk step aids information sharing
among the network neighbors. To alleviate the bias introduced
by uneven sequence coverage, we only keep the top 20% inter-
actions after the imputation (SI Appendix, Fig. S1 C and D).
Finally, we project the processed contact matrices onto a shared
low-dimensional space, so that the topological structure of the
3D chromosome contacts can be compared between cells and
used for further clustering and visualization.

scHiCluster Improves Clustering Performance on Simulated Data. To
explore the combinatorial effects of different levels of coverage
and resolution, we first applied our algorithm to a set of simulated

single-cell Hi-C data. We noticed that direct sampling from the
Hi-C contact matrices of bulk cells leads to a relatively lower
sparsity and heterogeneity (SI Appendix, Fig. S2), which often
yields more accurate clustering results compared with real single-
cell data. The real data concentrated more on specific loci in each
cell, and the individual loci were different between different cells
(SI Appendix, Fig. S2A). On the contrary, the simulated cells from
bulk data often had more evenly distributed contacts SI Appendix,
Fig. S2B). Therefore, we controlled the sparsity of each simulated
contact matrix and added noise to the contact–distance curves to
better mimic the sparsity and noise of real data (Methods). As
shown in SI Appendix, Fig. S2G, when considering the first two
principal components (PCs), the simulated cells generated were
indistinguishable from real single cells of the same cell type.
In our simulation, we performed downsampling from bulk Hi-C

experimental data from two studies. Rao et al. (29) examined
seven human cell types (GM12878, IMR90, HMEC, NHEK,
K562, HUVEC, and KBM7), while Bonev et al. (30) examined
three mouse cell types [embryonic stem cells (ESCs), neural
progenitor cells (NPCs), and cortical neurons (CNs)]. We
downsampled each dataset to 500 k, 250 k, 100 k, 50 k, 25 k, 10 k,
and 5 k contacts, respectively, and used 1-Mbp and 200-kbp
resolution contact maps to test our algorithm. At each cover-
age level and resolution, we generated 30 simulated cells for
each cell type. We evaluated the ability of scHiCluster compared
with PCA to recover the correct cell type in an unsupervised way.
The adjusted Rand index (ARI) was used to measure the accu-
racy of clustering. As shown in Fig. 2 and SI Appendix, Fig. S4, in
both datasets, scHiCluster consistently performed better than
PCA. The performances of scHiCluster began to be impaired
with fewer than 25 k contacts, and failed to remove the coverage
bias at 5 k contacts (SI Appendix, Fig. S5C), which leads to a
complete loss of clustering ability. We also found that 1-Mbp
resolution performed better than 200 kbp (SI Appendix, Fig. S6
C and D), suggesting that lower sparsity (lower resolution) may
be sufficient to distinguish cell types. Thus, we used 1-Mbp
resolution in all subsequent experiments.

scHiCluster Has Superior Performance on Published Single-Cell Hi-C
Data. Next, we evaluated our analysis framework using authentic
single-cell Hi-C datasets. Thus far, there have been three pub-
lished studies focusing on single-cell chromosome structures with
analyses of multiple cell types. Ramani et al. (7) used a combi-
natorial indexing protocol to generate single-cell Hi-C libraries
from thousands of cells for four human cell lines (HeLa, HAP1,
GM12878, and K562). The number of contacts captured in each
cell ranged from 5.2 k to 102.7 k (median, 10.0 k). Flyamer et al.
(10) performed whole-genome amplification after ligation and
detected 6.6 k to 1.1 m contacts per cell (median, 97.3 k) in
mouse zygotes and oocytes. Tan et al. (11) developed an opti-
mized protocol also using whole-genome amplification and
obtained data with a median coverage of 513.0 k contacts. Since
the last benchmark dataset (Tan) had relatively high coverage,
either simple PCA (SI Appendix, Fig. S7) or chromosome com-
partment score (11) easily allowed cell types to be distinguished.
Due to cost considerations, it is still challenging to achieve such
depth of genome coverage. Therefore, we focused on the first
two datasets with lower coverage (Ramani and Flyamer) to test
the utility of our computational framework.
We compared our algorithm with four baseline methods: PCA,

