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SUMMARY

Muscle satellite cells (MuSCs) are the quiescent muscle stem cells required for adult skeletal 

muscle repair. The impact of environmental stress such as pollution on MuSC behavior remains 

unexplored. We evaluated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure, a 

ubiquitous and highly toxic pollutant, on MuSCs by combining in vivo mouse molecular genetic 
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models with ex vivo studies. While all MuSCs express the transcription factor PAX7, we show that 

a subset also express PAX3 and exhibit resistance to environmental stress. Upon systemic TCDD 

treatment, PAX3-negative MuSCs display impaired survival, atypical activation and sporadic 

differentiation through xenobiotic Aryl Hydrocarbon Receptor signaling. We further show that 

PAX3-positive MuSCs become sensitized to environmental stress when PAX3 function is impaired 

and that PAX3-mediated induction of mTORC1 is required for protection. Our study therefore 

identifies a functional heterogeneity of MuSCs in response to environmental stress controlled by 

PAX3.

Graphical Abstract

eTOC Blurb

Der Vartanian and colleagues identify a functional heterogeneity of skeletal muscle stem cells 

response to environmental stress. While PAX3-negative muscle stem cells display impaired 

survival, aberrant activation and sporadic fusion to myofibers upon TCDD exposure, PAX3-

positive muscle stem cells are protected against pollutant through a mTORC1-dependent Galert 

response.

INTRODUCTION

Adult stem cells are found in many mammalian tissues where they are involved in tissue 

maintenance, repair and regeneration via self-renewal and differentiation of tissue-specific 

cell types (Weissman, 2000). Skeletal muscle satellites cells (MuSCs) are the myogenic stem 

cells of adult muscle embedded between the plasmalemma and basal lamina of myofibers 
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(Katz, 1961; Mauro, 1961). Under normal homeostatic conditions, MuSCs are in a quiescent 

state G0 (Cheung and Rando, 2013) and are characterized by the expression of PAX7, a key 

transcription factor required for their maintenance (Horst et al., 2006; Lepper and Fan, 2010; 

Oustanina et al., 2004; Relaix, 2006; Seale et al., 2000). PAX3, a paralogue of PAX7 has 

also been detected in a subset of adult MuSCs (Calhabeu et al., 2013; Relaix et al., 2006). 

Upon trauma or in diseased conditions, PAX7+ MuSCs in G0 will be activated, enter cell 

cycle G1, express the myogenic factor MYOD, undergo extensive expansion and 

differentiate into myogenic cells by downregulating PAX7 and inducing MYOGENIN with 

the expression of other downstream myogenic-specific genes, allowing tissue repair 

(Bismuth and Relaix, 2010; Olguin and Pisconti, 2012; Zammit et al., 2006). A subset will 

downregulate MYOD and exit the cell cycle to self-renew the pool of PAX7+ MuSCs for 

future needs (Collins, 2006; Zammit et al., 2004). Interestingly, distant injury can prime G0 

PAX7+ MuSCs for activation in an intermediate G(alert) state characterized by cell size 

increase and PI3K-mTORC1 activation, but without disrupting the niche nor entering the 

cell cycle or myogenesis (Rodgers et al., 2014). Alterations of the balance between 

quiescence, activation and differentiation may result in impaired function, premature MuSCs 

exhaustion and subsequent skeletal muscle regeneration failure.

Despite the fact that environmental pollutants are a part of modern life, the impact of 

environmental stress on adult stem cells remains poorly understood. It has been suggested 

that environmental pollutants could exert their adverse effect by targeting stem cell function, 

resulting in changes in the stem cell differentiation potential and alterations of self-renewal 

capacity (Bock, 2017). Recent studies redefining the cell identity of quiescent and early 

activated MuSCs (Machado et al., 2017; van den Brink et al., 2017; van Velthoven et al., 

2017) using direct approaches such as in situ fixation (Machado et al., 2017) show that the 

Aryl Hydrocarbon Receptor (AHR) is highly expressed in quiescent and early activated 

MuSCs, suggesting these stem cells are highly responsive to environmental stress. AHR is a 

cytosolic ligand-activated transcription factor that mediates toxic effects of pollutants such 

as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in vertebrates (Okey, 2007). Following 

ligand activation, the AHR-ligand complex translocates into the nucleus and heterodimerizes 

with the AHR nuclear translocator (ARNT) to induce expression of detoxification pathways, 

including those coding for the phase I xenobiotic-metabolizing cytochrome P450 enzymes 

such as CYP1A1 (Carrier et al., 1994; Ma, 2001). TCDD is the most toxic and ubiquitous 

persistent organic pollutants to which humans are daily exposed (Parzefall, 2002). The 

chemical structure of these pollutants allows them to be soluble in lipids leading to their 

facilitated bioaccumulation in adipose tissue (Pavlikova et al., 2015).

Here we identify a bimodal response of MuSCs to systemic environmental stress exposure 

depending on the expression of PAX3. We show that injection of TCDD promotes, without 

local injury, AHR-dependent- loss of PAX3 negative MuSCs by activation and fusion, and, 

for a small subset, impaired survival. Interestingly, PAX3-expressing MuSCs are protected 

via induction of G(alert) features. This resistance is dependent on PAX3 function in vivo and 

can be reversed by impairing mTORC1 function. Our study therefore reveals that MuSCs 

display a functional heterogeneity in responding to environmental stress depending on PAX3 

function.
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RESULTS

Exposure to TCDD pollutant affects skeletal homeostasis and the MuSC pool.

To evaluate the impact of environmental stress on skeletal muscle, wild-type mice were 

injected intraperitoneally with 4µg/kg of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) twice 

per week for one month (Figure 1A). Several muscles were collected for histological 

analysis (Figure 1A-E). TCDD treatment had no impact on fat deposition and fibrosis in 

both TA and biceps (data not shown). However, histological analysis revealed significant 

expression of the embryonic isoform of myosin heavy chain (eMHC) in both muscles 

following systemic TCDD exposure, suggesting ongoing contribution from MuSCs to 

myofibers (Figure 1B). Interestingly, the percentage of eMHC+ myofibers upon TCDD 

treatment was significantly higher in TA that in biceps (Figure 1C). Since MuSCs are 

mediating muscle regeneration, we tested whether exposure to TCDD may affect their 

number. Quantification of PAX7+ MuSCs revealed a substantial reduction in all muscles 

examined. Consistent with eMHC analysis (Figure 1B), reduction in PAX7+ cell number 

was more pronounced in hindlimb muscles (EDL and TA) than in trunk and forelimb 

muscles (biceps and diaphragm) (Figure 1D-E). Thus, TCDD-induced systemic 

environmental stress triggers sporadic and muscle-specific loss of PAX7+ MuSCs associated 

with a regenerative phenotype in the absence of local damage.

Differential loss of MuSCs exposed to TCDD correlates with muscle-specific expression of 
PAX3.

MuSCs are heterogeneous regarding PAX3 expression (Calhabeu et al., 2013; Kuang et al., 

2006; Relaix et al., 2006) suggesting a possible link with the muscle-specific impact of 

environmental stress. Using a Pax3nlacZ-IRESGFP/+ knock-in mouse line that express a dual β-

Galactosidase and GFP reporter (Figure 2A), we first characterized the pattern of PAX3 

expression in various adult muscles. Biceps and diaphragm showed the strongest X-gal 

(PAX3) staining, whereas moderate expression was observed in pectoralis, abdominal, TA 

and EDL muscle staining (Figure 2B). Plantaris, quadriceps, soleus and gastrocnemius 

showed only rare sporadic X-gal staining (Figure 2B). As a whole, PAX3 is highly expressed 

in trunk and forelimb MuSCs and low in most hindlimb muscles. In order to show that Pax3 
reporters faithfully reproduced PAX3 expression in vivo we intercrossed Pax7creERT2/+ 

(Murphy et al., 2011) with Pax3GFP/+ (Relaix et al., 2005) and Pax3flox/+ mice (Koushik et 

al., 2002)(Figure 2C). PAX3 protein expression was detected in GFP+ MuSCs from both 

isolated biceps myofibers and plated PAX7+ GFP+ MuSCs from control (Pax3 Ctrl) mice 

(Figure 2D-E). We did not observe any PAX3 expression elsewhere in skeletal muscle 

(Alonso-Martin et al., 2018). This specific PAX3 expression was lost in GFP-traced cells 

from Pax7creERT2/+: Pax3GFP/flox (Pax3 cKO) mice (Figure 2D-E). Thus PAX3 is expressed 

in a muscle-specific stem cells subpopulation.

We next investigated the impact of TCDD exposure on PAX3+ (expressing both PAX7 and 

PAX3) and PAX3- (expressing only PAX7) MuSCs using Pax3GFP expression in TA and 

biceps (Figures 2F-G, S1). PAX3+ MuSCs were revealed on muscle section by co-

immunostaining using anti-GFP (PAX3) and anti-PAX7 antibodies (Figure S1). At 10 weeks 

(end of the 4 weeks treatment), in control mice, only a few TA MuSCs (14%) expressed 
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PAX3 whereas in the biceps, the majority (55%) of the PAX7-expressing cells were also 

PAX3 positive (Figures 2F-G, S1B). Strikingly, systemic TCDD exposure specifically 

decreased the PAX3- MuSC subpopulation in both TA and biceps whereas PAX3+ MuSCs 

were not affected (Figures 2F-G, S1B). Thus, TCDD exposure induced a specific loss of 

PAX3- MuSCs in adult skeletal muscle, while PAX3+ MuSCs are preserved (Figures 2G, 

S1B). Long-term studies indicated that the specific loss of MuSCs persisted 8 weeks after 

TCDD treatment withdrawal (Figures 2F-G, S1C).

Bimodal response of MuSCs to TCDD correlates with PAX3 expression.

In order to further characterize the impact of TCDD exposure on MuSC subpopulations, we 

analyzed the activation and differentiation status of both PAX3+ and PAX3- MuSCs on 

freshly isolated myofibers (T0h) (Figure 3A-C). In vehicle-exposed Pax3GFP/+ mice, all 

MuSCs along the myofibers expressed PAX7, but showed no sign of activation/

differentiation, demonstrating that all MuSCs, independently of PAX3 expression, were 

quiescent (Figure 3B-C). In contrast, TCDD exposure promoted a significant activation of 

PAX3- MuSCs, detected by the co-expression of PAX7 and MYOD, while GFP+ (PAX3+) 

MuSCs remained mostly quiescent (Figure 3B-C). Interestingly, under TCDD exposure a 

small population of cells maintaining under the basal lamina expressed only MYOD (Figure 

3B shown with an asterisk). This PAX7-MYOD+ cell population was negative for GFP 

expression (PAX3-subpopulation). In addition, we also observed that upon TCDD treatment, 

a few cells located under the basal lamina expressed MYOG and was detected in a GFP- 

subpopulation at the end of the treatment (10 weeks), then declines 4 weeks post-treatment 

(14 weeks) and becomes barely detectable at 8 weeks post-treatment (18 weeks) (Figure 3D-

F). Similar results were obtained on freshly isolated MuSCs (Figure S2A-C). We conclude 

that TCDD exposure induces a specific activation and differentiation of PAX3- MuSCs.

As PAX3 and PAX7 are also involved in cell survival (Borycki et al., 1999; Relaix et al., 

2006; Relaix et al., 2003), we analyzed apoptosis and necrosis by flow cytometry using 

Sytox/Annexin V staining. We isolated GFP- expressing cells from Pax3GFP/+ adult 

forelimbs and Tg:Pax7nGFP (Sambasivan et al., 2009) hindlimb muscles treated with TCDD 

(Figures 3G-H, S2D-E). Since PAX7+ cells were isolated from hindlimb muscles, the vast 

majority of the analyzed MuSCs are not expressing PAX3 (PAX3-, see Figure 2B). In 

vehicle-treated mice, PAX3- and PAX3+ cells present a similar profile regarding the 

percentage of living, early apoptotic, apoptotic and necrotic cells (Figures 3H, S2E). 

