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Abstract

The epithelium of the kidney collecting duct (CD) is composed mainly of two different types of 

cells with distinct and complementary functions. CD principal cells (PCs) traditionally have been 

considered to have a major role in Na+ and water regulation, while intercalated cells (ICs) were 

thought to largely modulate acid-base homeostasis. In recent years, our understanding of IC 

function has significantly improved due to new research findings. Thus, we now have a new model 

for CD transport that integrates mechanisms of salt and water reabsorption, K+ homeostasis and 

acid-base status between PCs and ICs. There are three main types of IC (Types A, B and “non-A, 

non-B”), which first appear in the late distal convoluted tubule (DCT) or in the connecting 

segment (CNT) in a species-dependent manner. ICs can be detected in CD from cortex to the 

initial part of the inner medulla, although some transport proteins that are key components of ICs 

are also present in medullary CD, cells considered inner medullary (IMCDs). Of the three types of 

ICs, each has a distinct morphology and expresses different complements of membrane transport 

proteins that translate into very different functions in homeostasis and contributions to CD luminal 

pro-urine composition. This review includes recent discoveries in IC intracellular and paracrine 

signaling that contributes to acid-base regulation as well as Na+, Cl−, K+ and Ca2+ homeostasis. 

Thus, these new findings highlight the potential role of ICs as targets for potential hypertension 

treatments.

1. Introduction

Kidney ICs in the CD were first identified by their morphology which is reminiscent of other 

epithelial acid-secreting cells. Unfortunately, ICs were difficult to purify in culture initially, 

as compared to the neighboring PCs, and as a result knowledge of IC function s considerably 

less than that of other kidney epithelial cell types. The CD and CNT (or “connecting 
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segment”, depending on the species) arise from the mesonephric kidney or Wolffian duct, 

which also gives origin to the male excurrent duct (31). Initially, the CD and CNT were not 

considered part of the classical nephron, and were thought of as not having a real function 

(85, 124). As the transport processes in the distal nephron were characterized and with the 

identification of individual membrane transport proteins in ICs, such as the vacuolar H+-

ATPase (V-ATPase), the kidney isoform of anion exchanger 1 (kAE1) and the Cl−/

HCO3
−pendrin (SLC26A4), the critical role of ICs in acid-base regulation was confirmed. A 

salient feature of the CD “salt and pepper” epithelium is that it contains three types of ICs 

that coordinate their function with PCs (72, 115). As in any epithelium, the plasma 

membrane of PCs and ICs organize into apical and basolateral functional domains that 

develop distinct membrane lipid and transport protein compositions. Recently identified 

paracrine signals make it possible for the different CD cell types to coordinate their function 

into coordinated CD transport processes (49). Within the mammalian kidney parenchyma, 

ICs are detected in the CNT, cortical CD (CCD) as well as in the outer medulla (OMCD), 

and in some species in the outermost inner medullary CD (IMCD)(reviewed in (75)).

ICs are indispensable to the proper functioning of whole organism acid-base balance and K+ 

homeostasis. These cells are able to eliminate non-volatile acid (also called “fixed acid”) 

generated by metabolism and dietary intake (reviewed in (4)). The fixed acid equivalents 

represent chemical forms of acid that are not able to be excreted via the lungs. In a human 

consuming an omnivore diet, the kidney contributes to the net secretion of approximately 70 

mEq of non-volatile acid per day (54). The majority of the kidney’s contributions to acid-

base homeostasis takes place in the proximal tubule with the recovery of filtered HCO3
− 

using a favorable Na+ gradient (via the Na+/H+ exchanger NHE3)(54). On the other hand, in 

the CD of animals consuming an omnivore diet, ICs are able to adapt and generate new 

HCO3
−. This base-equivalent generation takes place thanks to the hydration of CO2 by 

carbonic anhydrase II (CAII). This reaction generates H2CO3 that rapidly results in the 

generation of H+, which is in turn pumped across the apical plasma membrane, while the 

HCO3
− is transported from the IC cytosol into the interstitial fluid/blood (53). This ATP-

mediated apical acid secretion into the CD lumen is greatly facilitated by the presence of 

luminal buffer such as NH3 (4). Therefore, the CNT and CD rely mostly on ICs to reabsorb 

residual luminal HCO3
−. In addition, ICs participate in the coordinated luminal excretion of 

NH3/ NH4
+, a topic reviewed in detail elsewhere (140). We address the interaction of acid-

transport proteins and NH3/ NH4
+ transport proteins below.

Dysfunction of ICs was later found be an important cause of distal (type 1), type 4, and 

mixed renal tubular acidoses (RTAs)(75). Of note, in clinical practice, IC dysfunction 

leading to metabolic acidosis is not as immediately evident as dysregulation of PCs. This is 

exemplified by the fact that clinicians have identified clear work-up pathways in patients 

suspected of having diabetes insipidus (DI) or the syndrome of inappropriate anti-diuretic 

hormone (SIADH) secretion (33). However, laboratory work-ups of IC disorders of 

metabolic acidosis are rarely performed in the clinic. Perhaps this lack of clinical interest 

results due to the masking compensatory effects of lung and bone in preventing acidemia, as 

well as the increased buffering capacity in the CD lumen generated by proximal kidney 

segments.
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Sensors of acid-base status and of other electrolytes have been characterized in ICs. For 

example, our group and others found evidence of the role of the HCO3
− -activated soluble 

adenylyl cyclase (sAC) in the regulation of H+-secreting pathways in ICs (47, 99), while 

others revealed that the G-protein coupled receptor 4 (GPR4) is also needed for IC acid-

mediated secretion (126). In addition, kinases such as PKA or the metabolic sensor AMP-

activated protein kinase (AMPK) have been identified as key regulators of IC function (47). 

