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Summary
The p value has been widely used as a way to summarise 
the significance in data analysis. However, misuse and 
misinterpretation of the p value is common in practice. 
Our result shows that if the model specification is wrong, 
the distribution of the p value may be inappropriate, which 
makes the decision based on the p value invalid.

InTroduCTIon
In 2016, a statement was jointly released by 
Ronald Wasserstein and Nicole Lazar1 on 
behalf of the American Statistical Association 
warning against the misuse and misinterpre-
tation of statistical significance and p values 
in scientific research. The Statement offers 
six principles in using p values. In fact, the 
controversies around p values have appeared 
from time to time in statistical communities 
and in other areas. For example, in 2015, the 
editors of Basic and Applied Social Psychology 
decided to ban p values in the papers 
published in that journal. A recent paper in 
Nature raised the issue again about the use of 
p values in scientific discoveries.2 Although 
the p value has a history almost as long as that 
of the modern statistics and has been used in 
millions of scientific publications, ironically 
it has never been rigorously defined in statis-
tical literature. This means that all reported 
p values in publications are based on some 
very intuitive interpretations. This is one of 
the possible reasons that p value has caused 
a tremendous number of misuse and miscon-
ception. A formal discussion of the rigorous 
definition of a p value is out of the scope of 
this paper. Our discussion follows the current 
tradition of interpretation of p values.

Suppose X1, X2, …, Xn is a random sample 
from some probability and T=T(X1, X2, …, Xn) 
is a statistic used to test some null hypothesis. 
Suppose the observed data are x1, x2, …, xn. 
Then the calculated value of the test statistic 
is T(x1, x2, …, xn). Informally speaking, the p 
value is the probability that T(X1, X2, …, Xn), as 
a random variable, has values more ‘extreme’ 
than the currently observed value T(x1, x2, 
…, xn) under the null hypothesis. Suppose a 
larger value means more ‘extreme’. Then the 

p value (given the data) is the probability that 
T(X1, X2, …, Xn)≥T(x1, x2, …, xn), that is,

p(x1, x2, …, xn)=P{T(X1, X2, …, Xn)≥T(x1, x2, 
…, xn)}.(1)(1)

To calculate the p value, we need to know 
the distribution of T under the null hypoth-
esis. For example, the two-sample t-test has 
been used a lot to test the hypothesis that 
whether the two independent samples have 
the same mean value. If those two samples are 
normally distributed with the same variance, 
the test statistic has a central t-distribution 
under the null hypothesis. If the variances 
are not the same, the distribution of the test 
statistic does not have a close. This is the so 
called Fisher’s two-sample t-test problem.3 
However, if the sample sizes in two groups are 
large enough, the asymptotic distribution of 
the test statistic can be safely approximated by 
normal distribution (due to the central limit 
theorem).

In case of discrete outcome variables, for 
example, the treatment outcome (success 
or failure) in a randomised clinical trial, the 
result is often presented in a contingency 
table (see table 1).

where Si in group ( i = 1, 2 ) follows the 
binomial distribution with the sample size  ni  
and probability of success  pi . The hypothesis 
that is usually of interest is

 H0 : p1 = p2 v.s. H1 : p1 ̸= p2  

Pearson’s χ2 test is one way of measuring 
departure from  H0  conducted by calculating 
an expected frequency table (see table 2). 
This table is constructed by conditioning on 
the marginal totals and filling in the table 
according to  H0 : p1 = p2 , that is,

Using this expected frequency table, a 
statistic  TP  is calculated by going through the 
cells of the tables and computing

 TP =
∑ (

observed−expected
)2

expected   

 
=

(
S1−

n1S
n1+n2

)2

n1S
n1+n2

+ . . . +

(
F2−

n2F
n1+n2

)2

n2F
n1+n2

.
  

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-2998-693X
http://crossmark.crossref.org/dialog/?doi=10.1136/gpsych-2019-100081&domain=pdf&date_stamp=2019-07-09


2 Wang B, et al. General Psychiatry 2019;32:e100081. doi:10.1136/gpsych-2019-100081

General Psychiatry

Table 1 Outcome of a randomised clinical trial

Group

Total1 2

Successes S1 S2 S=S1+S2

Failures F1 F2 F=F1+F2

Total n1 n2 n=n1+n2

Table 2 Expected frequencies in contingency tables

Expected frequencies

Total1 2

Successes
 
n1S

n1+n2   
n2S

n1+n2  
 S = S1 + S2 

Failures
 
n1F

n1+n2   
n2F

n1+n2  
 F = F1 + F2 

Total  n1  n2  n = n1 + n2 

Figure 1 Histogram of p values of one-sample t-test of 
hypothesis.

Note that  TP  follows the χ2 distribution asymptotically. 
Thus, the p value yield by this  TP  is

 Pr
{

X ≥ TP

}
  

where this X   follows the χ2 distribution with  4− 1 = 3  
df.

Fisher’s exact test is preferred over Pearson’s χ2 test 
in the case of either cell  S1  or  S2  in table 1 is very small. 
Consider the testing of the hypothesis:

 H0 : p1 = p2 v.s. H1 : p1 > p2  
One could show  S = S1 + S2  is a sufficient statistic under 

 H0  . Given the value of  S = s  , it is reasonable to use  S1  as a 
test statistic and reject  H0  in favour of  H1  for large values 
of  S1 , because large values of  S1  correspond to small values 
of  S2 = s − S1  . The conditional distribution  S1  given  S = s  
is hypergeometric  

(
n1 + n2, n1, s

)
 . Thus, the conditional 

p value is

 

min
{

n1,s
}

∑
i=s1

fH

(
i
)

,
  

where  fH
(
i
)
  is the probability density function of the 

hypergeometric  
(
n1 + n2, n1, i

)
 .