Interestingly, TCDD exposure triggers a specific cell death of the PAX3- MuSCs in adult 

muscles (Figure S2E, red circle), whereas the PAX3+ MuSC subpopulation was not overtly 

affected (Figures 3H, S2E). Thus, TCDD exposure triggers a specific loss of PAX3- MuSCs 

through atypical activation and impaired survival.

TCDD induces fusion of PAX3- MuSCs to myofibers without local injury.

In order to further analyze the behavior of activated MYOD+ MuSCs upon TCDD exposure 

in vivo, we generated a Tg:MyoD-nLacZ transgenic mouse model using a 230kb BAC that 

contains all the reported regulatory elements of MyoD linked to a nLacZ reporter (Tg:BAC 
MyoD-nLacZ, Figure 4A). We performed systemic TCDD exposure in Tg:MyoD-nLacZ 
mice and analyzed β-Galactosidase (β–Gal) expression in TA and biceps (Figure 4B). The 
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stability of the nLacZ protein allowed us to follow MYOD-derived myogenic cells and their 

contribution to myofibers (resulting from myoblast cell fusion) using an anti-β-Gal antibody 

(Figures 4C-F). Co-immunostaining experiments using a PAX7 antibody revealed that in 

vehicle-treated mice the vast majority of the MuSCs in both TA and biceps did not co-

express β-Gal (Figure 4C, 4E). Systemic TCDD treatment promoted activation of MuSCs by 

reducing the proportion of quiescent PAX7+MYOD- cells in both TA and biceps in vivo 
(Figure 4C-D), increasing the proportion of activated PAX7+ cells co-expressing MYOD in 

both TA and biceps (Figure 4C, 4E), consistent with our previous findings on freshly 

isolated myofibers (Figure 3B-C). This effect was more pronounced in TA, which contains a 

very low number of PAX3+ MuSCs compared to the biceps (Figures 4C, 4E, 2B, 2G). This 

muscle-specific MuSC activation linked with PAX3 expression also translated into an 

increased number of β-Gal+ myofibers (Figures 4C, asterisks and 4F for quantifications) in 

the TA compared with biceps.

To validate the differential myofiber contribution between PAX3+ and PAX3- MuSCs, we 

performed lineage studies by intercrossing Pax3GFP/+, Pax7CreERT2/+ and R26stop-Tomato 

mice, relying on the stability of the GFP to trace Pax3GFP MuSCs and the expression of 

Tomato upon tamoxifen treatment to follow all MuSCs (Figure 4G). Cre expression was 

induced using 10 days of tamoxifen diet in adult Pax3GFP/+; Pax7CreERT2/+; R26stop-Tomato 

mice prior to TCDD treatment (Figure 4G). In vehicle-treated mice, we observed a low and 

similar level of fusion of GFP+ and GFP- MuSCs over the 4 weeks periods of treatment, 

likely originating from a low homeostatic turn-over of MuSCs (Figure 4H-J), as previously 

observed (Pawlikowski et al., 2015). By contrast, upon TCDD treatment, while the GFP+ 

MuSCs did not show increased contribution to myofibers, GFP- MuSCs significantly 

increased their fusion with myofibers (Figure 4H-J). We next examined the percentage of 

centrally located nuclei in myofibers in both TA and biceps at the end of TCDD treatment 

(10 weeks) and, 4 and 8 weeks after TCDD treatment withdrawal (Figure 4K-L). We 

observed a drastic increase in centronucleated myofibers of mice exposed to TCDD 4 weeks 

after treatment withdrawal (14 weeks), with a higher percentage in TA compared to biceps 

(Figure 4K-L). This effect was still observed 2 months post-treatment (18 weeks), albeit at 

lower levels, suggesting a progressive return to normal homeostasis after TCDD withdrawal 

(Figure 4K-L). These results demonstrated that TCDD induces the specific activation and 

long-term contribution of PAX3- MuSCs into myofibers.

AHR signaling is required for MuSC activation in response to TCDD.

In many cell types, the effect of pollutants such as TCDD is mediated by the Aryl 

Hydrocarbon Receptor (AHR) pathway (Marlowe and Puga, 2005). To evaluate the 

involvement of AHR signaling in MuSCs from mice exposed to TCDD we generated a 

MuSC-specific AHR conditional knock-out mouse model (Pax7CreERT2/+; AHRfl/fl) (AHR 

cKO) (Figure 5A). We validated the efficiency of AHR deletion following tamoxifen-

induced Cre ablation in AHR cKO MuSCs compared to AHR control MuSCs (Figure S3A-

D). We also evaluated the activation of the AHR pathway in MuSCs isolated from mice 

exposed to TCDD by quantifying the AHR target genes, such as Cyp1a1, AHRR, Nqo1, 

Cyp1a2 and Cyp1b1 (Figures 5B, S3D). As anticipated, canonical AHR downstream genes 

were significantly increased in mice treated with TCDD compared to vehicle-treated 
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controls while this effect was abrogated in AHR cKO mice (Figures 5B, S3D). Interestingly, 

Pax3 gene expression was significantly increased under TCDD treatment. This effect was 

blunted in AHR cKO mice, suggesting that PAX3 expression is downstream of AHR 

signaling (Figure 5B). We also observed an AHR-dependent increase in MYOD expression 

in MuSCs isolated from mice treated with TCDD (Figure 5B), in keeping with our 

histological analysis demonstrating that TCDD induces the activation of PAX3- MuSCs 

(Figures 3A-F, 4A-E). We next explored whether the loss of quiescence induced by TCDD 

treatment in MuSCs is mediated by AHR signaling. While a significant subset of MuSCs 

was displaying signs of atypical activation (either PAX7+MYOD+KI67- or PAX7-MYOD

+KI67+) in TCDD-treated mice, we observed a complete abrogation of this activation in 

AHR cKO mice (Figure 5C-D, S3E-G). We conclude that TCDD promotes aberrant 

activation of PAX3- MuSCs via AHR signaling.

Impairing PAX3 expression leads to MuSCs sensitization to TCDD.

We then analyzed whether PAX3 expression is required for the protective effect from TCDD 

in PAX3+ MuSCs. To this end, we compared Pax3 control mice to Pax3 cKO in which 

PAX3-ablated cells are labeled with GFP (GFP+) (Figures 6A, S4, 2C-2E). We first checked 

that Pax3 was efficiently downregulated in MuSCs of Pax3 cKO mice (Figure 6B). We next 

analyzed the impact of TCDD treatment for the expression of canonical AHR signaling 

target genes, in both GFP+ and GFP- MuSC subpopulations isolated from Pax3 Ctrl or Pax3 

cKO mice (Figures 6B, S4B). While Cyp1a1, Nqo1, Cyp1a2 and Cyp1b1 (Figures 6B, S4B) 

were highly induced upon TCDD exposure in both GFP+ and GFP- MuSC subpopulations 

of Pax3 Ctrl mice, AHRR displayed a differential response linked with PAX3 expression 

(Figure 6B). In Pax3 Ctrl mice, GFP+ MuSCs displayed enhanced activation of the AHR 

signaling pathway targets (Figures 6B, S4B) upon TCDD treatment compared to GFP- 

MuSCs. Ablation of PAX3 in GFP+ MuSCs abrogated the enhanced TCDD-induced AHR 

activation (Figures 6B, S4B). Upon TCDD exposure, MyoD expression was specifically 

induced in GFP+ MuSCs lacking PAX3 (Pax3 cKO mice) suggesting that PAX3 function is 

required to shield GFP+ MuSCs from the impact of TCDD (Figure 6B).

In order to establish that PAX3 function is required for PAX3+ MuSC resistance to 

environmental stress, we treated Pax3 Ctrl and Pax3 cKO mice with TCDD and analyzed the 

behavior of GFP+ MuSCs (Figures 6C and 6D). We found that while GFP+ MuSCs remain 

quiescent (PAX7+MYOD-) in control mice treated with TCDD, PAX3-defective GFP+ 

MuSCs displayed a significant increase in activation (PAX7+MYOD+) (Figures 6C and 6D). 

Our result highlights a protective role of PAX3 against the activation of adult MuSCs by 

environmental pollutants.

We next investigated the link between AHR and PAX3 in Pax3GFP/+ mice (Figures 6E, 

S4C). On vehicle-treated biceps, PAX3 and AHR co-immunostaining revealed that AHR 

was mainly expressed in the cytoplasm of both PAX3- and PAX3+ MuSCs (Figures 6F-G, 

S4D). Under TCDD treatment, both subpopulations presented a nuclear localization of AHR 

with a higher staining intensity in the PAX3+ subpopulation (Figures 6F-G, S4D), 

suggesting that activation of the AHR pathway is exacerbated after TCDD exposure in the 

PAX3+ subpopulation (Figures 6B, 6F-G, S4). Our data therefore demonstrate that PAX3 
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expression is linked with an enhanced stimulation of the AHR pathway and PAX3 function 

is required to protect MuSCs from the effects of TCDD exposure.

PAX3 expression controls the adaptive transition of quiescent MuSCs through the 
mTORC1 pathway under environmental stress.

In the course of our study, we noticed that PAX3+ MuSCs treated with TCDD displayed a 

significantly increased cell size compared to controls (Figure S2B). To validate this 

observation, we quantified the size of freshly isolated PAX3+ (GFP+) and PAX3- (GFP-) 

MuSCs using Pax3GFP/+ mice treated with TCDD and compared to the control condition 2h 

post-plating. We found that PAX3+ MuSCs displayed an increased cell size compared to 

PAX3-MuSCs (Figures 7A-B, S2B). The cell size of PAX3+ MuSCs was further 

significantly increased upon systemic TCDD treatment whereas PAX3- MuSC size remained 

constant (Figures 7B, S5A-D). Since we observed that TCDD exposure promotes PAX3+ 

cell size increase in the absence of activation or local injury disrupting the MuSC niche, we 

hypothesized the potential involvement of the mTORC1 pathway in the protection of PAX3+ 

MuSCs against environmental stress, similarly to the G0/G(alert) transition (Rodgers et al., 

2014). We combined GFP and antibodies-based cell sorting to evaluate EdU incorporation 

after a 4h chase on freshly sorted cells. We analyzed the first division profiling of isolated 

PAX3+ and PAX3- MuSCs (Figures 7A-B, S5F). As previously demonstrated in activated 

cells (Rodgers et al., 2014), PAX3- MuSCs exposed to TCDD presented the highest EdU 

incorporation at 12, 24 and 48h (Figures 7B, S5F). Significant EdU incorporation was also 

observed in PAX3+ MuSCs following TCDD treatment compared to the control condition 

(Figures 7B, S5G). We then determined the ratio of mtDNA content in both MuSC 

subpopulations. Compared to controls, mtDNA content strongly increased in PAX3- MuSCs 

under TCDD exposure, confirming their activation state whereas PAX3+ MuSCs showed 

lower but still significant increase in mtDNA level, suggesting the enhanced mitochondrial 

activity of PAX3+ MuSCs upon TCDD exposure (Figure 7D). Taken together these results 

suggest that PAX3+ MuSCs exposed to TCDD have different cell cycle kinetics and display 

features of ‘alerted’ MuSCs (Rodgers et al., 2014). We accordingly analyzed 

phosphorylation of S6 ribosomal protein (p-S6), a signature of mTORC1 signaling, in 

PAX3+ and PAX3- MuSCs treated with TCDD in both Pax3 Ctrl and Pax3 cKO mice. In 

vehicle-treated MuSCs, only sporadic staining for p-S6 was observed (Figures 7E-F, S5H). 