Moreover, ICs are now also recognized as key participants in not only Cl− but also Na+ 

reabsorption. That ICs are important for intravascular volume preservation was established 

with the identification first of the HCO3
−/Cl− exchanger pendrin and later of the Na+-

dependent CI7HCO3
− exchanger (NDCBE) in B-ICs (80) which work in concert to absorb 

NaCl in an electroneutral fashion. It is truly fascinating that it has been shown that that ICs 

regulate their intracellular volume via the V-ATPase, a mechanism independent of Na+/K+-

ATPase (Na,K-ATPase) function (24). Moreover, the functional integrity of the CD 

epithelium depends on V-ATPase function in these unusual cells (29). This concept was 

clearly demonstrated relatively recently when V-ATPase function to provide the necessary 

driving force for CD NaCl transepithelial transport and for the protection of intravascular 

volume in concert with PCs (Fig. 1; reviewed by Eladari et al. (35)).

In this review we address the types, morphology, and function of the different types of ICs, 

as well as new and recently identified IC protein “markers” described in recent publications. 

We will address ICs role in Na+ reabsorption, and the potential role of ICs in the regulation 

of blood pressure as well as K+ secretion and reabsorption. The coordinated kidney segment 

responses to acid-base disturbances in health and disease are reviewed by Wagner in another 

chapter of this Seminars in Nephrology issue. In addition, ICs are important for the innate 

immune response and they express multiple defensins, including neutrophil gelatinase-

associated lipocalin (NGAL) and RNAse7, and for example, patients with RNAse7 

deficiency have a with higher incidence of urinary tract infections (88, 125) (reviewed in 

(15)). For example, a 2015 study showed a novel role for ICs in recruiting neutrophils to the 

medulla in response to UDP-glucose a damage associated molecule (10). The upregulation 

of inflammatory cytokines was shown to be mediated via the ERK pathway using MDCK-

C11 cells in culture as a model for ICs. We hope that our compilation will encourage 

continued constructive discussions on these still understudied yet fascinating cells.

2 Intercalated Cells Types, their Plasticity and Novel Markers

As opposed to the uniformity of a single characteristic cell type per kidney tubule segment, 

the CD has both PC and three main types of ICs (64, 85). It follows that up until relatively 

recently an obstacle to the study of ICs has been their heterogeneity and the relative 

difficulty of isolation within the CD epithelium as they are dispersed in the CD epithelium 

amongst the more abundant PCs. The ratio of PCs to ICs varies among species and 

individuals and ranges from 2:1 to 3:1 in cortical CD (81, 86). Three types of ICs are 

traditionally identified in the CNT/CD (reviewed in (74)): Type A (A-ICs or “α“), Type B 
(B-ICs or “β“), and the “non-A, non-B” ICs (Figure 1). In some studies A-ICs are referred 

to as “α”- and “β”-IC, especially in studies using rabbit CD (86). More elegant and 

complete morphological descriptions of IC types are presented elsewhere (74, 86). This 
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morphological classification was upheld when functional studies showed that each IC type 

had specific transport characteristics.

Classically, cells expressing IC markers can be detected in the mammalian cortical CNT, CD 

(CCD) and the outer medullary CD (OMCD) as well as in the outermost inner medullary CD 

(IMCD). More specifically, B-IC cells are predominantly detected in the CCD while A-ICs 

are more abundant in the CNT and OMCD (27, 90). This tubular histological composition 

matches the functional processes. For example, while the CCD can secrete or reabsorb 

HCO3
−, the OMCD with a majority of A-ICs functions to reabsorb the HCO3

− (reviewed in 

(75)).

At present, experts in the field classify ICs based on subcellular localization of the kidney 

isoform of kAE1, the multisubunit V-ATPase (7, 21, 74, 138), and expression of pendrin 

(138). The A-ICs function in urinary acidification, lack pendrin expression, and express V-

ATPase at their apical membrane and kAE1 at their basolateral membrane. In contrast, ICs 

responsible for urinary HCO3
− secretion (which are more abundant in herbivore animals) 

express pendrin at their apical membrane. These HCO3
−-secreting cells are further classified 

as B-ICs and “non-A, non-B” ICs. The B-ICs express basolateral V-ATPase while non-A, 

non-B ICs express both the V-ATPase and pendrin apically and are located in the CNT (67, 

86). All IC types have abundant cytosolic carbonic anhydrase II (CAII), an enzyme that 

facilitates the rapid, reversible hydration of CO2 (118). CA helps generate HCO3
− and H+. 

Table I summarizes the transport protein markers that are classically used to classify ICs 

types.

A further difficulty in IC research has been the paucity of immortalized cell lines that 

replicate all the different ICs phenotypes in culture. Cell models that have been used 

successfully by several groups include the rabbit Clone-C cells, the mouse OMCDis, and the 

canine MDCK.C11 (34, 44, 50). Clone-C cells are particularly relevant because they can be 

induced to switch IC phenotype (from B-to A-IC) by changing the density of the cell culture 

conditions (3, 129). Of note, many very relevant studies that have uncovered important 

regulatory pathways in ICs, such as pH sensing or the regulated V-ATPase cellular traffic 

have been performed in cells of IMCD origin such as the mIMCD cell line 3 (119, 127). 

With the detection of novel IC markers, primary preparations of ICs are now possible (26).

• Type A ICs:

The A-IC type is most abundant in the OMCD (outer stripe of the OMCD, specifically) in 

most species (7, 85, 86). The number of ICs, and the expression of kAE1 and the V-ATPase 

are upregulated during metabolic acidosis in A-ICs (13). These cells lack a cilium and 

display numerous apical microplicae, which become more abundant when stimulated by 

various agonists such as cAMP (101). By electron microscopy it is also easy to identify A-

ICs by the position of their mitochondria near the apical pole (78, 86). These cells secrete H
+ into the pro-urine and lack pendrin expression. The secretion of H+ equivalents into the 

urine can occur via either the V-ATPase or the H+/K+-ATPase (H,K-ATPase), both pumps 

being expressed at the apical membrane (21, 57, 83). In addition, A-ICs express the anion 

exchanger kAE1 (solute carrier family 4 member 1 (SLC4A1)) basolaterally (Figure 1)(7). 

