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Abstract

BMP signaling is critical in embryogenesis and in the development of numerous tissues. Many 

genetically modified (knockout and transgenic) mice have been established to study BMP function 

in development and disease. Mice with altered BMP receptor genes (including global knockout, 

conditional knockout, and conditional constitutively active transgenic mouse lines) have been 

particularly informative. In this chapter, we describe how the genetically modified mice were 

generated and introduce genotyping methods. These methods include regular PCR and genomic 

real-time PCR using specific primers based on different constructs in different mice strains.
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1 Introduction

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β 
(TGF-β) superfamily. Similar to TGF-β, BMPs signal through type I and type II 

transmembrane serine/threonine kinase receptors. In response to the binding of BMP 

ligands, type I and type II BMP receptors form a membrane-bound heterotetrameric 

complex. Then, the constitutively active type II receptor transphosphorylates the type I 

receptor at a glycine-serine rich motif (GS domain). Consequently, the Smad signal 

transducers are phosphorylated, and the downstream signal is propagated [1–3]. There are 

three type I BMP receptors (BMPR-1A or ALK3, BMPR-1B or ALK6, ACVR-1 or ALK2) 

and three type II BMP receptors (BMPR-2, ACVR-2A, ACVR-2B). Both type I and type II 

receptors are required to form a heterotetrameric complex for BMP signal transduction [1–

3]. However, the mechanism of the heterotetrameric signaling complex formation can vary. 

For example, BMP-2 and BMP4 interact with type I receptors and recruit type II receptors, 

whereas BMP6 and BMP7 preferentially bind to type II receptors and recruit type I 

receptors [4]. More importantly, the binding of a BMP ligand to preformed receptor 
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complexes activate signaling pathways that differ from those activated by a receptor 

complex whose assembly was stimulated by BMP binding [5].

Genetic studies into the function of these complex receptors are essential for clarifying the 

role of BMP signaling in development and disease. As of now, several genetically modified 

BMP receptor mice have been established, including global knockout (KO), conditional 

knockout (cKO), and conditional constitutively active (ca) mice [6–17]. BMP receptor gene 

modifications were observed to result in embryonic lethality [18, 19] or abnormalities in 

many tissues, including the skeleton [20–22], craniofacial [23, 29], heart [24], vascular [25], 

lung [26], eye [27], and tooth [28], thus establishing that BMP signaling is critical for 

normal embryogenesis.

In this chapter, we first describe how the genetically modified mice were generated and then 

introduce genotyping methods. These methods include regular PCR and genomic real-time 

PCR using specific primers based on different constructs in different mice strains.

2 Materials

Unless otherwise noted, all solutions are prepared in water purified by double distillation or 

other methods.

2.1 Regular PCR

1. Lysis buffer: 100 mM NaCl, 1 mM Tris pH 7–8, 0.1 mM EDTA, 0.1% Triton 

X-100 in distilled water. Store at room temperature. Add 1/50 volume of 40 

mg/mL proteinase K (0.8 mg/mL final concentration) immediately before use.

2. 40 mg/mL proteinase K.

3. PCR oil.

4. Primers for genotyping of each receptor mutations are listed in Table 1. The 

positions of the primers are marked in the maps of targeted alleles shown in Figs. 

1 and 2.

5. 0.5 unit/μL Taq DNA polymerase.

6. 1× Taq buffer: 10 mM Tris-HCl, 50 mM KCl, and 1.5 mM MgCl2, pH 8.3.

7. 5 mM dNTP mix: 5 mM each of dATP, dCTP, dGTP, and dTTP.

8. 25 mM MgCl2.

9. Thermo cycler.

10. 10× Tris/Borate/EDTA (TBE) buffer: 1 M Tris, 0.9 M boric acid, and 0.01 M 

EDTA. Dilute 100 mL 10× TBE buffer in 900 mL water to make 1000 mL 1× 

TBE for agarose gel electrophoresis.

11. 3% agarose gel prepared in 1× TBE.