Strikingly, in TCDD-treated Pax3 Ctrl mice, nearly all GFP+ MuSCs were p-S6 positive 

upon TCDD treatment, whereas p-S6 was not seen in GFP- MuSCs (Figures 7F, S5H). This 

staining was lost in Pax3 cKO mice (Figures 7F, S5H), demonstrating that TCDD exposure 

triggers PAX3-dependent activation of the mTORC1 pathway. We observed that the p-S6 

positive staining declined by 50% in PAX3+ MuSCs one month after the end of the TCDD 

withdrawal and was no longer detected after two months post-treatment (Figures 7E-F). To 

determine whether mTORC1 signaling is mediating PAX3+ MuSCs protection against 

TCDD, we isolated biceps myofibers from Pax3 Ctrl and Pax3 cKO mice and used 

rapamycin, an mTORC1 inhibitor (Figure 7G-I). We first verified that 15h of rapamycin 

treatment was impairing S6 phosphorylation using GFP, PAX7 and p-S6 immunostaining 

(Figure 7H-I). We next assayed the myogenic status of TCDD-exposed control and Pax3 

cKO MuSCs (Figure 7H-I). Importantly, we observed that PAX3+ MuSCs treated with 

rapamycin became sensitized to TCDD treatment and showed similar levels of MYOD 
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activation compared to PAX3- MuSCs (Figure 7J-K). In all experiments, PAX3 cKO MuSCs 

had an inactive mTORC1 pathway. Our results therefore demonstrate that PAX3 controls the 

adaptive response of MuSCs via the mTORC1 signaling pathway.

DISCUSSION

In contrast to PAX3- cells, PAX3+ MuSCs exposed to TCDD display cellular features 

previously identified in a G0 to G(alert) transition state (increase in cellular size, priming for 

activation, elevated mitochondrial activity). This G(alert) cell response was first reported in 

hindlimb muscles controlateral to the site of muscle injury (Rodgers et al., 2014). Following 

injury, tissue damage led to activation of circulating Hepatocyte growth factor Activator 

(HGFA) that catalyzes the proteolytic processing of pro-HGF into active HGF in tissues 

throughout the body. This signal stimulates an injury-induced transition of MuSCs into 

G(alert) in uninjured muscles, improving their capacity to repair damaged tissues (Rodgers 

et al., 2017). Our study demonstrates that TCDD reproduces the main feature of HGFA 

release and induces the transition of PAX3+ MuSCs into a G(alert)-like state, but without 

injury and by a systemic mechanism. In addition, Lee et al. also reported that HMGB1 

administration enhances tissue repair via induction of the Galert response (Lee et al., 2018). 

Our observation leads to a conceptual questioning of the potential stress nature of the 

systemic signals following injury. In fact, it would be interesting to determine if other stem 

cell systems may show a specific response to limit the impact of environmental stress and 

whether PAX3 might also be regulating other forms of stress in muscle stem cells. This 

would be consistent with a study demonstrating that PAX3 is required for radiotolerance of 

MuSCs (Scaramozza et al., 2019).

Recent studies have shown that MuSC activation following dissociation is a fast (2–3h) 

process (van den Brink et al., 2017; Machado et al., 2017; van Velthoven et al., 2017) that 

also involves mTORC1 signaling (Wang et al., 2018). This is in sharp contrast to the time 

required for the first division (24h to 48h, see Figure 7B). Upon environmental stress, PAX3-

MuSCs may have exited quiescence with a transitory increase in mTORC1 signaling, but the 

activation of the pathway might not be maintained when activated cells enter the myogenic 

program (Figure 7E-F). On the other hand, the higher resistance of PAX3+ MuSCs to an 

environmental stress stimulus might maintain them in this transitory mTORC1 state, 

associated with sustained p-S6 signal. This would be consistent with our long-term analysis 

demonstrating that p-S6 staining in PAX3+ MuSCs is progressively lost after TCDD 

withdrawal (Figure 7E-F).

We show that the impact of TCDD on PAX3- MuSCs is mediated by AHR signaling, 

implying a potential role of AHR in muscle stem cell physiology. Surprisingly, PAX3+ 

MuSCs present a higher AHR activation upon TCDD without any consequence for their 

number, or activation. The role of the AHR pathway has previously been evaluated in other 

stem cells, but bimodal responses were not reported. Exposure of mice to TCDD and 

prolonged activation of AHR in hematopoietic stem cells lead to an impairment in 

progenitor population number and quiescence (Singh et al., 2009) without stromal niche 

alteration. In addition, AHR was shown to modulate mitotic progression and loss of 

pluripotency in embryonic stem cells (Ko et al., 2016).The differential level of AHR 
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activation, observed in both basal and TCDD conditions, could be linked to the expression of 

AHRR that is significantly increased in PAX3+ MuSCs. PAX3 might therefore reduce the 

feedback loop regulation of the AHR pathway through the direct or indirect repression of 

AHRR. Our results suggest that PAX3 may thus be involved in the fine tuning of the AHR 

pathway output.

Heterogeneity among MuSCs has been previously shown, depending on their asymmetric 

self-renewal and commitment ability marked by Myf5-driven Cre activity (Kuang et al., 

2007), their division rate (Chakkalakal et al., 2012) or PAX7 expression levels (Rocheteau et 

al., 2012). Our study reveals that the expression of the transcription factor PAX3 determines 

a functional heterogeneity within the MuSC pool in response to an environmental insult. We 

have examined the muscle-specific expression of PAX3 in MuSCs and found it conserved 

during aging and without significant variations between animals (data not shown), 

suggesting a tight control of its expression. It has been proposed that use of alternative 

polyA signals coupled with miRNA regulation is regulating Pax3 expression (Boutet et al., 

2012). The PAX3 protein is also subjected to post-translational modifications (Boutet et al., 

2007). The complex regulatory control of Pax3 expression is consistent with the importance 

of maintaining clonal complexity of MuSCs during aging (Tierney et al., 2018).

One can speculate that the heterogeneity of MuSCs regarding the expression of PAX3 might 

be linked with evolutionary pressure on PAX3 function under environmental stress. For 

example, maintaining the PAX3- MuSC subpopulation in hindlimb muscles, highly 

solicitated for locomotion and exposed to injuries, would ensure rapid regeneration of these 

muscles to despite the risk of compromising the self-renewal of MuSCs over time. In 

contrast, muscles responsible for vital functions such as respiration (trunk and diaphragm 

muscles) or prehension (forelimb muscles), which may be more directly in contact with 

pollutants, can explain the selection in these muscles of a greater PAX3+ MuSC 

subpopulation presenting a resistance to environmental stress.

Activation of satellite cells is the critical step in the initiation of muscle homeostasis or 

regeneration. It is subjected to multiple layers of tight regulation mainly mediated by various 

signaling pathways (Bentzinger et al., 2013) interacting with myogenic regulatory factors 

such as MYOD (Smith et al., 1994). After activation, MYOD is involved in proliferation of 

MuSCs (Megeney et al., 1996). We show that, upon TCDD exposure, PAX3- MuSCs display 

survival impairment, aberrant activation, proliferation and sporadic abnormal contribution to 

myofibers demonstrated by the presence of eMHC+ fibers. This behavior is highly unusual 

for an uninjured muscle without apparent damage of the stem cell niche that maintains 

MuSCs quiescent via Notch signaling (Bjornson et al., 2012; Mourikis et al., 2012) and local 

synthesis of Collagen V (Baghdadi et al., 2018). Future studies will be required to determine 

if TCDD exposure leads to modification of the MuSC niche or induces a cell autonomous 

mechanism to escape the quiescence signals from the local environment.
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STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Frédéric Relaix (frederic.relaix@inserm.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse strains—Mouse lines used in this study have been described and provided by the 

corresponding laboratories : C57BL/6N mice (Janvier Labs®), Pax3GFP∕+ mice (Relaix et al., 

2005), Pax3flox/+ (Koushik et al., 2002), Rosa26flox(stop)flox-Tomato (R26stop-Tomato) (Madisen 

et al., 2010), Pax7creERT2/+ mice (Murphy et al., 2011), Tg:Pax7-nGFP (Sambasivan et al., 

2009) and AHRflox/flox mice (Walisser et al., 2005). Tg:MyoD-nLacZ, and 

Pax3nLacZ-IRESGFP/+ mice were generated in the laboratory (see below). Animals were 

handled according to national and European community guidelines, and protocols were 

approved by the ethics committee at the French Ministry (Project No: 15–018).

Generation of Pax3nLacZ-IRES-GFP/+ mice—The Pax3 targeting construct is derived 

from one which was previously reported (Relaix et al, 2003). Briefly, a cassette containing a 

floxed Pax3 cDNA followed with an nls-LacZ-IRES-eGFP-SV40pA replaces the coding 

sequence of exon1. The Pax3Pax3(nLacZ-IRESeGFP) targeting vector was electroporated in 

CK35 ES cells. Recombinant ES cells were analysed, and two positive ES clones were 

injected into blastocysts to generate chimaeras. Following germline transmission and 

validation of the expression profile and appropriate recombination, the 

Pax3Pax3(nLacZ-IRESeGFP) allele has been established and will be reported elsewhere. A male 

carrying the recombined allele was later crossed with a PGK-Cre female (Lallemand et al., 

1998) to flox out the Pax3 cDNA and gave rise to the Pax3nLacZ-IRESeGFP/+ line.

Generation of Tg:MyoD-nLacZ mice—To generate a Tg:MyoD-nLacZ transgenic 

reporter line, a 227kb BAC clone from a C57BL/6J mice genomic library (Osoegawa et al., 

2000) centered around the MyoD locus has been chosen (RP23–46A24 ; CHORI BACPAC 

resources) to carry out locus modifications using λ-red recombination (Copeland et al., 

2001). Two homology arms were designed to target the start of the MyoD coding sequence 

in exon1, resulting in the deletion of 566bp of 5’CDS and replacement with the nls-lacZ 

sequence. DNA fragments were PCR-generated using the BAC DNA as template 

(PHUSION enzyme F-530L, Thermofischer) (5’arm pair 5’-

ATGATTCCCACTACGCATGCAAGGACAGCGC-3’, 5’-

ACTCGAGTTCCTGGGTCCAGCCTCAACCCAAGCCG-3’; 3’arm pair 5’-

ACTCGAGCACTACAGTGGCGACTCAGATGC-3’, 5’-

ATAACAGAGTTAGGTCTACAGGGCC-3’), then subcloned in pGEMTeasy (Promega 

#A3610) with a newly introduced XhoI site in-between. A nls-LacZ-SV40pA-FRT-

Kanamycin-FRT cassette was then inserted in XhoI to give the final targeting construct. The 

5.7kb targeting fragment was obtained by NotI digestion followed by gel purification. The 

BAC RP23–46A24 DNA was purified (Nucleobond BAC100, Macherey-Nagel) and 

electroporated into recombineering strain SW105 (Lee et al., 2001), several transformants 

DNA were extracted and verified by restriction profile against the parental DNA. The 
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purified recombination cassette was then electroporated in one verified clone, and 

recombinant resulting clones, selected on Kanamycin, were analyzed by restriction profile 

for proper cassette integration. One positive clone was then grown on arabinose to induce 

Flp recombinase expression and promote excision of the selection marker. Recombined BAC 

DNA was purified and diluted at 2ng/µl into microinjection buffer (10mM Tris-HCL pH 

7.0.1mM EDTA, 100mM NaCl, +30mM Spermine and 70 mM Spermidine, 

extemporaneously) and injected into C57Bl/6xDBA/2 pronuclei. Positive F0 clones were 

selected by PCR and X-Gal profile of F1 offspring.