An important fact about these cells is that by secreting H+ into the pro-urine downstream of 
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CAII, they generate intracellular HCO3
−, which is reabsorbed into the interstitium by kAE1, 

in exchange for Cl−. In these cells, the V-ATPase can be detected in subapical vesicles or 

tubulovesicular structures. These V-ATPase complexes are so abundant in this cell type that 

they form the cytosolic vesicular coat and have been described as “rod-shaped” particles (20, 

22).

The second pathway to H+ extrusion in A-ICs in the CD is the H,K-ATPase. These pumps 

can have two different alpha subunit isoforms: HKα1 (gastric) or HKα2 (colonic). The A-

ICs from HKα1,2– null mice had significantly slower H+ extrusion when compared to A-ICs 

cells from HKα1-null or HKα2-null mice (83), although the lack of either α subunit had an 

effect on the rate of H+ extrusion from both A- and B-ICs but not the acid-base status of the 

animal (48). The A-ICs actively reabsorb K+ via H,K-ATPases, and undergo hypertrophy 

when animals are fed a low K+ diet. However, the contribution of each of the α isoforms in 

kidney K+ and H+ handling remains to be determined, as the null mice for either the α-1 or 

α-2 subunits did not have significant changes in acid-base status or K+ excretion (83). A 

relatively new finding is the expression of the Cl−/HCO3
− exchanger SLC26A7 basolaterally 

in A-ICs (12, 144) where it co-localizes with kAE1. The functional relevance of having this 

second anion exchanger at the same domain as kAE1 may be that SLC26A7 is targeted to 

the basolateral A-IC membrane in the setting of hypertonicity and K+ depletion (144).

• Type A ICs: K+ secretion

Changes in plasma [K+] also influence A-ICs via high conductance BK (or maxi-K) 

channels. The BK channel is expressed in A-ICs (92), especially in animals fed a high K+ 

diet. These BK channels are activated by depolarization, stretch via increased luminal flow, 

rises in intracellular Ca2+ increases, and cell swelling triggered by hypoosmotic stress 

(reviewed in (142)). Mineralocorticoids may also regulate K+ secretion in ICs. With 

hyperkalemia, aldosterone is produced and activates the epithelial Na+ channel (ENaC) via 

the mineralocorticoid receptor (MR). This ENaC activation decreases the luminal voltage, 

which promotes K+ secretion via the kidney outer medullary small-conductance K+ channel 

(ROMK) in PCs, and perhaps the BK channel in ICs (41, 96). One study in rabbits showed 

that aldosterone did not contribute to BK channel expression and/or activity in response to 

high K+ diet (36). BK channels are regulated by the with-no-lysine kinase 4 (WNK4) in a 

phosphorylation-dependent manner (123, 148). In a later study performed in a cell line with 

characteristics of ICs, WNK4 was shown to downregulate BK channel activity in part by 

increasing channel ubiquitination and degradation (139). Please, see the “Endocrine 

regulation of ICs” below for further discussion of MR regulation of CD and IC function.

• B-ICs and Non-A non-B ICs: base excretion in alkalosis and NaCl reabsorption

The B-ICs are responsible for the secretion of OH− equivalents into the pro-urine and are 

especially important in settings of chronic dietary alkali-load or metabolic alkalosis. 

Traditionally, B-ICs were identified by the expression of the Cl−/HCO3
− exchanger pendrin 

at their apical membrane and the V-ATPase at their basolateral membrane (21, 113)(Table I). 

Pendrin is also expressed in the epithelium of the inner ear (38) and thyroid gland (112, 

113). Pendrin does not transport some anions, such as sulfate (37), but can transport I
− (121), and ICs it acts as a Cl−/HCO3

− exchanger (38, 112). Pendred described the clinical 
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presentation of this disorder as the combination of deafness and goiter (91, 104). Curiously, 

under baseline conditions these patients and pendrin-null mice do not have any obvious 

kidney pathologies (71, 113), thus highlighting the differential roles that pendrin plays in the 

different organs. Upon HCO3
− administration, which enhances pendrin expression in wild-

type mice, the pendrin-null mice developed a severe metabolic alkalosis, thus suggesting a 

critical role for this transport protein in the protection against metabolic alkalosis (131, 136).

Although the mechanisms of Na+ reabsorption in the kidney CD showed a role of ENaC 

(42) the reabsorption of Cl− in this segment was originally attributed to a paracellular 

pathway, although there were some studies that indicated the presence of a transcellular Cl− 

absorption pathway (116) (reviewed in (35, 138)). However once pendrin was identified in 

the B-ICs their critical role in this transcellular pathway reabsorption became clear when 

pendrin was identified in these cells (113), especially when aldosterone and angiotensin II 

were shown to increase its levels (90, 103). Given it’s regulation by the RAAS system and 

involvement in salt resorption this transport protein is now considered a potential culprit in 

the pathogenesis of hypertension and also a potential candidate target for the treatment of 

this highly prevalent disease (76, 131). This role is illustrated in pendrin-null mice that were 

resistant to mineralocorticoid-induced hypertension and in turn became hypotensive when 

fed a low Na+ diet (71, 113). Pendrin levels inversely related to urinary [Cl−] in various 

clinical situations, such as in the use of loop diuretics (131). On the other hand, metabolic 

acidosis induced by acetazolamide or NH4SO4 reduced the levels of pendrin despite low Cl− 

levels in the urine (51). Recently, some studies have shown that this exchanger may 

contribute to the renal regulation of blood pressure via a kidney-specific mechanism that 

does not include circulating aldosterone (69), with angiotensin II-mediated pendrin up-

regulation and subcellular localization changes occurring via the angiotensin 1a receptor 

(130). It is now clear that pendrin-mediated Cl− uptake leads to vascular volume expansion 

(69), and more importantly, its deletion in B-ICs decreased ENaC function in PCs (69, 102). 

(69, 102). Some studies have also shown a role for luminal [HCO3
−] and/or pH changes as 

contributors to this signaling (102).

