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Abstract

BACKGROUND: The Clinical Pharmacology Quality Assurance (CPQA) program provides 

semi-annual proficiency testing of antiretroviral analytes for eleven U.S. and international clinical 

pharmacology laboratories to ensure inter-laboratory comparability. In this manuscript, we provide 

estimates of the main sources of variability and assess the accuracy of the algorithm for the 

assessment of performance.

METHODS: Descriptive statistics are reported from thirteen proficiency testing rounds from 

2010–2016. Eight of the most common antiretroviral analytes were examined. Variance 

components analysis was employed to rank the relative contributions of clinical pharmacology 

laboratories, antiretroviral analyte and concentration category (low, medium and high) to bias and 

variability using mixed models. Binary classification metrics of the proficiency testing assessment 

algorithm are calculated in comparison to a model employing 95% prediction limits around 

estimated regression equations.

RESULTS: Clinical pharmacology laboratories provided 4,109 reported concentrations of 65 

unique samples for each of the eight antiretroviral analytes across 13 proficiency testing rounds. 

Individual clinical pharmacology laboratory accounted for the greatest amount of total variability 

(4.4%). Individual clinical pharmacology laboratory and analyte combination (interaction) 

accounted for the greatest amount of bias (8.1%). Analyte alone accounted for 0.5% or less for 

total variability and bias. Overall, employing a ±20% acceptance window around the final target, 

97% of individual reported concentrations were scored acceptable and 96% of antiretroviral /
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Round Scores were deemed satisfactory. Comparison with the regression model gave 100% 

sensitivity but only 34.47% specificity. Narrowing the acceptance window to ±15% improved 

specificity to 84.47% while maintaining a 99.17% sensitivity.

CONCLUSION: The current CPQA proficiency testing scoring algorithm which employ a ± 20% 

acceptance window appears to suffer from a low specificity and may be too lenient. A stricter 

±15% acceptance window would increase specificity and overall accuracy while lowering the 

overall pass rate by only 3%.
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Introduction

The Clinical Pharmacology Quality Assurance (CPQA) program was established in 2008 

and provides multiple quality-centered activities for all National Institute of Allergies and 

Infectious Diseases, Division of AIDS (NAIAD/DAIDS) HIV Clinical Trial Networks 

globally. CPQA was established, in part, to meet the Clinical Laboratory Improvement Act 

(CLIA) mandate that clinical laboratories participate in and demonstrate satisfactory 

performance in proficiency testing (PT) programs.1 CPQA provides a semi-annual 

proficiency PT program for eleven U.S. and international clinical pharmacology laboratories 

(CPLs) which support NIAID/DAIDS funded HIV/AIDS clinical pharmacology and clinical 

trial networks. The PT program has included more than 27 different antiretroviral (ARV) 

drugs since its inception.

In a previous report,2 we developed and tested regression models to longitudinally assess the 

precision and accuracy of reported concentrations (RCs) by individual CPLs. We compared 

estimates of error and bias between models in which the assigned nominal concentration 

(NC) of ARV analytes was set to either the formulated weighed-in-value (WIV) (ie 

NC=WIV) or to a final-target-value (FTV) comprised of a hybrid of either WIV or the group 

mean (ie NC=FTV) (The algorithm is specified in the previous report). We further employed 

analysis of covariance (ANCOVA) models to identify factors associated with program 

accuracy and precision. We found that use of the NC=FTV algorithm attenuated estimates of 

bias overall and as a function of concentration magnitude. The NC=FTV algorithm is 

therefore a better model when ensuring inter-laboratory comparability is the goal. Prediction 

intervals from the regression of recovery on NC=FTV further suggested that a smaller 

window of acceptance should be considered. According to the ANCOVA models, we 

identified that CPL, analyte, and ARV-specific concentration category (low/medium/high for 

the ARV) as the three factors that exhibited significant associations with bias and/or error, 

while other factors including PT round and ARV-independent concentration category (WIV 

in ranges: 30–200, 200–500, 500–1200, 1200–3200, and 200–8000 ng/mL) did not.