METHOD DETAILS

Tamoxifen and TCDD treatment—To induce recombination, four week-old Pax3GFP/+; 
Pax7CreERT2/+; R26stop-Tomato or Pax7CreERT2/+; Pax3GFP/flox or Pax7CreERT2/+; AHRflox/flox 

mice were fed with a diet containing tamoxifen (Envigo) for ten consecutive days followed 

by 5 days of normal diet before TCDD treatment. Mice fed with normal diet were used as 

control. For TCDD treatment, six week-old Tg:MyoD-nLacZ or Pax3nLacZ-IRESGFP/+ 

or Pax3GFP/+; Pax7CreERT2/+; R26stop-Tomato or Pax7CreERT2/+ ; Pax3GFP/flox or 

Pax7CreERT2/+; AHRflox/flox mutant mice and their corresponding controls without tamoxifen 

were intraperitoneally injected with TCDD (4μg/kg) (LGC standards), every 2 or 3 days, 2 

times per week for four weeks. Control mice (vehicle) were injected at the same frequency 

with the equivalent volume of Nonane or (TCDD diluent) in corn oil.

Muscle enzymatic dissociation—Adult forelimb, trunk or hindlimb muscles were 

dissected, minced and incubated with a mix of 2.4 U/ml Dispase II (Roche) and 100 μg/ml 

collagenase A (Roche) in cold 4.5g/L glucose Dulbecco’s modified Eagle’s medium 

(DMEM, Gibco) at 37 °C for 2 h. The muscle suspension was successively filtered through 

100-μm and 70-μm cell strainers (BD Biosciences) and then spun at 50g for 10 min at 4 °C 

to remove large tissue fragments. The supernatant was collected, filtered through a 40 μm 

strainer and washed twice by centrifugation at 600g for 15 min at 4 °C. The final pellet was 

resuspended in cold 4.5g/L glucose DMEM) supplemented with 0.2% bovine serum albumin 

(BSA, Sigma), and the cell suspension was used for fluorescence-activated cell sorting 

(FACS)-sorting, the Amnis® ImageStream® cell analysis system or the apoptosis analysis.

MuSC isolation by Flow Cytometry—MuSCs were sorted from dissociated muscles 

with the cell sorter BD Influx Sorp (BD Biosciences) using either the GFP (for Tg:Pax7-
nGFP or Pax3GFP/+ or Pax3GFP/flox mice models) reporter or a surface labeling strategy (for 

Pax7creERT2/+; AHRflox∕flox and Pax7creERT2/+; Pax3GFP∕flox mice models) using anti-mouse 

CD45-PE-Cy7, anti-Ter119-PE-Cy7, anti-mouse CD34-BV421, anti-mouse Sca1-FITC (all 

from BD Biosciences) and anti-mouse integrin-α7-A700 (R&D Systems) (Stantzou et al., 

2017). Gating strategy for satellite cell isolation using cell surface markers was as followed: 

Ter119-, CD45-, CD34+, Sca1- and gating on the cell fraction integrin-α7+. In the 

Pax7creERT2/+; Pax3GFP∕flox mice the PAX3+ MuSCs were isolated based on GFP from the 

Ter119-, CD45-, CD34+, Sca1- and integrin-α7+ MuSCs fraction. Isolated, mononuclear 

cells were collected in DMEM/0.2% BSA. Sorted cells were either plated or lysed for 

mRNA extraction following the protocols described below.
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Apoptosis assay by flow cytometry—Enzymatic dissociated muscles from Tg:Pax7-
nGFP or Pax3GFP/+ mice were labeled with Pacific Blue™ Annexin V and SYTOX™ 

AADvanced™ dyes, according to manufacturer’s recommendations (Pacific Blue™ 

Annexin V/SYTOX™ AADvanced™ Apoptosis Kit, for flow cytometry, Invitrogen™). 

Flow cytometry was performed using The Attune® NxT Acoustic Focusing Flow Cytometer 

(Life Technologies). Analysis was focused on the GFP+ cell subpopulation. Gates were 

drawn on bivariate SYTOX/Annexin V dot plots around four distinct subpopulations: 

SYTOX+/Annexin V− (dead cells), SYTOX-/Annexin V+ (early apoptotic cells), SYTOX+/

Annexin V+ (late apoptotic cells) and SYTOX-/Annexin V- (living cells).

ImageStream®x system analysis of cell size—Satellite cells isolated by FACS from 

Tg:Pax7-nGFP or Pax3GFP/+ mice were resuspended in 1 x PBS and stained with Vybrant® 

DyeCycle™ Ruby cell permeable stain (Invitrogen™) for 15 min at 37°C to identified the 

nucleus and ensure that MuSCs were not activated by the procedure. Samples were run 

directly on the Amnis® ImageStream®x cytometer equipped with a hydrodynamic focusing 

(Amnis part of EMD Millipore, Proteigene). For each condition (vehicle and TCDD-treated 

PAX3+ and PAX3- MuSCs) 5000 images were acquired using the brightfield laser (for the 

size of MuSCs), the darkfield laser (for the Side Scatter) and the fluorescence laser (for 

Vybrant® DyeCycle™ Ruby and GFP). The acquired images were analyzed with IDEAS 

software (Amnis). First, a scatter plot of aspect ratio/area was used to gate for single cells. 

Second, a gradient RMS (root mean square for image sharpness) histogram was used to gate 

for cells in focus. Third, the intensities of GFP and Vybrant® DyeCycle™ Ruby staining 

was used to ensure the non-activation of MuSCs. On the remaining living, single cells in 

focus, image analysis was performed to determine the size of the MuSCs by generating a 

mask based on brightfield. This methodology was used to compare the size of PAX3- and 

PAX3+ MuSCs.

Satellite cell culture—Satellite cells isolated by flow cytometry were plated at 25 000 

cells per cm2 on detachable 8 well-PCA treated μ-slides (Sarstedt) pre-coated with 0.2% 

gelatin for 30 min at 37 °C. Cells were cultured in satellite cell growth medium containing 

DMEM High glucose (Gibco) supplemented 20% FBS (Gibco) and primocin (100 µg/ml, 

Invitrogen™) at 37 °C, 5% CO2 for 2h before being fixed with 4% PFA and immunostained 

as described in “Immunostaining on cells, sections and myofibers”.

Muscle fixation, histological analysis and X-gal staining—For immunostaining 

experiments, adult tibialis anterior (TA), diaphragm, extensor digitorium longus (EDL) or 

biceps brachii (biceps) muscles were isolated and immediately frozen in liquid-nitrogen-

cooled isopentane and sectioned transversely at 8 μm. Muscle sections were post-fixed with 

4% PFA, 20 min at room temperature, washed with 1x PBS (3 times) and permeabilized for 

6 minutes with cold methanol (−20°C). After 3 washes with 1x PBS, antigen retrieval was 

performed by incubating sections in boiling 10 mM citrate buffer pH 6 (Dako) for 3 min. 

After cooling down 30min at room temperature, sections were washed 3 times with 1x PBS. 

Sections were then blocked with 2.5% BSA (Sigma) in PBS. BSA was removed and sections 

were incubated 30 min with Fab antibody. After 3 washes of 1x PBS, sections were 
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incubated with primary and secondary antibodies as described in “Immunostaining on cells, 

sections and myofibers”.

For X-gal staining, isolated whole muscles from two-month Pax3nLacZ-IRES-GFP/+ mice were 

fixed on ice with 4% PFA for 2 h. After 3 washes with 1x PBS, the muscles were incubated 

in the X-Gal staining solution, using 0.4 mg/ml X-Gal (Sigma) in 2 mM MgCl2, 0.02% 

NP-40, 0.1 M phosphate buffer (pH 7.4), 20 mM K4Fe(CN)6 and 20 mM K3Fe(CN)6 at 

37˚C for 16 h. Images were captured with a CCD camera Olympus model mounted on an 

binocular loupe (Leica).

Single myofiber isolation and rapamycin treatment—Single myofibers were 

isolated from EDL or biceps muscles following the previously described protocol (Moyle 

and Zammit, 2014). Briefly, both muscles were dissected and digested in a filtered solution 

of 0.2% collagenase (Sigma) in DMEM High Glucose /1% L-Glutamine/1% Penicillin/

Streptomycin (Gibco®) for 1h30 at 37°C. After connective tissue digestion, mechanical 

dissociation was performed to release individual myofibers that were then transferred to 

serum-coated Petri dishes for 20 min. Single myofibers were then immediately fixed in 4% 

PFA for 10 min (T0h). After 3 washes with 1x PBS, myofibers were stored at 4°C before 

immunostaining. In some experiments, freshly isolated myofibers were treated with 100 nM 

rapamycin (Sigma) for 15h in myofiber growth medium containing DMEM High glucose 

(Gibco®), 20% FBS (Gibco®) and 1% chicken embryo extract (MP-Biomedical) at 37°C, 

5% CO2 and then recovered for fixation and immunostaining as described in 

“Immunostaining on cells, sections and myofibers”.

Immunostaining on cells, sections and myofibers—Isolated MuSCs, muscles 

section or myofibers were washed three times with 1x PBS, and incubated overnight at 4°C 

in 2.5% BSA in 0.025% PBS-Tween20 with primary antibodies listed in Key Resources 

Table. Samples were washed 3 times with 0.025% PBS-Tween20 and incubated with Alexa-

conjugated secondary antibodies (Life Technologies, 1/1000e) for 1 h. After washing 3 times 

with 1X PBS, DAPI (Sigma, 1/5000e) was added for 5 min at room temperature. Samples 

were washed 3 times with 1X PBS and slides were mounted with Fluoromount-G™ medium 

(Interchim). Confocal images were acquired with a Zeiss LSM800 confocal (Zeiss) for 

representative pictures and analyzed with Zen Blue 2.0 software. Counting was performed 

using ImageJ (version 1.47 v; National Institutes of Health, USA, https://imagej-nih-

gov.gate2.inist.fr/ij/) or under the Zeiss fluorescence microscope (AxioImager D1, Zeiss).

Protein extraction and immunoblots—Satellite cells were isolated by FACS from 

Pax7CreERT2/+; AHRfl/fl mice that were fed with tamoxifen-diet (AHR cKO) or regular diet 

(AHR Ctrl) for 10 days. Cell lysates were prepared with ice-cold 0.5% deoxycholate, 0.1% 

SDS and 1% triton in 50 mM Tris-HCl, pH7.4, 150 mM NaCl, 1 mM EDTA, 1 mM 

Na3VO4, and protease inhibitor cocktail (1/100e, Sigma). Lysates were then subjected to 

SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes. The 

membranes were probed overnight with anti-AHR or anti-TBP primary antibody at 4°C (see 

Key Resources Table). Signal was detected using ECL system (Amersham Biosciences) 

according to the manufacturer’s instructions. Quantitative analysis was performed using 

ImageJ software.
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RNA isolation and RT–qPCR—Total RNA was extracted from satellite cells isolated by 

FACS using RNAqueous™-Micro Total RNA Isolation Kit™ (Invitrogen™) and cDNA 

synthesis was performed using SuperScript™ VILO™ cDNA Synthesis Kit (Invitrogen™) 

or SuperScript™ IV VILO™ Master Mix with ezDNase™ Enzyme respectively for the 

experiments in Pax7CreERT2/+; AHRflox/flox and Pax7CreERT2/+ ; Pax3GFP/flox mice models 

according to manufacturer’s instructions. RNA quality was assessed by spectrophotometry 

(DeNovix DS-11 FX spectrometer). RT–PCR was performed using the Veriti® 96- Well Fast 

Thermal Cycler (Applied Biosystems™) and real-time qPCR was performed with the 

StepOnePlus real-time PCR system (Applied Biosystems™) using SYBR™ Green detection 

tools (Applied Biosystems™). Expression of each gene was normalized to TATA Box 

Protein (Tbp) and Hypoxanthine Phosphoribosyltransferase 1 (Hprt1) genes expression. 