12. 10 mg/mL ethidium bromide stock.
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2.2. Genomic Real-Time PCR

1. TaqMan® Universal PCR Master Mix (Thermo Fisher, Cat: 4334437).

2. TaqMan primer sets of each receptor mutations are listed in Table 2.

3. Optical 96-well reaction plates compatible with your PCR machine.

4. Optical adhesive film.

5. Real-time PCR system.

3 Methods

3.1 Regular PCR

1. Collect small piece (less than 1 mm3) of tissues from the ear (ear notch), tail, or 

any organs. For embryos, the yolk sac or amniotic membrane may be used (do 

not use the placenta for genotyping). Place tissues into 96-format PCR tubes (do 

not cap).

2. Add 50 μL lysis buffer in each tube, overlaid with PCR oil.

3. Incubate at 55 °C for 6 h or more, then incubate at 85 °C for 30 min to inactivate 

proteinase K.

4. Take 4 μL DNA solution to mix with 76 μL of water to dilute samples, then use 4 

μL of the diluted samples to set up 10 μL PCR reaction. Reaction mixture will be 

made as follows:

10× Taq buffer 1.0 μL

5 mM dNTP mix 1.0 μL

0.5 unit/μL Taq DNA polymerase 1.5 μL

25 mM MgCl2 1.5 μL

50 μM 5′ primer (Table 1) 0.1 μL

50 μM 3′ primer (Table 1) 0.1 μL

Water 0.8 μL

Template DNA (20× diluted) 4.0 μL

The conditions for thermal cycling are as follows (see Note 1):

Initial denaturation for 94 °C for 5 min followed by 30 to 40 cycles of 

denaturation at 94 °C for 30 s, annealing at 50–70 °C for 30 s, and extension at 

72 °C for 1 min (30–40 cycles), then ending with 72 °C for 5–10 min followed 

by a cool down.

1.Samples for which genotypes are known should be used as controls. For these primers and most others, these conditions work 
adequately. If not, try the following: (1) change the dilution of template DNA. The reaction will not work when the DNA 
concentration is too high; (2) optimize the annealing temperature; (3) change Taq DNA polymerase to Taq hot start DNA polymerase; 
or (4) purify DNA further.
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The number of cycles and annealing temperatures for different primer sets is 

shown in Table 1.

5. Run 3% agarose gel at 250–300 V, stain the gel with ethidium bromide, and 

photograph.

3.2 Genomic Real-Time PCR for In Vivo Deletion Efficiency

The in vivo deletion efficiency of conditional knockout by Cre-recombinase and other 

recombinases can vary. This protocol describes the quantification of Alk2 or Alk3 deletion 

in conditional knockout mice by genomic real-time PCR using custom-designed primer set 

[30, 31]. 5′ primers and 3′ primers are designed to amply the flox regions (exon 7 for Alk2, 

exon 4 for Alk3). FAM-labeled probes are designed within the PCR amplicons for detection 

(see Table 2).

1. Extract genomic DNA as in of Subheading 3.1, steps 1–3.

2. Mix the Gene Expression Master Mix thoroughly by swirling the bottle. Thaw 

Alk2 or Alk3 frozen primer set (Table 2) and templates DNA on ice. When 

thawed, vortex and then centrifuge the tubes briefly (see Note 2).

3. Prepare the PCR reaction mix (20 μL reactions):

TaqMan PCR Master Mix (2×) 10 μL

Primer set (20×) 1 μL

Template DNA (20x diluted) 5 μL

Water 4 μL

Perform three replicates of each reaction. Then vortex the tubes briefly to mix 

the solutions, centrifuge the tubes briefly to spin down the contents, and 

eliminate any air bubbles from the solutions.

4. Transfer 20 μL of each reaction mixture to each well of an optical plate.

5. Cover the plate with an optical adhesive film. Centrifuge the plate briefly to spin 

down the contents and eliminate air bubbles from the solutions.

6. Run the plate on a real-time PCR instrument using the following thermal cycling 

conditions: initial incubation at 50 °C for 2 min then denaturation at 95 °C for 10 

min followed by 40 cycles of denaturation at 95 °C for 15 s and annealing at 

60 °C for 1 min, then ending with a cool down.