Here, we provide a more comprehensive analysis by focusing on results for the eight most 

frequently tested ARVs including atazanavir (ATV), darunavir (DRV), efavirenz (EFV), 

emtricitabine (FTC), lopinavir (LPV), nevirapine (NVP), ritonavir (RTV), and tenofovir 
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(TFV), across 13 PT rounds, not previously reported, conducted from 2010 to 2016. Our 

goal is to provide better estimates of the main sources of variability, to evaluate in more 

detail the accuracy of the algorithm for the assessment of performance, and to assess the 

effect of narrowing the acceptance window on acceptance rates.

Methods

PT PROGRAM

The CPQA PT program designs, prepares and distributes two PT exercises (rounds) per year. 

Blank plasma matrix is spiked with drugs to attain pre-specified concentrations of ARV 

analytes. These pre-specified concentrations are termed the weighed-in-value (WIV) and are 

prepared using reference ARVs obtained from the NIH-AIDS Research and Reference 

Reagent Program.3 Each ARV is provided at five different concentrations, which are 

appropriate for samples both within the therapeutic range as well as occasional samples 

above or below said range. ARVs are incorporated into two PT panels; currently nine 

analytes are included in panel A, six analytes are included in panel C and 1 analyte is 

included in Panel E. Prepared PT samples are stored at −70 ± 15°C and initially pre-

qualified by the CPQA analytical laboratory. Pre-qualification analysis is never used to alter 

the NC of PT samples but rather used to ensure that gross formulation errors have not 

occurred. PT samples are then shipped on dry ice to participating CPLs with detailed 

instructions. Using an online Laboratory Data Management System (LDMS), each 

laboratory confirms receipt and sample integrity, indicates planned reporting of specific 

analytes, and submits assay results (ie. RCs). At the end of the submission period, a 

completeness evaluation is performed to confirm that all planned results are received; 

discrepancies are queried for resolution.

PT SCORING ALGORITHM

The most common methods for assigning NC in PT programs are based on either a reference 

value (determined as the formulated weighed in value, WIV) or a consensus value of the 

participants such as the mean of reported concentrations (group mean, GM).4 CPQA PT 

employs a hybrid of these two methods to assign NC, which we term the final-target-value 

(FTV). In our algorithm, FTV is set to the WIV by default. The GM rather than WIV is used 

as the FTV only when the percent deviation of GM (determined after removal of outliers, if 

any) from the WIV is >5%, the number of laboratories reporting for that sample is large 

enough (4 or more), and the coefficient of variation between CPLs’ RCs is ≤15%. The GM 

is also used as the FTV when the number of laboratories reporting is exactly 3 and the 

coefficient of variation among CPLs is ≤ 15% (regardless of percent deviation of GM from 

WIV).2 Therefore, our independent variable in all analyses was log (FTV).

The PT scoring algorithm reflects US Clinical Laboratory Improvement Act (CLIA) PT 

regulations.5 Each individual RC receives an RC Score of “Acceptable” provided it is within 

± 20% of FT.6 Concentrations below a CPLs limit of quantitation are assigned a censor code 

indicating that the sample was either below sensitivity of the assay or undetectable. RCs 

outside ± 20% receive an RC Score of “Unacceptable”. Each ARV analyte is provided at five 

different concentrations in each round. These five RC scores reported by a CPL are pooled 
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to determine the CPL’s overall performance for that analyte termed the “ARV/Round 

Score.” The “Satisfactory” score is assigned when at least 80% of the RCs (4 out of 5 levels 

for a single analyte) have a RC Score of acceptable. Less than 80% “Acceptable” leads to an 

“Unsatisfactory” ARV/Round Score for the particular analyte.

Statistical Analysis

DESCRIPTIVE SUMMARY

To describe the characteristics of the PT program, we present an update to the previous 

report focusing on results from eleven CPLs, across 13 PT rounds (December 2010 to July 

2016) and the eight most commonly tested ARVs which were included in all PT rounds: 

atazanavir (ATV), darunavir (DRV), efavirenz (EFV), emtricitabine (FTC), lopinavir (LPV), 

nevirapine (NVP), ritonavir (RTV), and tenofovir (TFV). All RCs with an assigned RC 

score, either acceptable or unacceptable, were retained in the descriptive table. We 

summarized the number of RCs and the percentage of RCs that achieved an RC Score of 

“Acceptable” for each analyte/CPL combination, for each analyte pooled over all CPLs, and 

for each CPL pooled over all analytes. We also summarized the number of ARV/Round 

Scores, and the percentage of ARV/Round Scores that were “Satisfactory” for each analyte 

pooled over all CPLs and for each CPL pooled over all analytes. For each analyte, we also 

summarize: (1) the number of unique samples, (2) the percentage where PD ≤ 5%, (3) the 

percentage where CV ≤ 15%, and (4) the percentage where FTV = WIV.