Results are reported as relative gene expression (2-ΔΔCT) using vehicle treated-control mice 

as reference (Livak and Schmittgen, 2001). Specific forward and reverse primers used in this 

study are listed in Table S1.

Cell cycle kinetics—An EdU pulse (for 4h) at a final concentration of 10 µM was added 

to 25 000 MuSCs isolated and plated in 8 well chamber slide pre-coated with 0.2 % of PBS-

gelatin. EdU incorporation was analyzed 12, 24 and 48 hours after cells plating using the 

Click-iT™ Plus EdU Alexa Fluor™ 647 Imaging Kit (Invitrogen™).

mtDNA quantification—Total DNA was isolated from 25 000 MuSCs immediately after 

FACS isolation using QIAmp DNA micro kit (Qiagen) according to the manufacturer’s 

instructions. Mitochondrial (mt) DNA was quantified by qRT–PCR using primers 

amplifying the Cytochrome B region on mtDNA (TaqMan, Mouse: Mm04225271_g1 

CYTB) relative to the β-globin region on gDNA (Taqman, Mouse: Mm 01611268_g1 Hbb-

b1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—Experiments involving mice were performed with a minimum of 

three to six biological replicates (as indicated in each legend of the figure) and results are 

presented as the mean ± S.E.M. For technical replications, six to nine cryosections were 

analyzed per muscle and per mice, a minimum of fifty to eighty fibers were taken for single 

myofibers analysis. For qPCR analysis 100 000 cells were used per conditions and per mice. 

All statistical analysis and graphs were performed using GraphPad Prism® Software 

(version 7.0). Statistical two-way ANOVA tests are detailed for each figure as below:

Figure 1C: Means ± SEM (n=5), Repeated measure (RM) two-way ANOVA. Repeated 

measures: muscles per conditions. Source of variation: variable 1, treatment: p<0.0001; 

variable 2, type of muscle: p=0.0343; interaction p=0.0035. ANOVA was followed by 

Sidak’s post-test. P values between the groups (Vehicle vs. TCDD or TA vs. Biceps) in 

Sidak’s post-test are shown at the top of the panel (NS, not significant).

Figure 1E: Means ± SEM (n=6), RM two-way ANOVA. Repeated measure: muscles per 

conditions. Source of variation: variable 1, treatment: p<0.0001; variable 2, type of muscle: 

p<0.0001; interaction p<0.0001. ANOVA was followed by Sidak’s post-test. P values 
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between the groups (Vehicle vs. TCDD or between muscles) in Sidak’s post-test are shown 

at the top of the panel (NS, not significant).

Figure 2G: Means ± SEM (n=6 for 10 weeks and n=4 for 18 weeks), RM two-way 

ANOVA. Repeated measure: PAX3- and PAX3+ MuSCs per conditions. Source of variation: 

variable 1, treatment: p<0.0001 (10 weeks) p=0.0050 (18 weeks); variable 2, MuSCs 

subpopulation: p=0.0025 (10 weeks), p=0.0157 (18 weeks); interaction p<0.0001 (for both 

10 and 18 weeks). ANOVA was followed by Sidak’s post-test. P values between the groups 

(Vehicle vs. TCDD) in Sidak’s post-test are shown at the top of the panel (NS, not 

significant).

Figure 3C: Means ± SEM (n=4), RM two-way ANOVA. Repeated measure: PAX3- and 

PAX3+ MuSCs per conditions. Source of variation: variable 1, treatment: p=0.0008 

(quiescent), p=0.0016 (activated), p=0.0011 (differentiated); variable 2, MuSCs 

subpopulation: p=0.0079 (quiescent), p=0.0235 (activated), p=0.0011 (differentiated); 

interaction: p=0.0134 (quiescent), p=0.0370 (activated), p=0.0011 (differentiated). ANOVA 

was followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD or 

between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the top 

of the panel (NS, not significant).

Figure 3F: Means ± SEM (n=5 for 10 weeks, n=4 for both 14 and 18 weeks), RM two-way 

ANOVA. Repeated measure: PAX3- and PAX3+ MuSCs per conditions. Source of variation: 

variable 1, treatment: p<0.0001 (10 weeks), p=0.0011 (14 weeks), p=0.0016 (18 weeks); 

variable 2, MuSC subpopulations: p<0.0001 (10 weeks), p=0.0011 (14 weeks), p=0.0100 

(18 weeks); interaction: p<0.0001 (10 weeks), p=0.0011 (14 weeks), p=0.0016 (18 weeks). 

ANOVA was followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD 

or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the 

top of the panel (NS, not significant).

Figure 4D: Means ± SEM (n=4), RM two-way ANOVA. Repeated measure: muscles per 

conditions. Source of variation: variable 1, treatment: p<0.0001; variable 2, Muscle: 

p=0.0256; interaction: p=0.0161. ANOVA was followed by Sidak’s post-test. P values 

between the groups (Vehicle vs. TCDD or between muscles) in Sidak’s post-test are shown 

at the top of the panel (NS, not significant).

Figure 4E: Means ± SEM (n=4), RM two-way ANOVA. Repeated measure: muscles per 

conditions. Source of variation: variable 1, treatment: p<0.0001; variable 2, Muscle: 

p=0.0256; interaction: p=0.0161. ANOVA was followed by Sidak’s post-test. P values 

between the groups (Vehicle vs. TCDD or between muscles) in Sidak’s post-test are shown 

at the top of the panel (NS, not significant).

Figure 4F: Means ± SEM (n=4), RM two-way ANOVA. Repeated measure: muscles per 

conditions. Source of variation: variable 1, treatment: p=0.0002; variable 2, Muscle: 

p=0.0301; interaction: p=0.0124. ANOVA was followed by Sidak’s post-test. P values 

between the groups (Vehicle vs. TCDD or between muscles) in Sidak’s post-test are shown 

at the top of the panel (NS, not significant).
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Figure 4I: Means ± SEM (n=4), RM two-way ANOVA. Repeated measure: MuSCs 

subpopulation per conditions. Source of variation: variable 1, treatment: p=0.0021; variable 

2, MuSCs subpopulation: p=0.0004; interaction: p=0.0021. ANOVA was followed by 

Sidak’s post-test. P values between the groups (Vehicle vs. TCDD or between PAX3- and 

PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the top of the panel (NS, 

not significant).

Figure 4J: Means ± SEM (n=4), RM two-way ANOVA. Repeated measure: MuSCs 

subpopulation per conditions. Source of variation: variable 1, treatment: p=0.0247; variable 

2, MuSCs subpopulation: p=0.0018; interaction: p=0.0368. ANOVA was followed by 

Sidak’s post-test. P values between the groups (Vehicle vs. TCDD or between PAX3- and 

PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the top of the panel (NS, 

not significant).

Figure 4L: Means ± SEM (n=6 for 10 weeks and n=4 for 14 and 18 weeks), RM two-way 

ANOVA. Repeated measure: muscle per condition. Source of variation: variable 1, 

treatment: p<0.0001 (10 weeks), p=0.0009 (14 weeks), p=0.0005 (18 weeks); variable 2, 

muscle: p=0.0244 (10 weeks), p=0.0016 (14 weeks), p=0.1564 (18 weeks); interaction: 

p=0.0878 (10 weeks), p=0.0024 (14 weeks), p=0.0411 (18 weeks). ANOVA was followed by 

Sidak’s post-test. P values between the groups (Vehicle vs. TCDD or between muscles) in 

Sidak’s post-test are shown at the top of the panel (NS, not significant).

Figures 5B and S3D: Means ± SEM (n=4), ordinary two-way ANOVA, groups: AHR Ctrl 

vehicle vs AHR Ctrl TCDD vs AHR cKO vehicle vs AHR cKO TCDD. ANOVAs results are 

detailed below:

Cyp1a1: Source of variation: variable 1, treatment: p<0.0001; variable 2, genotype: 

p=0.0033; interaction: p=0.0047.

AHRR: Source of variation: variable 1, treatment: p<0.0001; variable 2, genotype: 

p<0.0001; interaction: p<0.0001.

Pax3: Source of variation: variable 1, treatment: p=0.0006; variable 2, genotype: p=0.0358; 

interaction: p=0.0304.

MyoD: Source of variation: variable 1, treatment: p=0.0138; variable 2, genotype: p=0.1065; 

interaction: p=0.0288.

Nqo1: Source of variation: variable 1, treatment: p=0.0002; variable 2, genotype: p=0.0757; 

interaction: p=0.5932.

Cyp1a2: Source of variation: variable 1, treatment: p<0.0001; variable 2, genotype: 

p=0.0003; interaction: p=0.0001.

Cyp1b1: Source of variation: variable 1, treatment: p=0.0319; variable 2, genotype: 

p=0.1474; interaction: p=0.0496.
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ANOVA was followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD 

or between Ctrl vs. cKO) in Sidak’s post-test are shown at the top of the panel (NS, not 

significant).

Figure 5D: Means ± SEM (n=4), ordinary two-way ANOVA, groups: AHR Ctrl vehicle vs 
AHR Ctrl TCDD vs AHR cKO vehicle vs AHR cKO TCDD. ANOVAs results are detailed 

below:

PAX7+/MYOD-/Ki67-: Source of variation: variable 1, treatment: p<0.0001; variable 2, 

genotype: p=0.0006; interaction: p=0.0020.

PAX7+/MYOD+/Ki67-: Source of variation: variable 1, treatment: p<0.0001; variable 2, 

genotype: p=0.0025; interaction: p=0.0051.

PAX7+/MYOD+/Ki67+: Source of variation: variable 1, treatment: p<0.0001; variable 2, 

genotype: p=0.0041; interaction: p=0.0272.

ANOVAs were followed by Sidak’s post-test. P values between the groups (Vehicle vs. 
TCDD or between Ctrl vs. cKO) in Sidak’s post-test are shown at the top of the panel (NS, 

not significant).

Figure S3G: Means ± SEM (n=4), ordinary two-way ANOVA, groups: AHR Ctrl vehicle vs 
AHR Ctrl TCDD vs AHR cKO vehicle vs AHR cKO TCDD. ANOVAs results are detailed 

below:

PAX7+/MYOD-/Ki67-: Source of variation: variable 1, treatment: p<0.0001; variable 2, 

genotype: p<0.0001; interaction: p<0.0001.

PAX7+/MYOD+/Ki67-: Source of variation: variable 1, treatment: p<0.0001; variable 2, 

genotype: p<0.0001; interaction: p=0.0002.

PAX7+/MYOD+/Ki67+: Source of variation: variable 1, treatment: p=0.0003; variable 2, 

genotype: p=0.0003; interaction: p=0.0003.

ANOVAs were followed by Sidak’s post-test. P values between the groups (Vehicle vs. 
TCDD or between Ctrl vs. cKO) in Sidak’s post-test are shown at the top of the panel (NS, 

not significant).

Figures 6B and S4B: Means ± SEM (n=3), repeated measure (RM) two-way ANOVA, 

groups: GFP- vehicle vs GFP- TCDD vs GFP+ vehicle vs GFP+ TCDD. ANOVAs were 

performed in each mice genotype (Pax3 Ctrl or Pax3 cKO). Repeated measure: PAX3- and 

PAX3+ MuSC subpopulations per conditions. ANOVAs results are detailed below:

Pax3 Ctrl, Pax3: Source of variation: variable 1, treatment: p=0.3888; variable 2, PAX3- and 

PAX3+ MuSC subpopulations: p=0.0021; interaction: p=0.2372.

Pax3 cKO, Pax3: Source of variation: variable 1, treatment: p=0.4859; variable 2, PAX3-and 

PAX3+ MuSC subpopulations: p=0.5565; interaction: p=0.6981.
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Pax3 Ctrl, Cyp1a1: Source of variation: variable 1, treatment: p=0.0032; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.0348; interaction: p=0.0451.