Both B-IC and non-A, non-B ICs express pendrin at their apical pole, although in two 

distinct cellular domains: at the membrane and in sub-apical intracellular vesicles (113, 

135). Higher levels of pendrin at the apical plasma membrane is characteristic of non-A-

non-B ICs under basal conditions, suggesting higher levels of anion exchange under baseline 

conditions in these cells that are more abundant in the CNT (68). The specificity in 

subcellular pendrin distribution suggests that it is likely regulated by the flux of vesicular 

trafficking between the two apical domains, involving signaling by NO and cAMP-

dependent mechanisms (120), as well as glycosylation (6, 11). It is also interesting that IC-

expressed pendrin controls I− homeostasis (70).

In the mouse kAE4 is localized to the basolateral membrane of CCD B-ICs, although in 

other species it has been detected in A-ICs and in other subcellular domains (reviewed in 

(75)). In mice with disruption of this exchanger an overt phenotype was not detected and the 

B-IC function was not reported (73).
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• Plasticity of IC types

The variety of IC cell subtypes remains surprising. For example, there are “non-A, non-B” 

ICs and other epithelial CNT/CD cells types that express IC markers and PC markers as 

well. These varied IC types were thought to represent a series of cellular intermediate forms, 

that could give rise to more differentiated cell types as an adaption to changes in acid-base 

status. For example, a B-IC could transform into a A-IC as a response to an increased acid 

load. This hypothetical “intermediate” IC type might express the V-ATPase diffusely in the 

cytoplasm or both at the apical and basolateral membrane domains (7, 21). The group of Al-

Awqati and others have shown evidence that A- and B-ICs may represent different states of 

cellular differentiation during kidney development, in the setting of maintaining 

homeostasis, or after tubular injury (3). To illustrate this possibility it was proposed that 

adaptation to acidosis was not accompanied by increases in total IC number but rather via 

type-switching of A-ICs to B-ICs (4, 108). Researchers showed that transition is not 

reversible. The A-ICs population is thus “terminally” differentiated due to the deposition by 

A-ICs of basolateral extracellular matrix proteins such as hensin (DMBT1) and galectin 3 

((43); reviewed in (4)).

Notch signaling regulates development of primitive epithelia such as that of the CD (62, 

115). This cascade is responsible for the “lateral inhibition” process in development, where 

cells undergo a final differentiation which ultimately leads to drastically different 

phenotypes from their neighbors. In fact, disruption of Notch signaling increases ICs 

numbers and leads to nephrogenic DI, due to lack of PCs. Therefore this Notch cascade is 

required to differentiate PCs from ICs, while IC would develop due to inactivation of this 

pathway (62). In other studies, rodent IC development was tracked by following the 

expression of several IC-specific V-ATPase subunits and other markers (19, 40), such as a4 

and B1 appear early in the embryonic medulla after the detection of the expression of Foxi1, 

a forkhead family transcription factor specific to ICs (133). Pendrin-positive epithelial cells 

are detected in mouse kidney at E14. Moreover, there is uncertainty on whether ICs develop 

from PCs or vice versa, or whether ICs or PCs can give rise to each other after CD epithelial 

injury. A mouse strain lacking Foxi1 (16) did not have ICs per se (no V-ATPase or pendrin 

expression in CD). Their CD epithelial cells instead displayed an undifferentiated phenotype 

with both PC and IC traits, suggesting that these two cell types arise from the same cell 

precursor. This proposed undifferentiated cell type expressed aquaporin-2, which is usually 

detected in PCs exclusively, and CAII, an enzyme abundant in IC cytosol.

Insights into epithelial type-switching can be obtain from studying Li+ toxicity in CD (106). 

Li+ treatment increases both ratios of ICs to PCs and the expression of cell proliferation 

markers in both cell types. One mechanism of Li+ toxicity involves reduction of adenylyl 

cyclase (AC) activity and aquaporin-2 expression and thus leading to nephrogenic DI (89). 

Indeed one study found that mice deficient in one of the AC isoforms (AC6) had a higher 

IC-to-PC ratio compared with wild-type mice (106). Yet AC6-deficient mice did not display 

IC cell proliferation after Li+ treatment. Therefore, the increase in IC-to-PC ratio in AC6-

null mice was likely due to conversion of PCs to ICs and thus introduces AC6 as a possible 

regulator of CD cell type plasticity after injury.
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• Novel markers of ICs

Two recent studies of primary collecting duct cells have shed light on potential ways to 

study primary ICs in vitro. Using single cell digestion, flow cytometry, and single cell 

RNAseq, Chen et al characterized differential expression in PCs, A-ICs, and B-ICs (26). 

These authors identified the proto-oncogene c-Kit (tyrosine protein kinase Kit or CD117) as 

a selective, novel membrane-bound marker for flow cytometric enrichment of A-ICs. They 

also confirmed the use of Dolichos biflorus agglutinin (DBA) lectin for isolation of PCs in 

mice (in rats, DBA binds to both proximal tubular cells and PCs)(56), and employed 

negative selection followed by positive selection with peanut agglutinin (PNA) for B-ICs. 

This study was the first to demonstrate the differential transcriptome of the different IC 

populations using single cell RNAseq (26). Bioinformatic analysis of these cell-specific 

transcriptomes revealed pairings of signaling pathways between PCs and ICs. For example: 

1) the receptor c-Kit was predominantly expressed in A-ICs, whereas its ligand, Kitl, was 

expressed chiefly in PCs; 2) Notch2, was detected chiefly in PCs, whereas its ligand Jagged1 

(Jag1) was expressed largely in ICs; 3) Nephronectin (Npnt), a functional ligand of integrin 

α-8/β-1 in kidney development, was expressed predominantly in PCs and its ligand was 

expressed predominantly in B-ICs. Whether the expression of the ligand-receptor pairs 

occurs in the same epithelial domain (apical vs basolateral) remains to be studied. These 

studies also detected mRNA expression of additional GPRs, transcription factors, and 

transport proteins in IC types, although the expression of the actual protein products needs to 

be confirmed.

