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Human DEF6 deficiency underlies an
immunodeficiency syndrome with systemic
autoimmunity and aberrant CTLA-4 homeostasis
Nina K. Serwas, Birgit Hoeger et al.#

Immune responses need to be controlled tightly to prevent autoimmune diseases, yet

underlying molecular mechanisms remain partially understood. Here, we identify biallelic

mutations in three patients from two unrelated families in differentially expressed in FDCP6

homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic auto-

immunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated

with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells.

Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine

nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well

as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been

treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as

player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at

T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.

Corrected: Publisher correction
https://doi.org/10.1038/s41467-019-10812-x OPEN

Correspondence and requests for materials should be addressed to K.B. (email: kaan.boztug@ccri.at).
#A full list of authors and their affiliations appears at the end of the paper.

NATURE COMMUNICATIONS |         (2019) 10:3106 | https://doi.org/10.1038/s41467-019-10812-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7491-9405
http://orcid.org/0000-0001-7491-9405
http://orcid.org/0000-0001-7491-9405
http://orcid.org/0000-0001-7491-9405
http://orcid.org/0000-0001-7491-9405
https://doi.org/10.1038/s41467-019-12454-5
mailto:kaan.boztug@ccri.at
www.nature.com/naturecommunications
www.nature.com/naturecommunications


A lthough immune dysregulation and autoimmunity are
hallmarks of multiple human diseases, their underlying
molecular pathological mechanisms remain poorly

understood1. Studying monogenic disorders with predominant
autoimmunity offers an attractive strategy to identify core reg-
ulators of immune homeostasis2. Key regulatory components
which help tune immune responses include regulatory T cells
(Tregs)3 and the checkpoint protein CTLA-44. CTLA-4 is con-
stitutively expressed on Tregs and upon activation on activated
conventional helper-T cells (Tconv). CTLA-4 ligand engagement
results in rapid internalization from cell surfaces by clathrin-
mediated endocytosis, and shuttling to either lysosomes or
RAB11+ recycling endosomes5–8. Functionally, CTLA-4 com-
petes with the activating co-receptor CD28 for interaction with
their shared ligands CD80/CD86 expressed on antigen-presenting
cells (APCs)9, thereby inhibiting T-cell costimulation. Binding of
CTLA-4 to CD80/CD86 results in ligand transendocytosis into
T cells, sequestering the costimulatory ligands from APCs. Inside
the T cell, CD80/86 are guided to lysosomal degradation10.
Interaction of CTLA-4 with lipopolysaccharide-responsive and
beige-like anchor protein (LRBA) is essential for prevention of its
own degradation11. The importance of CTLA-4 in regulating
human immune tolerance is underlined by several SNPs con-
ferring increased risk of autoimmunity12 and further solidified
with the recent identification of patients with monoallelic muta-
tions in CTLA4 or biallelic mutations in LRBA suffering from
severe autoimmunity13–18. Additional cellular regulators of
CTLA-4 and their relevance to human disease remain to be
investigated.

DEF6, also known as IRF4 binding protein (IBP)19 or SWAP-
70-like adaptor of T cells (SLAT)20 is a unique guanine nucleotide

exchange factor (GEF) which has an inverse conformation of the
PH-DH domain compared to conventional GEFs21. DEF6 acts
downstream of the T-cell receptor (TCR) and can be phos-
phorylated by the tyrosine-protein kinases LCK21 and ITK22. It
can activate small GTPases of the RHOA21 and Ras family23,
promoting Ca2+ signaling, NFAT1 activation24, and T-cell adhe-
sion23. Additionally, DEF6 binds and negatively regulates the
transcription factor IRF425,26. Murine knockout studies have
illustrated a role of Def6 in immunological synapse formation27,
Th1/Th2 lineage differentiation24, IL17 and IL21 production26,
bacterial phagocytosis28, T-cell proliferation29, as well as a possible
role in early-onset large vessel vasculitis26 and autoimmunity27.
Interestingly, other studies of Def6-knockout mice contrarily
revealed resistance to uveitis and experimental autoimmune
encephalitis30,31, and to date it remains unclear whether suscept-
ibility to autoimmunity is dependent on the genetic background of
the mice or other factors. Thus, the role of DEF6 in autoimmunity
has remained controversial and partially enigmatic.

Here, we uncover an inborn error of immunity caused by
biallelic mutations in DEF6 and characterized by early-onset
systemic autoimmunity. We find impaired CTLA-4 availability
and trafficking, due to decreased interaction of mutated DEF6
with the small GTPase RAB11, as the mechanistic basis for the
autoimmune manifestations.