HiCRep+MDS (23), the eigenvector method along with the
decay profile method (9) (Methods). Besides the methods used in
published works, we included the eigenvector method since the
chromosome compartments are considered to be cell type specific
based on the bulk Hi-C experiments, and the first eigenvector of
contact matrix is widely used to represent these compart-
ment features (29, 31, 32). scHiCluster outperformed the
baseline methods on both datasets in terms of better visualization
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Fig. 1. The workflow of scHiCluster. The contact matrices of each single cell
are smoothed by two steps of imputation that include convolution and
random walk; these are based on the neighboring bins of a linear genome
and long-range connections, respectively. To alleviate the coverage bias,
only top 20% elements of the imputed matrices are selected. All single-cell
matrices are then projected into the same space, and then clustering is
performed to identify distinct cell types.
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(Fig. 3 A and B) and improved ARI (Fig. 3 C and D). In the mouse
dataset (Flyamer), scHiCluster made a significant distinction among
all three cell types (Fig. 3A); while in the human dataset (Ramani),
the algorithm separated K562 and HAP1 better in the first two PC
dimensions (Fig. 3B). The performances of scHiCluster are robust
to the parameters (SI Appendix, Fig. S8). It is also worth com-
menting on the scalability of each method. Since HiCRep is
designed specifically for two-sample comparison rather than
multiple samples, generating the similarity matrix using HiCRep
involves many repetitive computations, which required 8 h
(Flyamer) and 4.5 d (Ramani); whereas scHiCluster and other
methods consumed ∼30 s (Flyamer) and 60 s (Ramani) (SI Ap-
pendix, Fig. S9). Additionally, we carried out the same experi-
ments on each chromosome separately and noticed that almost
every chromosome showed advanced separation on the mouse
dataset (Fig. 3E), while only one chromosome showed significant
improvement on the human dataset (Fig. 3F). These results may
suggest that to separate cells using global chromosome structure
differences (e.g., oocytes and zygotes), the information provided
by a single chromosome might be sufficient, but to distinguish
more complex cell types, a combination of different chromosomes
or a more careful feature selection is necessary.

We also visualized the weights of each element in the contact
matrices when computing the final PCs (whitening matrices). In
general, the weights for PC1 were uniformly distributed parallel
to the diagonal (SI Appendix, Fig. S10A), which suggested it
captures the information of the contact–distance curve and
might correspond to the variance resulting from cell cycle or
other relevant biological effects (9). This is also corroborated by
the observation that cells with greater PC1 values tended to have
a higher frequency of short-range contacts, while smaller PC1
inclined to correspond to a higher frequency of long-range
contacts (SI Appendix, Fig. S10B). On the contrary, the weights
for computing PC2 showed region specificity (SI Appendix, Fig.
S10A), which may indicate its correlation with compartment
strength. These findings also explained why the oocytes and zy-
gotes in Flyamer et al. (10) are dominantly separated by PC1
(Fig. 3A), where the contact distance curves differ between cell
types; meanwhile, in Ramani et al. (7), PC2 achieved a better
partition of the cancer cell lines (Fig. 3B), but PC1 separated a
cluster of cells likely in M-phase (SI Appendix, Fig. S11 A and B).
We further examined the ability of scHiCluster to capture stages
of the cell cycle by embedding the Nagano et al. (9) dataset,
which contains 1,992 mouse ESCs across different stages of cell
cycle. As shown in SI Appendix, Fig. S11D, the cell cycle in-
formation is generally well preserved.
Next, we wanted to evaluate the contribution of each step to

the final clustering performance. For the three major steps of the
pipeline, we tested all possible combinations of one or two steps of
the three. More specifically, we compared our framework with
PCA (with none of the steps), DS_PCA (downsampling to uniform
coverage), CONV (convolution only), RW (random walk only),
CONV_TOP (convolution and select top elements), RW_TOP
(random walk and select top elements), and CONV_RW (convo-
lution and random walk). Notably, for the whole scHiCluster
framework including all of the three steps, we used K-means for 10
PCs to assign the cluster labels. However, to fully exploit the po-
tential of the baseline methods, we compared all of the different
combinations of clustering methods and numbers of PCs, and
identified the parameters generating the most accurate results.
From SI Appendix, Fig. S12, we concluded that all three steps are
necessary to achieve the current visualization (SI Appendix, Fig.
S12 A and B) and clustering accuracy (SI Appendix, Fig. S12 C and
D). The necessity of these steps is more evident when using the
mouse dataset.