In the earlier of the two studies by Labarca et al. (77), the DBA lectin and a less stringent 

digestion protocol were used to isolate mouse cortical cells containing PCs and ICs. After 

seven days, these cultured primary cells retained functional characteristics of PCs. Although 

the functions of ICs were not studied, markers of ICs were present and 25% of primary cells 

at 7 days of culture did not have markers for DCT, CNT, or PCs. These primary cell 

preparations required a defined media to maintain aldosterone-dependent, amiloride-

sensitive Na+ current, a key property of PCs attributable to ENaC function. Taken together, 

these studies laid the groundwork to test the viability of primary A-ICs and B-ICs in a co-

culture system and tested the need for interaction with PCs. Another possible method for 

primary IC cultures would be supplementation of media with specific PC ligands to maintain 

IC viability and differentiation.

3 Paracrine signaling in the CD

As mentioned earlier, recently identified paracrine signals make it possible for the different 

CD cell types to coordinate their function (49). ICs help regulate the Na+ reabsorption 

pathway in PC via ENaC by secreting paracrine factors, such as prostaglandin-E2 (PGE2) 

(49, 114). This prostaglandin is relevant in Na+ and volume regulation as mPGES-1 (mRNA 

for PGE2) expression is significantly increased in CD in response to a high-Na+ diet. 

Moreover, knockout of mPGES-1 impaired urinary PGE2 excretion, decreased the ability to 

excrete a NaCl load, and the resulted in the subsequent development of hypertension (63). It 

has also been demonstrated that a second paracrine factor ATP is released by kidney 

epithelial cells. ATP in CD inhibits salt reabsorption by binding to the purinergic receptor 
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P2Y2, causing a subsequent increase in intracellular Ca2+ and inhibition of ENaC-dependent 

Na+ absorption in microperfused CCD (Fig. 2)(105). ENaC may be also inhibited through 

direct interaction of ATP with this channel (84, 105). Release of ATP from B-IC into the CD 

lumen likely occurs via the ATP permeable hemi-channel connexin-30 (Cx30) in response to 

mechanical forces generated by increased luminal flow. This hypothesis was confirmed 

when the Cx30 deficient mice did not release ATP in response to high urine flow generated 

by a salt-deficient diet and instead developed hypertension when salt loaded (87). Moreover, 

PGE2 release by isolated microperfused CCDs in response to inhibition of basolateral V-

ATPase (localized to B-ICs) required activation of luminal GPR purinergic (ATP) receptors 

(49). It is likely that this paracrine ATP/PGE2 downregulation of salt absorption by ENaC in 

PCs is fast acting and helps achieve homeostasis during times of NaCl overload. In this 

scenario increased NaCl delivery to the CD induces the B-ICs to release ATP into the lumen, 

thus rapidly inhibiting further salt absorption by the PCs (25). The relevance of these 

paracrine pathways in blood pressure regulation was confirmed when mice with knock out 

of P2Y2 developed hypertension (110).

4 Acid-base and other electrolyte sensors in ICs and their regulatory 

cascades

Acid-base transport proteins in ICs respond quickly to pH or [HCO3
−] changes in the body. 

Thus there has been much focus on the characterization of sensing mechanisms for these 

changes within ICs and the kidney as a whole. One of the pH/HCO3
− pathways that we have 

studied involves the regulation of the V-ATPase. We found that in minutes to hours, the V-

ATPase in kidney cells is regulated by kinases such as PKA and the metabolic sensor 

AMPK-activated protein kinase (AMPK) (8, 9, 47). These findings link regulation of acid-

base transporters by metabolic stress such as under ischemia, a regulation that is present in 

other kidney-like epithelia (5, 52). Therefore V-ATPase phosphorylation has been identified 

and characterized by our group as a regulatory mechanism downstream of PKA activation, 

such as with the activation of G-protein coupled receptors (8, 9, 46). The V-ATPase is 

regulated by a HCO3
−sensor, the soluble adenylyl cyclase (sAC), thus linking acid-base 

status to V-ATPase cellular traffic and changes in IC morphology (100). Acute inhibition of 

sAC prevented PKA-mediated apical V-ATPase accumulation in ICs (47). Also in ICs V-

ATPase and sAC co-localized apically in response to chronic luminal HCO3
− delivery to the 

CD (99). Recently, the Na+-independent SO4
2− anion transporter SLC26A11 expressed in 

A-ICs has been identified as a regulator of V-ATPase function (143).

Proton receptors are G protein-coupled receptors (GPR), and GPR4 was first identified and 

characterized in cell lines with some IC characteristics such as mOMCD1 cells (127). Its 

relevance to pH sensing was confirmed when GPR4-null mice were shown to have 

decreased net acid secretion from the kidney. Lack of GPR4 thus resulted in a “non-gap” 

metabolic acidosis. Thus GPR4 is an important player in linking changes in kidney pH 

sensing coupling to actions such as H+ extrusion in the CD. Moreover, the non-receptor 

tyrosine kinase Pyk2 was studied as a potential sensor of pH changes. Pyk2 is expressed in 

kidney is autophosphorylated by several stimuli including decreased pH (39). Studies also 

performed in mOMCD1 cells revealed that Pyk2 and downstream effectors increased V-
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ATPase but not H,K-ATPase in this IC model. Whether these signaling cascades are relevant 

in B-ICs or other cells expressing the V-ATPase in CD remains to be studied.