Pax3 cKO, Cyp1a1: Source of variation: variable 1, treatment: p=0.0052; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.7648; interaction: p=0.7217.

Pax3 Ctrl, MyoD: Source of variation: variable 1, treatment: p=0.1127; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.0372; interaction: p=0.0350.

Pax3 cKO, MyoD: Source of variation: variable 1, treatment: p=0.0048; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.0264; interaction: p=0.5127.

- Pax3 Ctrl, AHRR: Source of variation: variable 1, treatment: p=0.0079; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.0065; interaction: p=0.0065.

- Pax3 cKO, AHRR: Source of variation: variable 1, treatment: p=0.0084; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.5147; interaction: p=0.3245.

- Pax3 Ctrl, Nqo1: Source of variation: variable 1, treatment: p=0.0003; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.2348; interaction: p=0.0629.

- Pax3 cKO, Nqo1: Source of variation: variable 1, treatment: p=0.0134; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.7403; interaction: p=0.8276.

- Pax3 Ctrl, Cyp1a2: Source of variation: variable 1, treatment: p=0.0009; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.1051; interaction: p=0.1035.

- Pax3 cKO, Cyp1a2: Source of variation: variable 1, treatment: p=0.0006; variable 2, 

PAX3-and PAX3+ MuSC subpopulations: p=0.8030; interaction: p=0.8061.

- Pax3 Ctrl, Cyp1b1: Source of variation: variable 1, treatment: p=0.0001; variable 2, PAX3-

and PAX3+ MuSC subpopulations: p=0.1902; interaction: p=0.0071.

- Pax3 cKO, Cyp1b1: Source of variation: variable 1, treatment: p=0.0108; variable 2, 

PAX3-and PAX3+ MuSC subpopulations: p=0.6482; interaction: p=0.0901.

ANOVA was followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD 

or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the 

top of the panel (NS, not significant).

Figure 6D: Means ± SEM (n=3), repeated measure (RM) two-way ANOVA, groups: GFP-

vehicle vs GFP- TCDD vs GFP+ vehicle vs GFP+ TCDD. ANOVAs were performed in each 

mice genotype (Pax3 Ctrl or Pax3 cKO) for each myogenic status (PAX7+/MYOD- or 

PAX7+/MYOD+). Repeated measure: PAX3- and PAX3+ MuSC subpopulations per 

conditions. ANOVAs results are detailed below:

Pax3 Ctrl, PAX7+/MYOD-: Source of variation: variable 1, treatment: p=0.0020; variable 2, 

PAX3- and PAX3+ MuSC subpopulations: p=0.0102; interaction: p=0.0041.
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Pax3 Ctrl, PAX7+/MYOD+: Source of variation: variable 1, treatment: p=0.0020; variable 2, 

PAX3- and PAX3+ MuSC subpopulations: p=0.0102; interaction: p=0.0041.

Pax3 cKO, PAX7+/MYOD-: Source of variation: variable 1, treatment: p=0.0002; variable 2, 

PAX3- and PAX3+ MuSC subpopulations: p=0.1280; interaction: p=0.7235.

Pax3 cKO, PAX7+/MYOD+: Source of variation: variable 1, treatment: p=0.0002; variable 

2, PAX3- and PAX3+ MuSC subpopulations: p=0.1280; interaction: p=0.7235.

ANOVA was followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD 

or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the 

top of the panel (NS, not significant).

Figure 6G: Means ± SEM (n=5), repeated measure (RM) two-way ANOVA, groups: GFP-

vehicle vs GFP- TCDD vs GFP+ vehicle vs GFP+ TCDD. ANOVAs were performed for 

each localization of AHR (cytoplasmic, both or nuclear). Repeated measure: PAX3- and 

PAX3+ MuSC subpopulations per conditions. ANOVAs results are detailed below:

Cytoplasmic: Source of variation: variable 1, treatment: p<0.0001; variable 2, PAX3- and 

PAX3+ MuSC subpopulations: p<0.0001; interaction: p<0.0001.

Both cytoplasmic and nuclear: Source of variation: variable 1, treatment: p=0.0038; variable 

2, PAX3- and PAX3+ MuSC subpopulations: p=0.0077; interaction: p<0.0001.

Nuclear: Source of variation: variable 1, treatment: p<0.0001; variable 2, PAX3- and PAX3+ 

MuSC subpopulations: p=0.0014; interaction: p=0.0003.

ANOVA was followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD 

or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the 

top of the panel (NS, not significant).

Figure 7B: Means ± SEM (n=3 mice and 100 cells per mice), repeated measure (RM) two-

way ANOVA, groups: GFP- vehicle vs GFP- TCDD vs GFP+ vehicle vs GFP+ TCDD. 

Repeated measure: PAX3- and PAX3+ MuSC subpopulations per conditions. Source of 

variation: variable 1, treatment: p=0.0012; variable 2, MuSC subpopulations: p<0.0001; 

interaction: p=0.0092. ANOVA was followed by Sidak’s post-test. P values between the 

groups (Vehicle vs. TCDD or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s 

post-test are shown at the top of the panel (NS, not significant).

Figure 7C: Means ± SEM (n=3), repeated measure (RM) two-way ANOVA, groups: GFP-

vehicle vs GFP- TCDD vs GFP+ vehicle vs GFP+ TCDD. Repeated measure: PAX3- and 

PAX3+ MuSC subpopulations per conditions. Source of variation: variable 1, time: 

p<0.0001; variable 2, MuSC subpopulations: p<0.0001; interaction: p=0.0016. ANOVA was 

followed by Sidak’s post-test. For each time, P values between the groups (Vehicle vs. 

TCDD or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown 

at the top of the panel (NS, not significant).
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Figure 7D: Means ± SEM (n=6), repeated measure (RM) two-way ANOVA, groups: GFP-

vehicle vs GFP- TCDD vs GFP+ vehicle vs GFP+ TCDD. Repeated measure: PAX3- and 

PAX3+ MuSC subpopulations per conditions. Source of variation: variable 1, treatment: 

p<0.0001; variable 2, MuSC subpopulations: p=0.0140; interaction: p=0.0045. ANOVA was 

followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD or between 

PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the top of the 

panel (NS, not significant).

Figure 7F: Means ± SEM (n=6 for Pax3 Ctrl at 10 weeks, n=3 for Pax3 cKO at 10 weeks, 

n=4 for Pax3GFP/+ at 14 and 18 weeks), repeated measure (RM) two-way ANOVA, groups: 

GFP-vehicle vs GFP- TCDD vs GFP+ vehicle vs GFP+ TCDD. ANOVAs were performed in 

each mice genotype (Pax3 Ctrl, Pax3 cKO or Pax3GFP/+) for each time (10, 14 or 18 

weeks). Repeated measure: PAX3- and PAX3+ MuSC subpopulations per conditions. 

ANOVAs results are detailed below:

Pax3 Ctrl, 10 weeks: Source of variation: variable 1, treatment: p<0.0001; variable 2, PAX3- 

and PAX3+ MuSC subpopulations: p<0.0001; interaction: p<0.0001.

Pax3 cKO, 10 weeks: Source of variation: variable 1, treatment: p= 0.2548; variable 2, 

PAX3- and PAX3+ MuSC subpopulations: p=0.8639; interaction: p>0.9999.

Pax3GFP/+, 14 weeks: Source of variation: variable 1, treatment: p=0.0018; variable 2, 

PAX3- and PAX3+ MuSC subpopulations: p=0.0030; interaction: p=0.0027.

Pax3GFP/+, 18 weeks: Source of variation: variable 1, treatment: p=0.8748; variable 2, 

PAX3- and PAX3+ MuSC subpopulations: p=0.4126; interaction: p=0.2197.

ANOVA was followed by Sidak’s post-test. P values between the groups (Vehicle vs. TCDD 

or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s post-test are shown at the 

top of the panel (NS, not significant).

Figure 7I: Means ± SEM (n=3), repeated measure (RM) two-way ANOVA, groups: Pax3 

Ctrl DMSO vs Pax3 Ctrl Rapamycin vs Pax3 cKO DMSO vs Pax3 cKO Rapamycin. 

Repeated measure: treatment per genotype. ANOVAs were performed in each MuSC 

subpopulations and results are detailed below:

GFP-: Source of variation: variable 1, treatment: p=0.8758; variable 2, genotype: p=0.3261; 

interaction: p=0.8001.

GFP+: Source of variation: variable 1, treatment: p=0.0130; variable 2, genotype: p=0.0015; 

interaction: p=0.0390.

ANOVA was followed by Sidak’s post-test. P values between the groups (Ctrl vs. cKO or 

between DMSO and Rapamycin) in Sidak’s post-test are shown at the top of the panel (NS, 

not significant).

Figure 7K: Means ± SEM (n=3), repeated measure (RM) two-way ANOVA, groups: Pax3 

Ctrl DMSO vs Pax3 Ctrl Rapamycin vs Pax3 cKO DMSO vs Pax3 cKO Rapamycin. 
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Repeated measure: treatment per genotype. ANOVAs were performed in each MuSC 

subpopulations and results are detailed below:

GFP-: Source of variation: variable 1, treatment: p=0.8758; variable 2, genotype: p=0.3261; 

interaction: p=0.8001.

GFP+: Source of variation: variable 1, treatment: p=0.0341; variable 2, genotype: p=0.0002; 

interaction: p=0.0078.

ANOVA was followed by Sidak’s post-test. P values between the groups (Ctrl vs. cKO or 

between DMSO and Rapamycin) in Sidak’s post-test are shown at the top of the panel (NS, 

not significant).

ANOVA was followed by Sidak’s post-test. P values between the groups (Ctrl vs. cKO or 

between DMSO and Rapamycin) in Sidak’s post-test are shown at the top of the panel (NS, 

not significant).

Figure S2C: Means ± SEM (n=4), RM two-way ANOVA. Repeat measure: PAX3- and 

PAX3+ MuSCs per conditions. Source of variation: variable 1, treatment: p<0.0001 

(MYOD-/MYOG-, MYOD+/MYOG-), p=0.0031 (MYOD+/MYOG+), p=0.0001 (MYOD-/

MYOG+); variable 2, MuSCs subpopulation: p<0.0001 (MYOD-/MYOG-, MYOD+/

MYOG-), p=0.0010 (MYOD+/MYOG+), p=0.0001 (MYOD-/MYOG+); interaction: 

p<0.0001 (MYOD-/MYOG-, MYOD+/MYOG-), p=0.0031 (MYOD+/MYOG+), p=0.0001 

(MYOD-/MYOG+). ANOVA was followed by Sidak’s post-test. P values between the 

groups (Vehicle vs. TCDD or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s 

post-test are shown at the top of the panel (NS, not significant).

Figure S3G: Means ± SEM (n=4), one-way ANOVA Krustal-Wallis test, groups: AHR Ctrl 

+ vehicle vs AHR Ctrl + TCDD vs AHR cKO + vehicle vs AHR cKO + TCDD. ANOVAs 

were performed in each myogenic status (PAX7+/MYOD-, PAX7+/MYOD+ or PAX7-/

MYOD+) between the groups. For PAX7+/MYOD- and PAX7+/MYOD+: p<0.0001, 

PAX7-/MYOD+: p=0.0022. ANOVAs were followed by Dunn’s post-tests. P values between 

the groups in Dunn’s post-tests are shown at the top of the panel (NS, not significant).