scHiCluster Allows Visualization of Structural Difference in Single
Cells. The most popular method to interpret and validate iden-
tified cell clusters in single-cell experiments is to analyze known
marker genes. Gene expression is directly measured in single-cell
RNA-seq data and promoter, gene body ATAC-seq signals or
cytosine methylation ratios can also be used to infer the cluster-
specific genes in single-cell open chromatin and methylome data.
Similarly, in single-cell Hi-C data, the differential chromosome
interactions could serve as cell-type markers. With the single-cell
Hi-C data, imputed contact matrices from every single cluster
can be merged, where we observed square patterns that are vi-
sually similar to the topologically associating domains (TADs)
identified in bulk Hi-C experiments along the diagonal. How-
ever, since the existence of TADs remains unclear in single cells,
and accurate identification of the structures were limited by data
sparsity, we referred to this featured pattern as TAD-like struc-
tures (TLSs) hereafter. Thus, differential TLSs could be applied to
characterize different cell types. For instance, as demonstrated in
Fig. 4 and SI Appendix, Fig. S13, a TLS at chr9:133.6M-134.2M is
observed in 9 of 10 K562 cells but in 2 of the GM12878 cells. This
structure difference is concordant with the bulk Hi-C data from
the same cell lines. Gene expression and H3K4me1 signals that
mark active enhancers are also higher in K562 within this TLS.
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Structural differences are also observed near differentially
expressed genes between the two cell types, including CXCR4 and
ZBTB11. CXCR4 is a chemokine receptor that enhances cell ad-
hesion, which is highly expressed in noncancer cells (GM12878)
comparing to cancer cells (K562) (33). With scHiCluster impu-
tation, a TLS surrounding CXCR4 was detected in 6 of 10
GM12878 cells but only 2 of 10 K562 cells (SI Appendix, Fig.
S14 andMethods). Intriguingly, an H3K4me1 peak was detected in
bulk GM12878 but not K562 at the other boundary of the TLS,
which may indicate the potential interaction between the gene and
its enhancer. Similarly, a TLS whose boundary located at ZBTB11
was observed in more GM12878 cells than K562 cells (SI Ap-

pendix, Fig. S15). Consistently, more H3K4me1 peaks within this
TLS were also detected in the bulk GM12878 sample.
Next, we examined whether the imputation based on scHiCluster

could facilitate the systematic identification of TLSs in both sim-
ulated and real single cells. We first leveraged Bonev et al. data for
bulk ESC and NPC, and downsampled them to 1-Mbp, 500-kbp,
250-kbp, 100-kbp contacts per cell. We applied scHiCluster on
contact matrices and then ran TopDom (34) to detect TLSs in
every single cell. A TAD in NPC that splits into two TADs in ESC
was selected to test the performance of TLS-calling (Fig. 5A). The
visualization of single-cell TLSs was significantly improved after
scHiCluster smoothing (Fig. 5B), and the alternative boundary was
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imputation. (C) The difference between A and B. SQRTVC normalized contact matrices from bulk GM12878 (D) and K562 (E) cell lines. (F) The difference
between D and E. (G) Corresponding RNA-seq and H3K4me1 signals near genes from the indicated TAD region for both cell lines.
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captured in more cells (Fig. 5C). Next, we applied scHiCluster to
analyze single-cell Hi-C data from Nagano et al. (9). The dataset
was sequenced with high coverage and enabled us to statistically
analyze the dynamic of TADs location within single cells. We
identified TLSs in contact matrices smoothed by scHiCluster at
40-kbp resolution with TopDom, and on average, observed 46%
of the boundaries of TLSs in each single cell covered 53% of the
boundaries identified in bulk cell data (SI Appendix, Fig. S16 A
and B). Next, for each bin, we counted the number of cells in
which the bin was determined as a TLS boundary. We observed
nonzero probability for almost all bins to be a TLS boundary in
single cells, and these probabilities peaked at the CTCF binding
sites, and the TAD boundaries described in bulk Hi-C (Fig. 5D),
which is in agreement with the conclusions of a recent imaging
study (35). This signal was significantly enhanced after convolution
and random walk (Fig. 5D and SI Appendix, Fig. S16C), which
further highlighted the potential application of scHiCluster to
study single-cell chromosome structure.
Our imputation method also helps visualize the signature of