Regulation of V-ATPase function in CD ICs is complex and depends not only on urinary 

buffers but apparently also requires the presence of NH3/NH4
+ transporters. NH3 via its 

ability to become protonated as NH4
+ is a critical urinary buffer. As NH4

+ remains trapped 

in the CD tubule lumen a, H+ equivalents are thus excreted in the urine. This H+ extrusion 

depends on the dual action of the apical V-ATPase or H,K-ATPase especially in CD, where 

A-ICs express high levels of these pumps. The NH3 transporter RhCG is expressed in a 

majority of mouse CCD cells, including ICs of the OMCD and IMCD (18)(reviewed 

in(141)). This transporter is a type of Rh glycoprotein belonging to solute transporter family 

SLC42. Similarly, another NH3 transporter of the same family called RhBG was detected via 

immunolabeling in all mouse CNT cells and in cortical CD. RhBG was detected in in A-ICs 

but not B-ICs intercalated cells in outer and inner medullary CD and early IMCD only ICs. 

Interestingly, RhBG and RhCG are expressed in basolateral and apical domains of A-ICs in 

rodent kidney (93, 109)(Fig. 1).

• ICs and sensing Ca2+

The role of the Ca2+-sensing receptor (CaSR) in kidney and the parathyroid glands is 

relatively well studied. However, the localization of this receptor in kidney CD has been 

under debate. In a recent study the CaSR was detected in mouse kidney using a combination 

of in situ hybridization and immunohistochemistry (146). In this study, the CaSR 

colocalized with AE4 along the basolateral membrane of B-ICs while it was not detected in 

PCs or A-ICs. A later study confirmed B-IC-specific expression of CaSR transcripts (26). 

Yasuoka and colleagues also detected that the CaSR in B-ICs increased when the mice were 

treated with alkali diets, while it decreased when mice were received acidic diets. Perhaps 

more interestingly, when the mice were treated with neomycin, a CaSR agonist, urinary 

Ca2+ excretion increased (via action in the basolateral CaSR in the thick ascending limb) 

and the urine became significantly more acidic. The expression of CaSR was upregulated by 

dietary alkali loading and downregulated by acid loading. The authors concluded that CaSR 

signaling may be involved in maintaining acid-base homeostasis after an alkali load by 

contributing to producing a more alkaline urine. Interestingly, CaSR expression nearly 

doubled in kidneys of GPR4-null mice, a model afflicted with spontaneous metabolic 

acidosis, although these animals did not display any disturbances in Ca2+ homeostasis (127). 

This increase in the CaSR in GPR4 null mice was probably involved in the blunted response 

of their isolated CD from to additional acid loads. In summary, ICs sensing of Ca2+ and pH 

are likely synergistic mechanisms contributing to the regulation of acid-base homeostasis.

5. Update on ICs responses to dietary changes and detection of IC-

derived exosomes

The Cl− channel CIC-K2/b allows absorption of Cl− into ICs, and its dysfunction leads to 

the salt-wasting disorder of Bartter's syndrome (type 3). In recent studies performed in 

isolated mouse CD the activity of CIC-K2/b decreased downregulated in animals fed a high 

Cl− diet (128). In contrast, the activity of this channel in ICs was not affected by changes in 
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dietary K+ alone, or changes in aldosterone activity. The demonstration that diet changes 

alone can alter activity of this channel brings CIC-K2/b to the forefront as a potential target 

for pharmacologic tools to control blood pressure via ICs.

A recent study compared wild-type mice placed on diets with either normal protein levels or 

with a 70% reduction in protein content to understand the effects of protein restriction on 

how NH3 is handled in the kidney (79). The protein-restricted mice had decreased NH3 

excretion, and yet there was an unexpected increase RhBG expression in OMCD ICs. 

However, protein restriction in mice with CD-specific RhBG deletion had no effect on NH3 

excretion, indicating that this transport protein may be involved in processes other than NH3 

handling. Indeed, global RhCG knock-out mice had many adaptive changes to maintain 

normal NH3 excretion while on a normal protein diet. However, during a protein restriction 

period NH3 excretion was not altered by RhCG deletion. It appears that RhCG expression is 

necessary for normal NH3 excretion during basal conditions but is not required for 

adaptation to a protein restricted diet.

Studies of changes in IC characteristics in response to diets are routinely performed in 

rodents, and often mouse transgenic models do not replicate human disease. A recent study 

analyzed pendrin expression in the humans following either acute 1) acid (NH4Cl), 2) alkali 

(NaHCO3), or NaCl dietary loads by analyzing urinary exosomes from healthy human 

individuals (97). The study results showed that after alkali loading pendrin expression was 

rapidly upregulated, within 1 hour, and then normalized by 3 hours. Salt loading induced 

downregulation of pendrin by 2 hours (nadir at 4 hours). Conversely, after acid loading 

pendrin levels were rapidly down regulated by 3 hours. Interestingly, patients with inherited 

dRTA showed reduced levels of pendrin at baseline that did not change with acid loading. 

These data show that exosomal pendrin is potentially useful as a marker for acute acid-base 

and volume status changes in humans. Additionally, a similar study from the same group 

revealed that some V-ATPase subunits (ATP6V1B1 and B2) detected in urinary exosomes 

can also be correlated to the acid-base status changes, with B1 abundance significantly 

increased 2-6 hours after acid loading (98).

6. Basolateral membrane biology in ICs.

An interesting recent study showed by immunohistochemistry that albumin can be detected 

in A-ICs and interstitial kidney cells of mice (61). In addition, albumin abundance in these 

cells decreased in response to escalating aldosterone levels. Interestingly, by co-localization 

studies, albumin was not detected in early endosomes, late endosomes, lysosomes, or 

recycling endosomes. By electron microscopy, albumin was found in round membrane-

associated structures in ICs. Assays with labeled albumin revealed that type I MDCK cells 

were permeable to albumin only on the basolateral side. This study’s results suggest that 

albumin produced within the kidney interstitium is taken up from the basolateral pole by A-

ICs via clathrin- and dynamin-independent pathways. Their findings are also consistent with 

the clinically-accepted role of albumin as a carrier of non-water soluble substances across 

the tubule.