7. Determine the threshold cycles (CT) for the amplification curves. Use the 

comparative CT method to analyze target gene levels normalized to Gapdh level 

as described by the manufacturer of the instrument.

2.Protect all reagents from light in the freezer until you are ready to use them. Excessive exposure to light may affect the fluorescent 
probes.
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3.3 Genomic Real-Time PCR to Determine Homozygosity vs. Heterozygosity of 
Conditional Constitutively Active Transgenes

To generate conditional constitutively active transgenic mice, the EGFP cassette was 

inserted into the constructs (Fig. 2d) [10]. Therefore, the copy number of target genes can be 

quantified based on the copy number of Egfp via real-time PCR. This is a common strategy 

for the caALK2, caALK3, and caAlk6 mouse lines. The Egfp primer set is shown in Table 2.

1. Same as Subheading 3.2, steps 1 and 2.

2. Prepare the PCR reaction mix (20 μL reactions):

TaqMan PCR Master Mix (2×) 10 μL

Egfp primer set (20×) 1 μL

Template DNA (20× diluted) 5 μL

Water 4 μL

Perform three replicates of each reaction. Then vortex the tubes briefly to mix 

the solutions, centrifuge the tubes briefly to spin down the contents, and 

eliminate any air bubbles from the solutions. Wild-type, caAlk het, and caAlk 
homo samples, which genotypes are known, should be used as controls.

3. Same as Subheading 3.2, steps 4–7 (see Note 3).
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Fig. 1. 
Structure representation of each BMP receptor KO mutation and PCR genotyping strategy. 

Schematic diagrams showing the wild-type locus of the Alk2 (a), Alk3 (b), Alk6 (c), Bmpr2 
(d), Acvr2a (e), and Acvr2b (f) gene, and the targeting vector for each gene. The positions 

(red arrows) of PCR primers for genotyping are indicated below the locus
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Fig. 2. 
Structure representation of each BMP receptor cKO mutation and ca transgene and PCR 

genotyping strategy. (a–c) Schematic diagrams of the wild-type Alk2 (a), Alk3 (b), and 

Bmpr2 (c) locus, targeting vector, and mutant alleles after recombination. The positions of 

primers for genotyping by PCR are indicated by red arrows. (d) Schematic representation of 

the ca transgene of Alk2, Alk3, or Alk6. The primers used for genotyping are shown by red 

arrows below the locus
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4.PCR amplification generates a 250 bp from both flox and wild-type alleles. Bgl1 digestion, which uniquely digests the flox gene 
product into 160 bp and 90 bp fragments, can be used to distinguish flox and wild-type PCR products.
6.The primers BMP2-A and BMP2-B are for an internal control at the Bmp2 locus. Please refer reference [33] for the specific 
positions of those primers.
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Table 2

TaqMan primers used for genomic real-time PCR of different BMP receptors genetically modified mice

Ref Modified gene Primers

Conditional knockout mutation

[31] Alk2 (exon 7)

(see Note 5)

AIKAL5S_F 5′-CTCACTACTCTGGATACGGTTAGCT _3′,
AIKAL5S_R 5′-GGGTCCCAAATATCTCTATGTGCAA-3′,
AIKAL5S_M FAM 5′-CTATGGACAGTACAATCCG-3′

[30, 31] Alk3 (exon 4)

(see Note 5)

AI89LJ8_F 5′-GACCAGAAGAAGCCAGAAAATGGA-3′,
AI89LJ8_R 5′-TGTCCTGAGCAATAGCACTTTAAGAA-3′,
AI89LJ8_M FAM 5′-CCTCTGGTGCTA AAGTC-3′

Conditional constitutively active transgenic line

Egfp

(see Note 5)

5′-GAGCGCACCATCTTCTTCAAG-3′,
5′-TGTCGCCCTCGAACTTCAC-3′,
FAM 5′-ACGACGGCAACTACA-3′

5.All three primers are pre-mixed into one tube by the manufacturer.
5.All three primers are pre-mixed into one tube by the manufacturer.
5.All three primers are pre-mixed into one tube by the manufacturer.
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