chromatin structures within specific cell type. Sox2 is a classic
marker gene of ESCs, and the chromosome structure around this
gene is unique to ESCs (30). Specifically, Sox2 is located at the
upstream boundary of a large TAD in NPCs (SI Appendix, Fig.
S17B), which is split into two smaller TADs in ESCs (SI Ap-
pendix, Fig. S17A). Stevens et al. (8) carried out Hi-C analysis of
eight single haploid mouse ESCs. A median of 49.4-kbp long-
range intrachromosome contacts was detected (21.0 k to 78.0 k).
Although this study provided superior coverage among the cur-
rent single-cell Hi-C experiment, the limited number of cells
examined made it difficult to observe the interaction pattern
surrounding the Sox2 even if contact matrices from all cells are
merged (SI Appendix, Fig. S17C). However, after the imputation
using the scHiCluster framework, the TLS boundaries at down-

stream of Sox2 are observed in four of the eight cells (SI Ap-
pendix, Fig. S17E). Merging the imputed matrices reveals the
known domain splitting pattern near Sox2 (SI Appendix, Fig.
S17D). A similar interaction pattern is also observed near an-
other ESC marker Zfp42 (SI Appendix, Fig. S18).

Discussion
To advance our understanding of the role of genome structure in
cell type-specific gene regulation, new computational tools are
needed for exploration of single-cell Hi-C data. We describe a
computational approach for cell type clustering, scHiCluster,
that requires only sparse single-cell Hi-C contact data. In the
scHiCluster framework, the chromosome interactions are con-
sidered as a network. The contact information is first averaged in
the linear genome. A random walk is then used to propagate the
smoothed interaction throughout the graph and further reduce
the sparsity of the single-cell contact matrices. scHiCluster per-
formed significantly better than existing methods in clustering
single-cell data into constituent cell types and facilitated identi-
fication of local chromosome interaction domains.
A major challenge in clustering single-cell Hi-C data is the

sparsity of the contact matrices. Our results demonstrate that
scHiCluster is robust to sparse contact matrices when there are
at least 5 k contacts detected per cell (Methods). scHiCluster
takes advantage of both a linear smoothing and a random-walk
step to handle these sparse data. Similar methods have been
utilized for smoothing bulk Hi-C data, including HiCRep, which
took the average of genome neighbors before computing the
correlation of two Hi-C matrices (18), and GenomeDISCO,
which provided a network representation of Hi-C matrices and
used random walk to smooth it (19). Liu et al. (23) systematically
evaluated these methods for single-cell Hi-C data embedding.
However, since they used a cell similarity matrix that is embedded
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Fig. 5. scHiCluster facilitates identification of domain-like structures (TLSs). (A) The contact matrices at chr19:27.5M-29.5M of bulk Hi-C data with alternative
TADs in ESC and NPC. (B) The downsampled contact matrices with 1-Mbp, 500-kbp, 250-kbp, and 100-kbp total contacts per cell before and after scHiCluster
imputation. The green lines indicate the TLSs called from the plotted matrix, and the yellow lines represent the TADs called from bulk data of the corre-
sponding cell type. (C) The number of downsampled ESCs with TLSs at chr19:28170000–28530000 and chr19:28530000–28770000, or downsampled NPCs with
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by multidimensional scaling (MDS), the data are generally
continuous under their low-dimensional representation and are
unable to present explicit clusters for each cell type. Our
scHiCluster framework combines the advantage of both HiCRep
and GenomeDISCO and provides a flexible pipeline to resolve
the clustering of Hi-C data, where some components (e.g., em-
bedding) can be further tuned and improved when the algorithm
is applied to more specific and challenging situations such as
tissues with greater cell type complexity.
Published single-cell Hi-C datasets have employed cell lines

that contain relatively large 3D genomic structural differences,
simplifying the cell clustering problem. In practice, heteroge-
neous tissues with more closely related cell types, such as brain
tissue, might pose a much greater challenge than cell lines. For
cell clustering using complex tissues, further improvements in the
clustering algorithm and feature selection are necessary. For
instance, hierarchical clustering could be applied to identify the
coarse cell types using megabase-scale resolution, followed by
dividing cell types into finer scale (subtypes) using matrices of a
smaller bin size. An alternative approach would be to simulta-
neously profile 3D genome architecture along with other “omic”
information in the same cell, such as jointly profiling chromatin
conformation and DNA methylation (36, 37). While such single-
cell multiomic data modalities may provide the information
content necessary to deconvolute cell types while preserving 3D
structural information (38), they can also be more costly to
perform, and more technically challenging to carry out.
We noted that the smoothing and random walk steps aid in vi-