Rao et al. Page 11

Semin Nephrol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The basolateral pole of A-ICs is populated by the NH3/NH4
+ transporter RhBG and 

kAE1(7). A recent study showed that the erythrocyte form of AE1 (eAE1) exists in a 

metabolically-relevant complex to consisting of RhBG, the spectrin-based skeleton linker 

ankyrin-G, and the eAE1 cytoplasmic N terminus (23, 95). The presence of kAE1 in a 

similar complex was confirmed by a recent publication in heterologous expression systems 

(such as HEK293 cells)(45). Using stop flow spectrofluorometry the authors showed that 

kAE1 was not functional when the binding site for ankyrin G was modified. In addition, 

changes in that kAE1 sequence prevented its traffic to the membrane. These findings 

indicate that a functional RhBG-kAE1 ·ankyrin-G complex akin to the complex found in 

erythrocytes is also present in ICs. While the exact role of this complex is unclear, it is 

possible that it could participate in IC responses that maintain acid-base homeostasis.

7. Endocrine Regulation of ICs

The renin-angiotensin-aldosterone system (RAAS) has key regulators of K+, Na+ and 

volume homeostasis (132), as well as cell metabolism (66, 122). In this section, we will 

review the findings of several studies that have highlighted the role of the RAAS in ICs, 

including the role of pro-renin, renin, and angiotensin II, as well as the role of aldosterone 

and cortisol in Cl− secretion in ICs via MR (123).

The (pro)renin receptor [(P)RR] is also referred to as the ATP6AP2 (ATPase, H+ 

transporting, lysosomal accessory protein 2)(82). Initially, this protein was identified as an 

accessory subunit of the V-ATPase. Subsequently, this receptor was studied as a potential 

signaling molecule in ICs, which express orders of magnitude higher V-ATPase as compared 

to PCs. Similarly to the classical V-ATPase pump complex, the (P)RR is ubiquitously 

expressed and yet both are detected at much higher levels in ICs compared to PCs.

The (P)RR receptor ligands are both renin and pro-renin, and binding occurs via a large 

(P)RR extracellular domain (14, 60, 94). Moreover (P)RR cleavage generates a soluble form 

of this receptor (s(P)RR)(28, 147). The catalytic efficiency of pro-renin (from PCs) and 

renin to (P)RR (more abundant in A-ICs) increases with their binding to the (P)RR, and thus 

increases the conversion of angiotensinogen to angiotensin by four-fold (107, 111). 

Moreover, in cell culture (P)RR interaction with the V-ATPase is required for pro-renin-

induced activation of Erk1/2 (2) and vasopressinmediated V-ATPase activity and cAMP 

accumulation. However, a recent study examined the association and potential regulatory 

roles of (P)RR and pro-renin on the V-ATPase (30). This study showed in a mouse model 

that both Atp6ap2 mRNA and protein co-localized with the V-ATPase in ICs. In addition, 

when mice were treated with a variety of acid-base and fluid/electrolyte challenges the 

effects the (P)RR response was not co-regulated with that of the V-ATPase. In the same 

study, the microperfusion of CCDs with luminal pro-renin did not increase V-ATPase 

activity. These findings indicated that in this system pro-renin did not play a role in the 

regulation of the interaction between P(RR) and the V-ATPase. (P)RR dysfunction has been 

implicated in the pathogenesis of kidney disease induced by systemic disorders such as 

diabetic nephropathy, hypertension, albuminuria, and preeclampsia. However, 

pharmacological agents targeting the (P)RR may cause systemic side effects through effects 

on V-ATPase regulation (32, 58, 59, 65).
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The RAAS can stimulate Cl− absorption by several possible mechanisms. Angiotensin II 

increases net transcellular Cl− absorption across B-ICs via direct stimulation of pendrin and 

V-ATPase activation (103). Recent work suggests that angiotensin II stimulation of pendrin 

may require aldosterone, and aldosterone may stimulate pendrin in the setting of 

hypokalemia (55, 145). The MR receptor is expressed in ICs (1, 123), but in contrast to PCs, 

ICs lack the enzyme 11 β hydroxysteroid dehydrogenase (11βHSD2), an enzyme that 

rapidly converts cortisol to the less active cortisone (17). Thus, in PCs the MR is primarily 

activated by aldosterone, and in ICs, MR activation is predicted to be dominated by cortisol. 

However, several studies have implicated aldosterone directly or indirectly in IC signaling, 

e.g. aldosterone-mediated stimulation of pendrin (55, 145). Thus, the ligand for IC MR in a 

specific physiologic context may be different.

A recent study by Shibata, et al. demonstrated an important physiologic context for MR 

activation in ICs to explain the aldosterone paradox (123). This paradox refers to the ability 

of aldosterone and MR activation to respond to two disparate stimuli: volume depletion or 

hyperkalemia, and yet appropriately respond with either Na+ reabsorption or K+ secretion, 

respectively. Several potential explanations exist, but ICs may play a role in resolving this 

paradox (Figure 3). MR in ICs stimulate the V-ATPase and pendrin, and thus, can mediate 

Cl− reabsorption, an important component of volume repletion. Phosphorylation of the MR 

can occur at Ser-843, and can inhibit activation by its natural ligands (aldosterone or 

cortisol). Phosphoryation of MR Ser-843 in kidney is exclusive to ICs. Importantly, while 

angiotensin II and WNK4 signaling decrease phosphorylated MR, hyperkalemia increases 

this phosphorylation. It follows that as volume depletion is accompanied by angiotensin II 

production, aldosterone can activate IC-MR, and can thereby couple aldosterone-mediated 

Na+ reabsorption by ENaC in PCs with aldosterone/cortisol-mediated Cl− reabsorption by 

pendrin in B-ICs (Fig. 3). The reabsorption of Cl− limits the negative lumen potential at the 

apical membrane of PCs, and thereby limits K+ secretion. On the other hand, hyperkalemia 

promotes phosphorylation of Ser-843 in ICs, and thus aldosterone’s effect on ENaC (without 

angiotensin II) is primarily to create a driving force for ROMK-mediated K+ secretion rather 

than a coordinated PC/IC, Na+/CI− reabsorption.