Figure S5C: Means ± SEM (n=5000 cells per condition), ordinary two-way ANOVA, 

groups: PAX3- vehicle vs PAX3- TCDD vs PAX3+ vehicle vs PAX3+ TCDD. Source of 

variation: variable 1, treatment: p=0.0025; variable 2, MuSC subpopulations: p<0.0001; 

interaction: p<0.0001. ANOVA was followed by Sidak’s post-test. P values between the 

groups (Vehicle vs. TCDD or between PAX3- and PAX3+ MuSC subpopulations) in Sidak’s 

post-test are shown at the top of the panel (NS, not significant).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

PAX3 expression determines MuSC responses to AHR-dependent environmental stress

TCDD exposure elicits aberrant survival, activation and myofiber fusion in Pax3- MuSCs

PAX3-dependent Galert and detoxification pathways protect MuSCs from environmental 

stress
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Figure 1. Exposure to TCDD pollutant affects skeletal muscle homeostasis and MuSC number.
(A) Experimental design.

(B) Representative pictures of double immunofluorescence staining of LAMININ (purple) 

and embryonic Myosin Heavy Chain (eMHC, blue) on Tibialis Anterior (TA) or Biceps 
brachii (Biceps) muscle sections from mice treated with vehicle (nonane, top panel) or 

TCDD (4µg/kg, bottom panel). Scale bar, 40 µm.

(C) Quantification of eMHC positive myofibers performed on Tibialis Anterior (TA) or 

Biceps brachii (Biceps) muscle sections from mice treated with vehicle (nonane) or TCDD 

(4µg/kg). Means ± SEM (n=5), two-way ANOVA. P values calculated by Sidak’s post-test. 

NS, not significant.

(D) Representative pictures of immunofluorescence staining of PAX7+ cells performed on 

Extensor digitorum longus (EDL), Tibialis Anterior (TA), Biceps brachii (Biceps) and 

Vartanian et al. Page 28

Cell Stem Cell. Author manuscript; available in PMC 2020 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diaphragm muscle sections from mice receiving vehicle (nonane) or TCDD (4µg/kg). Scale 

bar, 20 µm. BF, brightfield.

(E) Quantification of PAX7+ cells per surface area (mm2) performed on Extensor digitorum 
longus (EDL), Tibialis Anterior (TA), Biceps brachii (Biceps) and diaphragm muscle 

sections from mice receiving TCDD (4µg/kg) normalized to vehicle (nonane) condition in 

percentage. Means ± SEM (n=5), two-way ANOVA. P values calculated by Sidak’s post-

test. NS, not significant.
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Figure 2. Differential loss of MuSCs exposed to TCDD is linked to muscle-specific expression of 
PAX3.
(A) Construction of Pax3nLacZ-IRESGFP/+ mice: a nls-LacZ IRES-GFP cassette was inserted 

into the translation start site in exon 1 of the Pax3 gene to follow PAX3 spatiotemporal 

expression (see Material & methods for details).

(B) Representative picture of X-gal staining performed on different adult whole skeletal 

muscles from Pax3nLacZ-IRESGFP/+ adult (2 months) mice showing that PAX3-derived 

MuSCs subpopulation is differentially distributed within adult skeletal muscles. Scale bar, 

1mm. TA: Tibialis Anterior, Gastro.: Gastrocnemius EDL: Extensor Digitorum Longus.

(C) Experimental design.

(D) Representative co-immunofluorescence staining of GFP (PAX3 reporter, green), PAX3 

(red), and nuclei (DAPI, blue) performed on single myofibers. Scale bar 40µm. BF, 

brightfield.
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(E) Representative co-immunofluorescence staining of GFP (PAX3 reporter, green), PAX3 

(red), PAX7 (pink) and nuclei (DAPI, blue) performed on isolated MuSCs. Scale bar, 40µm 

(overview) or 5 µm (inset).

(F) Experimental design.

(G) Quantification of PAX7+ cells per surface area (mm2) performed on Tibialis Anterior 
(TA) and Biceps brachii (Biceps) muscle sections from mice receiving TCDD (4µg/kg) or 

vehicle (nonane) and analyzed at the end of 4 weeks-treatment period (10 weeks) or 2 

months (18 weeks) post-treatment. Means ± SEM (n=4–6), two-way ANOVA. P values 

calculated by Sidak’s post-test. NS, not significant.
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Figure 3. Bimodal response of MuSCs to TCDD correlates with PAX3 expression
(A) Experimental design.

(B) Representative co-immunofluorescence staining of single myofibers from biceps isolated 

from mice receiving vehicle (nonane, top) or TCDD (4µg/kg, bottom), using antibodies 

against GFP (PAX3 reporter, green), PAX7 (pink), MYOD (red) and nuclei (DAPI, blue). 

White arrows indicate MuSCs and asterisks highlight PAX7-/MYOD+ MuSCs peculiar 

population. Scale bar, 40 µm.

(C) Quantification of (B) showing quiescent (PAX7+/MYOD-), activated (PAX7+/MYOD+) 

and differentiated (PAX7-/MYOD+) MuSCs within PAX3-negative (GFP-) and PAX3-

positive (GFP+) MuSCs on single myofibers from biceps isolated from mice receiving 

vehicle (nonane) or TCDD (4µg/kg). Means ± SEM (n=4), two-way ANOVA. P values 

calculated by Sidak’s post-test. NS, not significant.

(D) Experimental design.
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(E) Representative co-immunofluorescence staining of single myofibers from biceps isolated 

from mice receiving vehicle (nonane, top) or TCDD (4µg/kg, bottom), using antibodies 

against GFP (PAX3 reporter, green), MYOG (red) and nuclei (DAPI, blue) at the end of the 

treatment (10 weeks), 1 month (14 weeks) or 2 months (18 weeks) post-treatment. White 

arrows indicate MYOG+ MuSC population. Scale bar, 10 µm.

(F) Quantification of (E) showing MYOG+ cells within PAX3-negative (GFP-) and PAX3-

positive (GFP+) cells on single myofibers from biceps isolated from mice receiving vehicle 

(nonane) or TCDD (4µg/kg) at the end of the 4 week- treatment period (10 weeks), 1 month 

(14 weeks) or 2 months (18 weeks) post-treatment. Means ± SEM (n=4), two-way ANOVA. 

P values calculated by Sidak’s post-test. NS, not significant.

(G) Experimental design.

(H) Quantification of living cells (Annexin V-; Sytox-), early apoptotic (Annexin V+; 

Sytox-), apoptotic (Annexin V+; Sytox+) and necrotic cells (Annexin V-; Sytox+) in PAX3- 

MuSCs (isolated from Tg:Pax7nGFP hindlimb muscles, left) or PAX3+ (isolated from 

Pax3GFP/+ trunk and forelimb muscles, right). Means ± SEM (n=4), Mann Whitney test. NS, 

not significant.
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Figure 4. TCDD induces fusion of PAX3- MuSCs to myofibers without local injury.
(A) Schematic representation of Tg:MyoD-nlacZ reporter mice.

(B) Experimental design.

(C) Representative co-immunofluorescence staining of PAX7 (green), ß-galactosidase 

(MYOD reporter, red) and nuclei (DAPI, blue) from TA or biceps upon vehicle (nonane) or 

TCDD (4µg/kg) treatment. Quiescent PAX7+/β-galactosidase- cells are shown with green 

arrows. PAX7+/β-galactosidase+ (activated or derived from activated) cells are shown with 

yellow arrows. Positive myofibers are labelled with an asterisk. Scale bar, 100µm.

(D-F) Quantifications of PAX7+/β-galactosidase- cells (D), PAX7+/β-galactosidase+ cells 

(E) or ß-galactosidase + myofibers derived from activated MYOD+ MuSCs (F) from TA or 

biceps upon vehicle (nonane) or TCDD (4µg/kg) treatment as shown in (C). Means ± SEM 

(n=4), two-way ANOVA. P values calculated by Sidak’s post-test. NS, not significant.

(G) Experimental design.
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(H) Representative co-immunofluorescence staining of GFP (PAX3 reporter, green) and 

tomato (PAX7 reporter, red) on TA or biceps muscle cryosections after vehicle (nonane) or 

TCDD (4µg/kg) treatment. Positive myofibers for at least one channel are labelled with an 

asterisk. Scale bars, 600 µm (TA overview), 200 µm (Biceps overview), 30 µm (insets).

(I-J) Quantification of myofibers derived from PAX7+/PAX3- (GFP-) MuSCs (tomato 

labelled myofibers, red) and from PAX7+/PAX3+ (PAX3+) MuSCs (tomato and GFP 

labelled myofibers, red and green) from TA (I) or biceps (J) muscle cryosections after 

vehicle (nonane) or TCDD (4µg/kg) treatment as indicated and shown in (H). Means ± SEM 

(n=4), two-way ANOVA. P values calculated by Sidak’s post-test. NS, not significant.

(K) Experimental design.

(L) Quantification of the percentage of centronucleated fibers in biceps brachii (biceps) and 

tibialis anterior (TA) cryosections performed at the end of the 4 week-treatment period (10 

weeks), 1 month (14 weeks) or 2 months (18 weeks) post-treatment. Means ± SEM (n=4–6) 

two-way ANOVA. P values calculated by Sidak’s post-test. NS, not significant.
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Figure 5. AHR signaling is required for MuSC activation in response to TCDD.
(A) Experimental design.

(B) Box plot showing the relative expression of AHR target genes (Cyp1a1 and AHRR) and 

myogenic genes (Pax3 and MyoD) normalized to Tbp and Hprt1 in MuSCs isolated from 

AHR Ctrl (left panel) and AHR cKO (right panel) mice treated with vehicle (nonane) or 

TCDD (4µg/kg). Means ± SEM (n=4), two-way ANOVA. P values calculated by Sidak’s 

post-test. NS, not significant.

(C) Representative co-immunofluorescence staining of Tibialis anterior (TA) isolated from 

AHR Ctrl and AHR cKO mice receiving vehicle (nonane, left) or TCDD (4µg/kg, right), 

using antibodies against, PAX7 (green), MYOD (red), KI67 (pink) and nuclei staining 

(DAPI, blue). Arrows show PAX7+ MuSCs. Scale bar, 40 µm. BF, brightfield.

(D) Quantification of quiescent (PAX7+/MYOD-/KI67-), activated (PAX7+/MYOD+/KI67-) 

and cycling (PAX7-/MYOD+/KI67+) MuSCs performed on TA muscle sections from the 
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experiments shown in (C) in AHR Ctrl and AHR cKO mice treated with vehicle or TCDD 

(4µg/kg). Means ± SEM (n=4), two-way ANOVA. P values calculated by Sidak’s post-test. 

NS, not significant.
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Figure 6. Impairing PAX3 expression leads to MuSC sensitization to TCDD.
(A) Experimental design.

(B) MuSCs were isolated from Pax3 Ctrl or Pax3 cKO trunk and forelimb muscles by 

antibody-based flow cytometry combined with GFP reporter to distinguish PAX3+ (GFP+) 

from PAX3-(GFP-) MuSCs, from mice treated by vehicle (nonane) or TCDD (4µg/kg). Total 

RNA was extracted and gene expression study was performed by quantitative Polymerase 

Chain Reaction (qPCR). Relative expression to Tbp and Hprt1 of target genes is shown in 

MuSCs from GFP- (PAX3-) or GFP+ (PAX3+) MuSCs. Means ± SEM (n=3), two-way 

ANOVA. P values calculated by Sidak’s post-test. NS, not significant.

(C) Representative co-immunostaining of GFP (PAX3 reporter, green), PAX7 (pink) and 

MYOD (red) from biceps of Pax3 Ctrl and Pax3 cKO mice treated with vehicle or TCDD 

(4µg/kg). Scale bar, 20 µm.
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(D) Quantification of quiescent (PAX7+/MYOD-) and activated (PAX7+/MYOD+) MuSCs 

from GFP- (PAX3-) or GFP+ (PAX3+) MuSCs in Pax3 Ctrl or Pax3 cKO mice, following 

treatment with vehicle (TCDD-) or TCDD (4µg/kg, TCDD+). Means ± SEM (n=3), two-way 

ANOVA. P values calculated by Sidak’s post-test. NS, not significant.