COMPARISON OF PT ASSESSMENT WITH PREDICTION LIMITS AROUND ESTIMATED 
REGRESSION EQUATIONS

An alternate criterion to assign RC scores was based on fitting a linear regression model 

describing the relationship between the natural log of RCs (dependent variable) to the 

natural log of FTV concentrations (independent variable). Those RCs falling inside 95% 

prediction limits around the estimated regression equation were deemed acceptable; the rest 

were deemed unacceptable.

In order to assess the accuracy of the PT scoring algorithm used, comparisons with the linear 

regression model were made by the calculation of binary classification metrics including 

sensitivity, specificity, positive predictive value, negative predictive value and overall 

accuracy. Sensitivity was defined as probability that the RC was acceptable by the PT 

program algorithm when it was also acceptable according to the regression model (true 

acceptable rate). Specificity was defined as probability that the RC was unacceptable by the 

PT program algorithm when the RC was also unacceptable according to the regression 

model (true unacceptable rate). Positive predictive value was defined as the probability that 

when the RC was acceptable in the linear regression model, the RC was also deemed 

acceptable in the PT program algorithm. Negative predictive value was defined as the 

probability that when the RC was unacceptable in the linear regression model, the RC was 

also deemed unacceptable in the PT program algorithm. Accuracy was defined as the overall 

probability that a RC will be correctly classified.7 In order to further examine our previous 

findings suggesting that a smaller window of acceptance should be considered,2 these 

calculations were made employing an acceptability thresholds of ± 20% and ±15% around 
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the FTV. Furthermore, we illustrate the effect of the threshold on PT performance by 

plotting the false acceptable and false unacceptable rates for thresholds from 5% to 30%.

VARIANCE-COMPONENTS ANALYSIS

To assess the relative contributions of analyte, CPL and analyte-specific concentration 

category to the magnitude of assay bias (signed differences between nominal and reported) 

and variability (absolute values of the differences between nominal and reported 

concentrations; absolute value ensures that over- and under-estimation of the same absolute 

magnitude are treated the same), we performed variance-components analyses. In the 

analysis of variability, for the dependent variable: we first calculated the absolute recovery

,  100 × FinalTargetValue + abs FinalTargetValue − ResultUsed
FinalTargetValue , then ranked the absolute recovery, 

and performed the variance-components analysis by fitting a linear mixed-effects model to 

the ranks. As we anticipated that bias and variability could be higher for samples at the low 

and high ends of the concentration spectrum, analyte-specific concentration category (low, 

medium and high) was treated as a fixed effect. As we wanted to infer about analytes and 

laboratories in general, analyte, CPL and their interaction were treated as random effects 

(that is, analytes and CPLs were treated as samples from a (theoretical) larger population). 

Models specifications are given in the statistical supplement.

Results

DESCRIPTIVES

For the 13 PT rounds, a total of 9,486 RCs for PT specimens were reported by participating 

laboratories. Of these, 3,002 RCs were excluded from the final report; these RCs are also not 

considered herein. Reasons that an RC was excluded from the final report include: RC was 

used for a test panel, for a blank sample or for analytes that the laboratory did not select for 

PT. Results for a total of 27 analytes were included in the round-specific final reports across 

the 13 rounds, however, this report focuses on the 8 most clinically relevant analytes that 

were included in all 13 rounds, for which there were 4,124 RCs. Of these 4,124 RCs, 15 

were not scored for PT (result not quantifiable). The remaining 4,109 RCs received scores of 

either Acceptable or Unacceptable. These 4,109 RCs are included in descriptive analyses 

herein.