Finally, metabolic acidosis, which can be regulated by IC response, increases RAAS 

signaling (117), while RAAS blockade inhibits H+ excretion even in the setting of acidosis 

(122)(reviewed in (134)). States of aldosterone excess also create a driving force for H+ 

excretion via increased ENaC activity and a lumen negative potential (137). It has also been 

shown that MR dephosphorylation in volume depletion causes aldosterone-dependent 

increases of transport proteins in ICs such as pendrin and the apical V-ATPase (123). One 

could envision that even in the setting of acidosis and ammoniagenesis, the lack of these 

transport proteins would prevent CD IC-mediated acid excretion.

8. Conclusions

ICs were first identified by their morphology and slowly their function as acid-base 

regulatory cells in the kidney has been established. Individual membrane transport proteins 

in ICs, such as the V-ATPase, kAE1 and pendrin have helped decipher the molecular 

mechanisms of CD transport processes. A number of cellular sensors in ICs such as sAC and 
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GPR4 have been uncovered, and their role in kinase cascades such as those of PKA or 

AMPK have been elucidated. Moreover, the role of ICs critical role as regulators of salt 

reabsorption and intravascular volume preservation was solidified with the identification of 

NDCBE in B-ICs and paracrine signaling tying ATP produced by ICs to the inhibition of Na
+ reabsorption by PCs. Moreover, the primacy of the V-ATPase in the regulation of IC 

volume has been firmly accepted. Emerging areas in the study of these interesting cells are 

their role in the innate immune system, their transport protein responses to dietary changes, 

and how the ICs function is regulated by their basolateral membrane
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Figure 1. Transport processes and regulatory mechanisms in A- and B- and non-A, non-B IC
A) This diagram illustrates the major transport proteins that define three CD cell types: PCs 

which expresse ENaC and ROMK; the acid-secreting A-IC; the HCO3--secreting Cl--

reabsorbing type B-IC. In cortical and OMCD, A-ICs express apically the V-ATPase and the 

H+/K+-ATPase and AE1 (kidney isoform) at their basolateral membrane. The B-ICs express 

pendrin apically as well a Na+-driven Cl–/HCO3–exchanger called NDCBE. Together 

NDCBE and pendrin reabsorb NaCL in an electroneutral mode, while Na+ exits the B-Ics 

via AE4, and the pathway of basolateral Cl- exit is still unclear. In B-ICs the basolateral V-

ATPase rather than the Na,K-ATPase, generates the potential to reabsorb luminal NaCl.

B) The HCO3- sensor sAC and its downstream effector PKA work in concert to activate V-

ATPase at the apical membrane. This activation is counteracted by the metabolic sensor 

AMPK, an enzyme upregulated in response to ischemia or metabolic or increased cellular 

[AMP]/[ATP]. AMPK then mediates the downregulation of V-ATPase.
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Figure 2. A cascade of paracrine regulation of epithelial transport proteins in the CD
Paracrine regulation by B-IC occurs via the release of ATP which then binds to purinergic 

receptors expressed both in IC and PCs to regulate salt and water balance. It has been shown 

that a high NaCl intake, increasing luminal flow triggers ATP release into the urine by ATP 

permeable hemi-channel Connexin 30. ATP then binds and activates the luminal purinergic 

receptor P2Y2, leading to increases in intracellular [Ca2+]and inhibition of ENaC-dependent 

Na+ absorption. This action could be directly or achieved by triggering PGE2 release which 

is well established to decreased ENaC activity and abundance. These findings may indicate 
a pathway for B-IC-mediated inhibition of Na+ reabsorption by PCs in the presence of 
sudden salt loading leading to increased luminal flow.
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Figure 3. Endocrine regulation of IC transport
The mineralocorticoid receptor is one of the end targets of the RAAS. These hormones elicit 

signaling events in the kidney that regulate K+ and salt homeostasis, intravascular volume 

and cell metabolism.

A) Indirectly during hyperkalemia, aldosterone is secreted and its stimulation of ENaC via 

MR leads to lumen electronegativity, which promotes K+ secretion via ROMK expressed in 

PCs and the BK channel (not shown here), which is expressed in ICs. Aldosterone also 

indirectly increases acid excretion by the kidney as the net lumen-negative transepithelial 

voltage makes secretion of H+ by the ICs more favorable. Aldosterone, facilitated by the MR 

receptor, also regulates activity in ICs. Aldosterone action on the MR receptor in ICs is 

modulated by phosphorylation at Ser-483, a modification that reduces affinity and activation 

of the receptor for aldosterone. Importantly, hyperkalemia also induces MR phosphorylation 

at Ser-483, thus inhibiting aldosterone-stimulated V-ATPase in A-ICs and the pendrin in B-

ICs. This diminished Cl− reabsorption limits net NaCl reabsorption, and thus allows for 

aldosterone to promote K+ secretion while limiting volume expansion.

B) On the other hand, Angiotensin II, WNK4 activity and hypokalemia induce decreased 

levels of phosphorylated MR, allowing aldosterone binding to MR which increases the 

coordinated action of the V-ATPase and pendrin. This coordinated action increases plasma 

volume while inhibiting K+ secretion via increase of electroneutral NaCl reabsorption and 

limiting the lumennegative potential, the driving force for K+ secretion.

Rao et al. Page 25

Semin Nephrol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rao et al. Page 26

TABLE I.
Relevant Proteins Expressed in Kidney Intercalated Cells (adapted from (74)).

The differential localization patterns pertaining to the transport proteins listed in bold and italics identify a 

combination of key markers that aid in the classification of the different intercalated cell subtypes.

Intercalated Cell Type Type A Type B Non-A, non-B

Protein Expressed

Carbonic anhydrase II apical cytoplasmic cytoplasmic

V-ATPase apical basolateral apical and diffuse vesicular

AE1 basolateral

c-Kit basolateral

Pendrin (Slc26a4) apical apical

H+,K+-ATPase apical apical ?

AE4 basolateral

RhBG basolateral basolateral

RhCG apical apical

NDCBE (Slc4a8) apical

Slc4a11 apical
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