(E) Experimental design.

(F) Representative co-immunofluorescence staining of AHR (red), GFP (PAX3 reporter, 

green), PAX7 (pink), and nuclei (DAPI, blue) from isolated biceps fibers of Pax3GFP/+ mice 

receiving vehicle (nonane) or TCDD (4µg/kg) as indicated. Scale bar, 10µm.

(G) Quantification of AHR localization observed in (F) within the PAX3-negative (GFP-) 

and PAX3-positive (GFP+) MuSCs. Means ± SEM (n=5), two-way ANOVA. P values 

calculated by Sidak’s post-test. NS, not significant.
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Figure 7. PAX3 expression controls the adaptive transition of quiescent MuSCs from G(0) to 
G(alert) through the mTORC1 pathway under environmental stress.
(A) Experimental design.

(B) EdU incorporation was quantified 12, 24 and 48h post-plating in GFP- and GFP+ 

MuSCs from mice treated with vehicle (nonane) or TCDD (4µg/kg). Means ± SEM (n=3), 

two-way ANOVA. P values calculated by Sidak’s post-test. NS, not significant.

(C) Box and wiskers plots showing the diameter (µm) repartition of PAX3- (GFP-) or 

PAX3+ (GFP+) MuSCs from mice treated with vehicle (nonane) or TCDD (4µg/kg). Means 

(pink) ± SEM (n=4), two-way ANOVA. P values calculated by Sidak’s post-test. NS, not 

significant.

(D) Quantification of mtDNA/genomic (g) DNA ratio by qRT–PCR in PAX3-negative 

(GFP-) and PAX3-positive (GFP+) MuSCs from mice treated with vehicle (nonane) or 

TCDD (4µg/kg). Means ± SEM (n=6), two-way ANOVA. P values calculated by Sidak’s 

post-test. NS, not significant.
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(E) Experimental design.

(F) Quantification of p-S6 immunofluorescence staining at the end of treatment (10 weeks) 

in Pax3 Ctrl or Pax3cKO mice and 1 month (14 weeks) or 2 months (18 weeks) post-

treatment in Pax3GFP/+ mice. Means ± SEM (n=3–6), two-way ANOVA. P values calculated 

by Sidak’s post-test. NS, not significant.

(G) Experimental design.

(H) Representative co-immunofluorescence staining of single myofibers from biceps 

isolated from TCDD-treated mice and incubated 15h with rapamycin or its vehicle (DMSO), 

using antibodies against GFP (PAX3 reporter, green), PAX7 (pink), p-S6 (red) and nuclear 

staining (DAPI, blue). Scale bar, 20 µm.

(I) Quantification of (H) showing p-S6+ cells on myofibers isolated from biceps of Pax3 

Ctrl and Pax3 cKO mice receiving TCDD (4µg/kg) and incubated 15h with rapamycin or its 

vehicle. GFP- and GFP+ cells were quantified independently as indicated in either Pax3 ctrl 

or Pax3 cKO mice. Means ± SEM (n=3), two-way ANOVA. P values calculated by Sidak’s 

post-test. NS, not significant.

(J) Representative co-immunofluorescence staining of single myofibers from biceps isolated 

from mice receiving TCDD (4µg/kg) and incubated 15h with rapamycin or its vehicle, using 

antibodies against GFP (PAX3 reporter, green), PAX7 (pink), MYOD (red) and nuclear 

staining (DAPI, blue). Scale bar, 20 µm.

(K) Quantification of (J) showing MYOD+ cells on myofibers isolated from biceps of Pax3 

Ctrl and Pax3 cKO mice receiving TCDD (4µg/kg) treatment and incubated 15h with 

rapamycin or its vehicle. GFP- and GFP+ cells were quantified independently as indicated in 

either Pax3 ctrl or Pax3 cKO mice. Means ± SEM (n=3), two-way ANOVA. P values 

calculated by Sidak’s post-test. NS, not significant.
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KEY RESOURCES

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

IgG rabbit polyclonal anti-AHR (H-211) (IF 1:200) Santa Cruz Cat# sc-5579 RRID:AB_633731

IgY chicken polyclonal anti-GFP (IF 1:500) Abcam Cat# ab13970 RRID:AB_300798

IgG rabbit polyclonal anti-Ki67 (SP6) (IF 1:200) Abcam Cat# ab16667 RRID:AB_302459

IgG rabbit polyclonal anti-Laminin (IF 1:1000) Sigma-Aldrich Cat# L9393 RRID:AB_477163

IgG2a rat monoclonal anti-MyoD (5F11) (IF 1:200) Active Motif Cat# 39991

IgG rabbit polyclonal anti-MyoD (M-318) (IF 1:200) Santa Cruz Cat# sc-760 RRID:AB_2148870

IgG1 mouse monoclonal anti-MyoG (F5D) (IF 1:200) Invitrogen Cat# MA5–11486 RRID:AB_10977211

IgG2a mouse monoclonal anti-Pax3 (Pax3-c) (IF 1:100) DSHB RRID:AB_528426

IgG1 mouse monoclonal anti-Pax7 (Pax7-c) (IF 1:100) Santa Cruz Cat# sc-81648 RRID:AB_2159836

IgG rabbit polyclonal anti-Pax7 (IF 1:100) Aviva Systems Biology Cat# ARP32742_P050 RRID : 
AB_387565

IgG1 mouse monoclonal anti-eMHC (IF 1:200) Santa Cruz Cat# sc-53091 RRID:AB_670121

IgG rabbit polyclonal anti-b-gal (IF 1:500) Life Technologies Cat# A-11132 RRID:AB_221539

IgG rabbit polyclonal anti-p-S6 (IF 1:200) Cell Signaling Cat# 2211 AB_331679

IgG goat polyclonal anti-Fab fragment (IF 1:1000) Jackson ImmunoResearch Cat# 115–007-003 RRID:AB_2338476

IgG2b rat polyclonal anti-Ter-119 PE-Cy7 (FACS 1:200) BD Biosciences Cat# 557853 RRID:AB_396898

IgG2b rat polyclonal anti-CD45 PE-Cy7 (FACS 1:200) BD Biosciences Cat# 552848 RRID:AB_394489

IgG2b rat polyclonal anti-Ly6A/E (Sca-1) PE (FACS 1:200) BD Biosciences Cat# 553108 RRID:AB_394629

IgG2a rat polyclonal anti-CD34 BV421 (FACS 1:100) BD Biosciences Cat# 552848 RRID:AB_394489

IgG2b rat polyclonal anti-a7 Integrin Alexa700 (FACS 1:70) R&D Systems Cat# FAB3518N RRID:AB_10973483

IgG rabbit polyclonal anti-AHR (H-211) (IF, WB 1:200) Santa Cruz Cat# sc-5579 RRID:AB_633731

IgG rabbit polyclonal anti-TBP (WB 1:1000) Cell Signaling Cat# 8515 RRID:AB_10949159

Chemicals, Peptides, and Recombinant Proteins

Tamoxifen : 250 mk/kg diet Genestil Cat#1324P

2,3,7,8-Tetrachlorodibenzo-p-dioxin 50 µg/mL in Nonane LGC standards Cat#CIL-ED-901

n-Nonane Picograde® for residue analysis LGC standards Cat#SO-1271-B010

Corn oil Sigma Cat#C8267

Dispase® II (neutral protease, grade II) Roche Cat#04942078001

Collagenase A Roche Cat#11088793001

Pacific Blue™ Annexin V/SYTOX™ AADvanced™ Apoptosis 
Kit, for flow cytometry

Invitrogen™ Cat#A35136

Vybrant® DyeCycle™ Ruby cell permeable stain Invitrogen™ Cat#V10273

Target Retrieval Solution, Citrate pH 6.1 (10x) Dako Cat#S2369

X-Gal Sigma-Aldrich Cat#7240–90-6

Chicken embryo extract MP-Biomedical Cat#CE-650-J

Rapamycin Sigma-Aldrich Cat#R8781

Fluoromount-G™ medium Interchim Cat#FP-483331
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REAGENT or RESOURCE SOURCE IDENTIFIER

Collagenase type I Sigma-Aldrich Cat#C0130

ECL™ Blotting Reagents Amersham Biosciences Cat#GERPN2109

RNAqueous™-Micro Total RNA Isolation Kit™ Invitrogen™ Cat#AM1931

SuperScript™ VILOTM cDNA Synthesis Kit Invitrogen™ Cat#11755–050

SuperScript™ IV VILO™ Master Mix with ezDNase™ Enzyme Invitrogen™ Cat#11766050

SYBR™ Green Master Mix Applied Biosystems™ Cat#4309155

TaqMan™ Gene Expression Master Mix Applied Biosystems™ Cat#4369016

Click-iT™ Plus EdU Alexa Fluor™ 647 Imaging Kit Invitrogen™ Cat#C10640

QIAmp DNA micro kit Qiagen Cat#56304

Cytochrome B region on mtDNA (TaqMan, Mouse) Applied Biosystems™ Mm04225271_g1 CYTB

β-globin region on gDNA (Taqman, Mouse) Applied Biosystems™ Mm 01611268_g1 Hbb-b1

Critical Commercial Assays

Phusion® High-Fidelity DNA Polymerase Thermo Fisher Scientific™ Cat#F530L

pGEM®-T Easy Vector Systems Promega Cat#A3610

NucleoBond® BAC 100 Macherey-Nagel Cat#740579

Experimental Models: Organisms/Strains

C57BL/6N mice Janvier Labs® N/A

Pax3GFP⁄+ mice Relaix et al., 2005 N/A

Pax3flox/+ mice Koushik et al., 2002 N/A

Rosa26flox(stop)flox-Tomato mice (R26stop-Tomato) Madisen et al., 2010 N/A

Pax7creERT2/+ mice Murphy et al., 2011 N/A

Tg:Pax7-nGFP mice Sambasivan et al., 2009 N/A

AHRflox/flox mice Walisser et al., 2005 N/A

Tg:MyoD-nLacZ mice In this article N/A

Pax3nLacZ-IRESGFP/+ mice In this article N/A

Oligonucleotides

MyoD locus 5’ homologous arm pair forward 5’-
ATGATTCCCACTACGCATGCAAGGACAGCGC-3’,

In this article N/A

MyoD locus 5’ homologous arm pair reverse 5’-
ACTCGAGTTCCTGGGTCCAGCCTCAACCCAAGCCG-3’

In this article N/A

MyoD locus 3’ homologous arm pair forward 5’-
ACTCGAGCACTACAGTGGCGACTCAGATGC-3’,

In this article N/A

MyoD locus 3’ homologous arm pair reverse 5’-
ATAACAGAGTTAGGTCTACAGGGCC-3’

In this article N/A

Primers for Real-time qPCR, see Table S1 In this article N/A

Recombinant DNA

BAC clone CHORI BACPAC resources RP23–46A24

Software and Algorithms

GraphPad Prism version 7.00 for MAC La Jolla California USA, 
www.graphpad.com

N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Fiji software Schindelin, J.; Arganda-
Carreras, I. & Frise, E. et al. 
(2012)

N/A

Amnis® ImageStream® cell analysis Amnis® N/A

Zen Blue 2.0 software Zeiss N/A

ImageJ (version 1.47 v) National Institutes of Health, 
USA, https://imagej-nih-
gov.gate2.inist.fr/ij/

N/A

DS-11 FX spectrometer DeNovix N/A

Veriti® 96- Well Fast Thermal Cycler Applied Biosystems™ N/A

StepOnePlus real-time PCR system Applied Biosystems™ N/A

Attune® NxT Acoustic Focusing Flow Cytometer Thermo Fisher Scientific™ N/A

LSM800 confocal Zeiss N/A

CCD camera Olympus model mounted on an binocular loupe Leica N/A

AxioImager D1, fluorescence microscope Zeiss N/A
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