Additional exclusions apply in the model-based analyses herein, where RC is the continuous 

dependent variable, and the goal is to evaluate analytical variability, not pre-or post-

analytical events such as transcription errors. Specifically, the following types of RCs were 

excluded: 6 RCs were reported as below the lower limit of quantitation, 13 additional RCs 

where a result was expected but absent, 5 RCs where incorrect units were entered for the 

upper and lower assay limits, 32 RCs where the percent deviation between the RC and the 

final target value was above 50% in absolute value, and an additional 4 RCs where the 

percent deviation was above 20% in absolute value and the lab received an “Unsatisfactory” 

analyte score for all samples for the analyte due to clerical errors (data-entry transcription, 

incorrect units reported, etc). Thus 4,049 RCs are retained in the model-based analyses 

herein.
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CHARACTERISTICS OF SAMPLES AND SCORES

For each analyte and CPL combination, Table 1 lists the overall number of RCs, RC Scores 

and ARV/Round Scores and the percent that received acceptable or satisfactory scores. 

Column 1 gives the ARV analytes and the range of concentrations formulated into PT 

samples. The second-to-last row of Table 1 gives the total number of Result Scores for each 

CPL (pooling analytes) and the CPL-specific percentages of Result Scores that were deemed 

acceptable, based on the decision rule, “acceptable if within ±20% of FTV”. The number of 

RCs per lab ranges from 130 (for lab 3) to the maximum of 520 (for lab 2). Only 

laboratories 3 and 11 reported fewer than 300 concentrations. The percent acceptable scores 

range from 93% (for lab 9) to 100% (for laboratories 2 and 8). The last row of Table 1 gives 

the total number of ARV/Round Scores issued for each CPL, which ranges from 26 (for lab 

3) to the maximum of 104 (for laboratory 2). The last row also shows laboratory-specific 

percentages of ARV/Round Scores that were deemed Satisfactory. These range from 89% 

(for laboratory 9) to 100% (for laboratories 2 and 8).

The second-to-last column gives the total number of Result Scores for each analyte (pooling 

CPLs) and the analyte-specific percentage of Result Scores that were deemed acceptable. 

The number of RCs per analyte ranges from 410 (for FTC) to 585 (for EFV and LPV). No 

single analyte was reported by all 11 CPLs. The second-to- last column also gives analyte-

specific percentages of RCs that received acceptable RC Scores. Percent acceptable ranges 

from 95% (for NVP and RTV) to 99% (for DRV and EFV). The last column gives the total 

number of ARV/Round Scores issued for each analyte, which ranges from 82 (for FTC) to 

117 (for EFV and LPV). Analyte-specific percentages of satisfactory ARV/Round Scores are 

also shown; these range from 93% (for FTC) to 99% (for DRV).

For each analyte, Table 2 gives the number of unique samples tested, and the percentages 

where: (1) percent deviation (PD) from WIV ≤ 5%, (2) coefficient of variation (CV) ≤ 15%, 

and (3) WIV (as opposed to GM) was selected as the final target value. Sixty-five unique 

samples were analyzed for each of the eight analytes. Among these analytes, percentage of 

PD ≤ 5% ranges from 34% (DRV) to 80% (TFV), while percentage of CV ≤ 15% shows a 

smaller range from 92% (FTC) to 100% (DRV). Percentage where FTV = WIV has a similar 

pattern as percentage of PD ≤ 5% (range: 34% - 78%). Since the variations between the RCs 

for a specific analyte sample are controlled within a good range for all eight analytes, based 

on our algorithm to select the FTV, when GM for a specific analyte sample is close to WIV, 

WIV is selected as the FTV, otherwise GM is selected as the FTV as long as the number of 

RCs are large enough for that sample.

VARIANCE-COMPONENTS ANALYSIS

Variance-components analyses used mixed effects models to estimate the contribution of 

each random effect to the total variance of the dependent variable and identify the major 

contributing factors. Table 3 provides a summary of the variance-components analysis. In 

the model treating Analyte and CPL as random effects and analyte-specific concentration as 

a fixed effect with all interaction terms included, CPL accounts for 2.6% of bias and 4.4% of 

error with a small contribution from analyte and the remaining variation is random. 

Interactions in the model indicates that interaction between analyte and laboratory (analyte/
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laboratory combinations) account for 3.4% of error and 8.1% of bias, with much smaller 

contributions from other combinations. The remaining variation is random.

PARAMETER ESTIMATES FROM FITTING REGRESSION MODELS

When WIV is used as the NC, the estimated intercept is negative, and the estimated slope is 

positive (data not shown). Both estimates are statistically significant. When NC=FTV, the 

estimated intercept is not significantly different from zero. The estimated slope, while 

statistically significant (different from the value 1.0), is only different from the (null) value 

1.0 at the 1/10,000 decimal place.