sualization of chromosome contact maps in single cells. Such vi-
sualization can facilitate analysis of the variability in features of 3D
genome organization between cells. Previous studies using bulk cell
lines have reported the existence of several 3D structural features:
megabase-level A/B compartments, submegabase-level TADs, and
kilobase-level loops (29, 31, 39, 40). In our study, visualizing the
smoothened scHiCluster results revealed the existence of TLSs in
specific cells. The boundaries of these structures were variable
between cells. However, the boundaries shared between TLSs in
individual cells corresponded to TAD boundaries identified in bulk
Hi-C studies. These results would support recent imaging studies
(35), which suggested that TLSs exist in single cells, and their
boundaries in individual cells are variable but nonrandom.

Methods
Data Processing. For Ramani et al. (7), interaction pairs and cell quality files of
combinatorial single-cell Hi-C library ML1 and ML3 were downloaded from
GSE84920. Interaction pairs for Flyamer et al. (10), Stevens et al. (8), and
Tan et al. (11) were downloaded from GSE80006, GSE80280, and GSE117876,
respectively. Interaction pairs for diploid ESC cultured with 2i in Nagano
et al. (9) were accessed from https://bitbucket.org/tanaylab/schic2/src/default/.
Given a chromosome of length L and a resolution r, the chromosome is
divided into n= L=r nonoverlapping bins. Hi-C data are represented as a
n×n contact matrix A, where Aij denotes the number of read-pairs sup-
porting the interaction between the ith and jth bins of the genome. For each
dataset, contact matrices were generated at 40-kbp and 1-Mbp resolutions
for each chromosome and each cell. Total contacts of the cell were counted
as the nondiagonal interaction pairs in intrachromosomal matrices. As
quality control, we ruled out the cells with less than 5 k contacts. Also, for a
single chromosome whose length is x Mb, we required the number of con-
tacts to be greater than x, to avoid the chromosomes with too few contacts.
We only kept cells where all chromosomes satisfied this criterion. The
number of cells remaining after each quality control step for each cell type is
shown in SI Appendix, Table S1. Generally, we suggest to apply scHiCluster
only on the cells that passed these quality controls.

Simulations.
Rationale. First, we used the single-cell Hi-C dataset from Stevens et al. (8) to
test the similarity between the real single-cell data and the pseudo–single-
cell data, simulated by downsampling. The eight single-cell contact matrices
of chromosome 1 are shown in SI Appendix, Fig. S2A. Wemerged the data from
these eight single cells to generate a pseudobulk dataset, and then generated a

simulated single-cell dataset by downsampling from the pseudobulk dataset.
We added a constraint to let the number of sampled contacts equal to the
number of contacts observed for each real single cell. However, we observed a
side effect of this operation in that the sparsity and heterogeneity of the
simulated data were much lower than that observed for real single-cell data (SI
Appendix, Fig. S2B). Therefore, we limited the sparsity when performing the
downsampling. After controlling the sparsity of the contact matrices, we used
PCA to visualize the simulated cell data together with the real single-cell data
and found that the lower heterogeneity of the simulated data was still ob-
served in the first two PCs. Specifically, we observed variation of cells in PC1,
which is highly correlated with the coverage of these cells, while only real
single-cell data showed variation in PC2, but not the simulated cell data (SI
Appendix, Fig. S2 D and E). To address this problem, we added a random noise
during the simulation to amplify the heterogeneity of the contact decay curves
among the single cells. The combination of these two steps enabled the sim-
ulation to generate cells with high sparsity (SI Appendix, Fig. S2C) and in-
distinguishable from the real single cells (SI Appendix, Fig. S2G).
Bulk Hi-C data. We downsampled bulk Hi-C data to simulate datasets with
similar sparsity and heterogeneity of single cells. Bulk MAPQ30 contact
matrices were extracted from Juicebox at 100-kbp resolution for the datasets
of Rao et al. (29) and Bonev et al. (30), respectively. Contact matrices for each
cell type at 200-kbp and 1-Mbp resolution were calculated by merged bins in
the 100-kbp resolution matrices.
Normalization. SQRTVC normalizationwas applied to the bulk contact matrices
to deal with the coverage bias along the genome. The normalized contact
matrices B are computed by the following:

B=D−1
2AD−1

2, [1]

where D is a diagonal matrix where each elements Dii is the sum of the ith
row of A.
Sparsity controlling. We further controlled the sparsity during sampling to
make the simulated data more similar to the real data. Leveraging Ramani
et al. (7) and Flyamer et al. (10) datasets, we fit a linear relationship between
total contacts C and sparsity S at log scale (SI Appendix, Fig. S3):

log S= a logC +b. [2]

To generate a simulated dataset with the median contact counts to beM, for
each simulated single cell we uniformly sampled t from logM− 0.5 to
logM+ 0.5 and set the total contacts number of the cell as C = et. The sparsity
of the cell S was computed based on ref. 2. The sampled new contacts are
randomly assigned to different chromosomes based on the contact numbers
of each chromosome in a particular cell type in the bulk cell dataset.
Adding random noise. We added noise to the contact frequency through
contact–distance curve, which describes the values in the contact matrices
changed with respect to their distance to the diagonal. More specifically, we
generated a random vector R of length n, where n is the bin number of the
contact matrix. The values in R range from −k to k following a uniform dis-
tribution, where k denotes the noise level. Then, the normalized bulk contact
matrix B was rescaled linearly to the noisy representation E by Eij =Bij ×Rjj−ij.
Finally, based on E, we sampled S positions to be nonzero candidates based on
Eq. 2, and distributed the C simulated contacts to these positions.

scHiCluster.
Convolution-based imputation. Imputation techniques are widely adopted in
single-cell RNA-seq data to improve the data quality based on the structure of the
data itself. For scHiCluster, the first step is to integrate the interaction information
from the genomic neighbors to impute the interaction at each position. The
missing value in the contact matrix could be due to experimental limitations of
material dropout, rather than no interactions. Since the genome is linearly con-
nected, our hypothesis is that the interaction partners of one binmay also be close
to its neighboring bins. Thus, we used a convolution step to inference these
missing values. Specifically, given a window size ofw, we applied a filter F of size
m×m, where m= 2w + 1, to scan the contact matrix A of size n×n. The ele-
ments in the imputed matrix B is computed by the following:

Bij =
X
p,q

FpqApq, [3]

where i−w ≤p≤ i+w, j−w ≤q≤ j+w. In this work, all of the filters are set
to be all-one matrices, which is equivalent to taking the average of the ge-
nomic neighbors. However, the filters could be tuned to incorporate different
weights for elements during imputation. For instance, the elements located
further from the imputed elements could be assigned smaller weights. The
window size w was set to 1 for 1-Mbp resolution maps.
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Random-walk–based imputation. Random walk with restarts (RWR) is widely
used to capture the topological structure of a network (28, 41). The random-
walk process helps to infer the global structure of the network and the re-
start step provides the information of local network structures. What Hi-C
data fundamentally describe is the relationship between two genomic bins,
which can be considered as a network where nodes are the genomic bins
and edges are their interactions. Different from the convolution step, which
takes information from the neighbor on the linear genome, the random-
walk step considers the signal from the neighbor with experimentally
measured interactions. The imputed matrix B defined in Eq. 3 is first nor-
malized by its row sum:

Cij =
BijP
j’Bij’

. [4]

We use Qt to represent the matrix after the tth iteration of random walk and
restart. Then the random walk starts from the identity matrix Q0 = I, and Qt

is computed recursively by the following:

Qt = ð1−pÞQt−1C +pI, [5]