It is well known that due to the randomness, with the 
same design, if we repeat the same experiment, we may 
get different results. From equation (1) we can see that 
the p value explicitly depends on the observed data x1, x2, 
…, xn. Hence, the p value is a random variable with the 
range [0,1]. In this paper we study the behaviour of p 
value. Our results show that under some conditions, the 
distribution of the p value may be weird, which makes the 
result based on the p value uninterpretable.

The dISTrIbuTIon of p valueS under H0

As discussed in the last section, the p value changes 
with observations. Hence, it is a random variable. Let FT 
denote the distribution of the test statistic T under the 

null hypothesis. The p value is 1−FT(T). If FT is contin-
uous, the p value is uniformly distributed on [0,1].4

For example, the distribution of the two-sample t-test 
is continuous, and the distribution of its p value has a 
uniform [0,1] distribution. For the Pearson’s χ2 test, 
although the distribution of the test statistic is discrete, 
the p value is calculated based on its asymptotic χ2 distri-
bution. Hence, the distribution of the p value is also 
almost uniformly distributed when the sample size is large 
enough.

The p value of Fisher’s exact test is different. Its range 
is discrete. When the sample size is small, its distribution 
may be far away from the uniform distribution. However, 
when the sample size is large enough, the p value of the 
Fisher’s exact is the same as Pearson’s χ2 test. Of course, it 
is not a wise way to calculate the exact p value in that case.

In the regression analysis, the test of the significance 
of the coefficient of each covariates is usually based on 
the Wald test.5 When the sample size is large enough, the 
distribution of the Wald test is close to a normal distribu-
tion which makes it convenient to calculate the asymp-
totic p value.

Figure 1 shows the histogram of the p value of the 
one-sample t-test of the hypothesis.

 H0 : µ = 0 v.s. H1 : µ ̸= 0  

The test statistic is  T =
−
X/

(
s/
√
n
)
 , where 

−
X   is the sample 

mean,  s  is the sample SD and n  is the sample size. Under 
 H0  we will have T   follows a t distribution with  n− 1  df.

We simulated 10 000 replicates of the data from a stan-
dard normal distribution with the sample size  n = 30 . We 
can see that the distribution of the p value is uniformly 
distributed.

Figure 2 shows the histogram of the p values of 
one-sample Fisher’s exact test. The data are generated 
from the binomial (40, 0.06). We simulated 10 000 repli-
cates of the data.
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Figure 2 Histogram of p values of one-sample Fisher’s 
exact test.

Table 3 Results from a univariate analysis

n

Regression of Y   on X1 

Estimate SD P value >0.2 P value >0.1

30 0.190 1.057 0.410 0.514

50 0.111 0.868 0.414 0.522

100 0.055 0.644 0.399 0.507

200 0.032 0.461 0.408 0.508

500 0.014 0.297 0.408 0.510

1000 0.008 0.210 0.409 0.504

Figure 3 Histogram of the ‘p-value’ when the sample size is 
10 000.

The dISTrIbuTIon of p valueS under mISSpeCIfIed 
modelS
As discussed above, in regression analysis, the p value 
is used to determine whether a covariate is significant. 
For example, in many medical papers, before doing the 
multiple regression analysis, the authors usually run a 
univariate analysis to determine some potential signifi-
cant covariates. If the p value of the univariate analysis is 
below some prespecified cut-offs, the covariate is used in 
the multiple regression analysis.6 One assumption of this 
method is that the ‘p-value’ in the univariate analysis is 
really a valid p value, which means that its distribution is 
close to the uniform distribution. Otherwise, the decision 
based on an invalid p value may be problematic. In this 
section, we use a very simple multiple linear regression to 
show that this may happen.

Assume the following true linear model:
 Y = 1+ 3X1 − X2 + ϵ  

where  X1 ∼ N
(
0, 1

)
 ,  X2|X1 ∼ N

(
X3

1 , 1
)
 ,  ϵ ∼ N

(
0, 1

)

 , and ϵ  is independent of  
(
X1, X2

)
 . Then for the regres-

sion model defined through a conditional expectation,4 
we will have

 E
[
Y|X1, X2

]
= 1 + 3X1 − X2  

 E
[
Y|X1

]
= 1 + 3X1 − X3

1   
Note that the univariate regression of Y   on  X1  no 

longer satisfies a univariate linear regression model, and 

 Cov
(
Y, X1

)
= 0 .

The univariate analysis proceeds by assuming

 E
[
Y|X1

]
= α0 + α1X1  

The significance of X1 is based on the ‘p-value’ for 
testing  H0 : α1 = 0  from the Wald test.

We simulated 10 000 replicates with sample sizes n=30, 
50, 100, 200, 500 and 1000, respectively. The sample mean 
and sample SD of α1 are summarised in table 3, in addi-
tion to the proportion of p values larger than 0.2 and 0.1.

Both table 3 and figure 3 show that the distribution of 
the p value obtained from the univariate analysis is far 
away from the uniform distribution even if the sample 
size is incredibly large. The decision based on an invalid 
p value makes the univariate analysis uninterpretable.

ConCluSIon
The p value is probably the most famous terminology in 
scientific publications. However, it has also caused confu-
sions and controversies when used as a way to declare 
‘significance’ in data analysis. According to the definition 
of the p value, a valid p value should have a distribution 
close to the standard uniform distribution. A distribution 
of the p value far away from the uniform distribution may 
indicate that the model is misspecified.
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