ACCURACY OF THE PERFORMANCE ASSESSMENT ALGORITHM

Table 4 compares the PT scoring algorithm with the prediction model using 95% prediction 

limits around the estimated regression equation at both ±20% and ±15% thresholds. 

Considering first the ±20% cut-off, the PT scoring algorithm and the prediction model agree 

for 96.67% accuracy of RCs; 94.91% where both are acceptable and 1.75% where both are 

unacceptable. There are 3.33% of RCs deemed acceptable by the PT scoring algorithm but 

unacceptable by the prediction model, while there is no RC discrepant in the other direction.

When a ±15% threshold window is applied to the PT scoring algorithm, the two methods 

agree for 98.94% accuracy of RCs; 94.64% where both are acceptable and 4.30% where 

both are unacceptable. Compared with the ±20% cut-off, at ±15% the agreement where both 

are acceptable is very similar (94.9% vs. 94.6%), while agreement on unacceptable increases 

from 1.75% to 4.30%. The percent of RCs acceptable by PT scoring algorithm and 

unacceptable by the prediction model decreases, from 3.33% to 0.79%, and the percent 

unacceptable by PT scoring algorithm and acceptable by prediction model very slightly from 

0 to 0.27%.

A clearer picture appears in calculating and examining the binary classification metrics. 

Using a 20% cut-off, the main deficiency of the current PT scoring algorithm is a lack of 

specificity where only 34.47% (71 out of 206) of unacceptable analyte scores detected by 

the prediction model are also detected by the PT scoring algorithm which, appears to miss 

nearly two-thirds of all scores that would be scored unacceptable by the prediction model.

Application of a 15% cut-off greatly increases the specificity of the PT scoring algorithm 

from 34.47% to 84.47% where 174 of 206 of unacceptable analyte scores detected by the 

prediction model are also detected by the PT scoring algorithm. The ±15% threshold also 

increases the overall accuracy from 96.67% to 98.94% and results in only small reductions 

in sensitivity and negative predictive value. This relationship between false acceptable and 

false unacceptable rates is illustrated graphically in figure 1. False acceptable rates rise, and 

false unacceptable rates fall as the acceptance criterion increases from ±5% to ±30%. Values 

for both parameters clearly reach a common minimum at a ±15% cut-off.

Beyond the acceptability of individual RC Scores, the satisfactory performance of a CPL for 

an ARV analyte, during a PT round, is based on attaining a satisfactory ARV/Round Score. 

To examine the impact of the low sensitivity of the PT scoring algorithm at a ±20% cut-off 

on the overall PT program, we calculated the number of ARV/Round Score assignments 
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(satisfactory or unsatisfactory) which would have actually changed as a result of employing 

a ±15% cut-off. Table 5 shows that of 822 total ARV/Round Scores, 791 (96%) were 

deemed satisfactory using a ±20% cut-off in contrast to 765 (93%) satisfactory using a 

±15% cut-off.

Discussion

Previous longitudinal examination of CPQA PT performance used fewer rounds of PT 

results but a broader spectrum of ARV analytes to conduct longitudinal analysis of PT across 

multiple CPLs.2 We developed and tested statistical models that longitudinally assessed the 

precision and accuracy of concentrations reported by individual CPLs and determined 

factors associated with round-specific and long-term assay accuracy, precision, and bias 

using a new regression model. These analyses helped us determine that our NC=FTV 

scoring algorithm is tenable compared to a scoring algorithm employing only the formulated 

WIV. Use of the WIV only, to assign the NC, has the desirable statistical property that it is 

independent of the dependent RC variable, however it is biased from the true but unknown 

concentrations in the PT samples and is extremely sensitive to PT sample preparation error. 

The CPQA PT scoring algorithm is designed to prevent application of the unacceptable NC 

when there was a preparation error and uses FTV (set by either WIV or GM) to assign NC 

and to ultimately determine acceptable/unacceptable PT performance. The drawback in 

using FTV as the independent variable is that, when the GM is substituted, the independent 

variable is not statistically independent from, but is based on, subsets of RCs (i.e., the 

dependent variable). In this report, parameter estimates from fitting regression models 

indicates that, overall, the agreement between RC and NC is better when NC=FTV, with the 

estimated intercept near zero and the estimated slope near 1.0. Therefore, our independent 

variable in all analyses was log (FTV).