where p is a scalar representing the restart probability to balance the in-
formation between global and local network structures. The random walk with
restart was performed until kQt−Qt − 1k2≤ 10−6. Each element Qij in the matrix
after convergence signifies the probability of random walk to reach the jth
node when starting from the ith node. The number of iterations until conver-
gence ranged from 8 to 21 in Flyamer et al. (10) dataset, with a mean of 15.5,
and ranged from 10 to 22 in Ramani et al. (7) dataset, with the mean of 15.3.
Embedding and clustering. Since the coverage of the matrices from each cell is
different, the sparsity and scales of the matrices after random walk is also
distinct. Thus, after random walk, a threshold t was chosen to convert the
real matrix Q into binary matrix Qb. The threshold t was set to be the 80th
percentile of Q for all of the analysis, and its impact is discussed in SI Ap-
pendix, Fig. S4. This is a crucial step since it facilitates us to choose the most
conserved and reliable interactions in each cell. Then the n×n matrix Qb is
reshaped to 1×n2 and the matrices from m different cells were concatenated
into a m×n2 matrix. In the last step, PCA was used for projecting the matrix
into a low-dimensional space and produce the embedding of the cells. Each
single chromosome was embedded separately and the embedding of all
chromosomes was concatenated at last and another PCA was applied to derive
the final embedding. The whitening matrices for the two steps of PCA were
multiplied, and the dot product representing the weight of each element in
the contact matrices for computing each PC was visualized in SI Appendix, Fig.
S10. The first two PCs were plotted for visualizing the cells and the first 10 PCs
were used for K-means++ clustering. Since we know the cell-type labels of the
datasets used in the manuscript, the number of clusters is based on the
number of predefined cell types in the corresponding dataset. In cases where
the cluster number is unknown, the number of clusters is a user-defined pa-
rameter in the scHiCluster package. Since scHiCluster also returns the em-
bedding, the user can also apply other clustering algorithms that do not
require a predefined number of clusters on the embedding.

ARI. The ARI was used to compare the similarity between the true label of the
cell types and the results of the clustering algorithm. ARI is defined based on
the confusion matrix N, where nij is the number of cells that labeled as the
ith cell type and assigned to the jth cluster by the algorithm:
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where ai and bj are the sum of the ith row and the sum of the jth column of
N, respectively, and n is the total number of cells.

Baseline Methods.
PCA. The raw contact matrices of each cell were log2 transformed and
reshaped to 1×n2. The matrices from m different cells were concatenated

into a m×n2 matrix. The matrix for each chromosome was PCA transformed
and concatenated at last, and another PCA was applied to derive the final
embedding with all chromosomes.
HiCRep+MDS. HiCRep 1.6.0 was installed from bioconductor. For each chro-
mosome, the raw contact matrix at 1-Mb bin size of each cell were log2

transformed and smoothed with a window size of 1. The stratum-adjusted
correlation coefficient (SCC) was computed between each pair of smoothed
matrices. The median of SCC distances across all chromosomes were trans-
formed to Euclidean distances by Eq. 7:

deuc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− 2dscc

p
. [7]

The Euclidean distance matrix was then embedded into two dimensions
with MDS.
Eigenvector. The n×n raw contact matrix of each cell was log2 transformed
to A. The distance-normalized matrix B of each cell was computed by the
following:

Bi,j =
Ai,jP

i’Ai’,i’+j−i
. [8]

Then PCAwas performed on the correlation matrix of Band the PC1 was kept
as features of the cell. We computed the mean CpG content of the bins
with positive and negative features, respectively, and reversed the fea-
tures if the negative features corresponded to higher CpG content. The
features from m different cells were concatenated into a m×nmatrix and
PCA transformed.
Decay. The n×n raw contact matrix of each cell was log2 transformed to A.
The 1×nfeature vector B of each cell was computed by the following

Bd =

P
jAj,j+dP
i,jAi,j

, [9]

which represent the proportion of contacts at each distance. The features
from m different cells were concatenated into a m×n matrix and PCA
transformed.

Identification of TLSs/TADs. In Fig. 5C and SI Appendix, Fig. S16, all TLSs/TADs
were computed by TopDom with a window size of 5. TADs in bulk ESCs and
NPCs were identified at 10-kbp resolution. The cells with more than 100 k
nondiagonal contacts at 40-kb resolution were included in Fig. 5D (1,007 in
total). For a given TAD identified in bulk Hi-C data whose boundaries are i and j,
we decided whether a TLS in a single cell between i’ and j’ is corresponding

to the TAD by whether i’ and j’ satisfied ji’ − ij≤minð80kb, 0.25× ðj− iÞÞ and
jj’ − jj≤minð80kb, 0.25× ðj− iÞÞ or not.

In SI Appendix, Figs. S13–S15, S17, and S18, we did not call TLS directly in
single cells due to the low coverage of the dataset. Instead, the differential
TLSs between cell types were found by browsing the bulk Hi-C data of the
corresponding cell types and finding the TADs that are obviously different
between those cell types. Then we counted in how many single cells the
similar interactions within the TADs were also detected. We defined a cell
having a TLS similar to the TAD between i and j if its contact matrix A sat-

isfied
P

i≤i’ ,j’<j IðAi’j’ > 0Þ>0.4× ðj− iÞ2, where I is the indicator function.
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