Our prior univariate analyses2 also helped us identify several factors, including CPL, analyte 

and analyte concentration as the most significant contributors to variability and bias. Here, 

variance component analyses were done by using mixed effects models to estimate the 

contribution of analyte and CPL as random effects, and analyte-specific concentration 

category as a fixed effect, to the total variance of RCs. Although only our final mixed model 

(2 random error and 1 fixed effect with interactions) is presented here, we examined multiple 

versions of the models treating all components as random effects both with and without 

interactions. In all these models, the components of variation were in similar magnitude and 

rank order and analyte specific concentration category (high/medium/low) was better 

characterized as a fixed effect. We choose to model analyte concentration as a fixed effect as 

the accuracy and precision of the liquid chromatography-mass spectrometry (LC-MS) 

methodologies, and analytical methodologies in general, tend to have distinct patterns of 

decreased precision and accuracy at the upper and lower limits of the dynamic range. At low 

concentrations, we expect increased imprecision and decreased accuracy due to low signal-

to-noise ratios and the fact that our client CPLs follow FDA guidelines for bioanalytical 

method validation.8 These guidelines allow ±20% deviation and a 20% imprecision 

(expresses as percent coefficient of variation; %CV) for the lowest calibrations and 

validation quality control materials as opposed to a 15% limits throughout the remaining 

analytical range. At upper limits, ion suppression effects and/or decreased ionization 
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efficiency tend to decrease precision and accuracy. Our findings agree with our previous 

univariate models in that mainly individual CPL, and to a lesser degree ARV analyte, appear 

to be the main drivers of variability and bias beyond random error.

In order to examine the accuracy of the CPQA PT scoring algorithm, we generated binary 

classification metrics of the PT scoring algorithm versus scoring using 95% prediction limits 

around estimated regression equations as the “gold standard” comparator. The current PT 

scoring algorithm (RC is acceptable within ±20% of FTV) demonstrates 96.67% accuracy 

with the prediction model yet suffers from a relatively low specificity of only 34.47%. This 

means that the PT scoring algorithm tends to miss “true” PT failures at the level of 

individual RCs. Altering the PT scoring algorithm to use a ±15% window greatly increases 

the specificity to 84.47% and also increases the overall accuracy to 98.94%. This indicates 

that the current ±20% window may be too lenient. Indeed, our client CPLs have validated 

their methods to meet ±15% accuracy and 15% imprecision (%CV) thresholds according to 

FDA guidelines. This is evident in the improved performance metrics for the overall 

program when a stricter ±15% window is enforced.

Caution, however, should be taken in considering the prediction model as the “gold 

standard” comparator. There are limitations in the use of prediction limits around the 

regression model as the “gold standard” for determining the RC score. The model assumes 

that RCs are log-normally distributed and have a linear relationship with logs of the FTV. 

Using the 95% prediction limits as thresholds for “Acceptable”, 5.1% of RCs are identified 

as “Unacceptable” (Table 5); this is the expected percentage of RCs outside the limits under 

the null hypothesis that all log RCs arise from the same populations (that is, populations 

with expected values of 0.002 + log (FTV)). Future work may evaluate the performance of 

the prediction limits as limits of acceptability when specific types of assay problems are 

postulated. In particular, focused analysis on the effect of a more restrictive acceptance 

window on PT performance at lower concentrations is warranted. In contrast to our findings 

that analyte specific concentration category is a not a major source of variability, The 

International Interlaboratory Quality Control Program for Therapeutic Drug Monitoring of 

Antiretroviral Drugs in Human Plasma/Serum has reported that concentration range is the 

only significant predictor of inaccurate results with lower concentrations performing worse 

than medium or high concentrations.9, 10

Conclusions

The current CPQA PT scoring algorithm employing a ± 20% acceptance window appears to 

suffer from a low specificity and may be too lenient. A stricter ±15% acceptance window 

would increase specificity and overall accuracy while lowering the overall PT program pass 

rate by only 3%.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Effect of acceptance window threshold (±5% to ±30%) on the percentage of false acceptable 

and the false unacceptable reported concentrations.
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