Results
Systemic autoimmunity in three patients from two families.
We studied three patients with severe autoimmune manifesta-
tions. Patient 1 is female (P1, Family A) born to consanguineous
Pakistani parents (Fig. 1a) who presented with severe watery

a

I-1 I-2

II-1 II-2 II-3 II-4 II-5 II-6 II-7

III-1 III-2 III-3
(P2)

III-4
(P1)

III-5

Family A

Family B

I-1 I-2

II-1
(P3)

II-2

Age (m)

F
ec

al
 c

al
pr

ot
ec

tin
 (

m
g/

kg
)

0 6 12 18 24 30
0

500

1000

1500

2000
Upper

detection
limit

Normal
range

In
iti

at
io

n 
C

T
LA

-4
-I

g 
th

er
ap

y

c

b

*

*

d Before treatment

1 Month after CTLA-4-Ig (Abatacept)

e

Age: 18 m
(3 m after

treatment initiation)

P1 Age: 14 m

Fig. 1 Systemic autoimmunity in three patients from two families. a Pedigree of families A and B. Filled symbols – affected patients (P). b Colon biopsy of P1
reveals T-cell infiltration (red: anti-CD3). c Fecal calprotectin values reveal therapy-dependent reduction of bowel inflammation in P1. d Duodenal biopsies
at the age of 5 months (top) showed incomplete villous atrophy with villi focally reduced and plump (closed arrows). The inflammatory infiltrate contains
clusters of eosinophilic granulocytes (lined arrows) and only few crypts with isolated apoptotic figures (asterisk). At the age of 16 months (bottom, 1 month
of therapy with Abatacept, see Fig. S1e) duodenal biopsies showed presence of villi (closed arrows) and no signs of acute inflammation in the lamina
propria (asterisk) of P1. e Perianal fissures of P1 before (top) and after (bottom) therapy initiation present a marked improvement of patient quality of life
(m - months)
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diarrhea in the first month of life. Endoscopy revealed atrophy of
gastric mucosa and villous atrophy with pronounced T- and
eosinophilic cell infiltration in the colon and duodenum (Fig. 1b
and Fig. S1a). Further disease features included hepatospleno-
megaly, dilated cardiomyopathy, and increased susceptibility to
viral and bacterial infections suggesting a primary immune defect
(Tables 1 and 2). Immune phenotyping revealed reduced CD8+

T-cell numbers (Table 1) and slightly reduced percentages of
CD25highCD127lowFOXP3+ Tregs (Fig. S1b) in the circulation.
Immunoglobulin levels were not consistently altered (Table 1),
only few CD19+CD27+IgD− class-switched B cells were detected
(Fig. S1c), and specific antibody responses were impaired
(Table 2). Clinical signs of autoimmunity were paralleled by
detectable anti-neutrophil cytoplasmic antibodies (ANCA) and
autoantibodies against cardiolipin, smooth muscle protein, and
β2-glycoprotein (Table 2). NK cells were in the normal range, and
neutrophil function including oxidative burst as well as phago-
cytosis of opsonized bacteria was not impaired (Table 2). A serum
cytokine/chemokine blot did not reveal elevation of pro-
inflammatory cytokines but rather reduced levels of serum IL-
12 and IL-6 compared to a healthy control (Fig. S1d). Upon
clinical deterioration of symptoms, we initiated CTLA-4-Ig
(Abatacept) treatment at 4-weekly intervals starting at
15 months of age (Fig. S1e). Consequently, bowel inflammation
decreased markedly as reflected by fecal calprotectin values
(Fig. 1c). Lymphocytic infiltration and complete villous atrophy
of the duodenum improved within one month of treatment
(Fig. 1d). In addition, persisting perianal lesions reversed and did
not recur (Fig. 1e). P1 was consequently discharged and treated as
an outpatient (Fig. S1e). To date, ~4 years after treatment

initiation, no overt signs of autoimmunity have reoccurred, and
cardiorespiratory fitness has been stable without arrhythmias or
other overt pathology. Regular immunoglobulin treatment is
given. Recurrent infections requiring antibiotic treatment have
persisted (Fig. S1e). The female sibling of P1 (patient 2 or P2) had
been diagnosed earlier with a systemic autoimmune/autoin-
flammatory disease that included bowel inflammation, hepato-
megaly, cholestasis, and cardiac ventricular septal defect. P2 also
presented with recurrent infections and exhibited reduced num-
bers of lymphoid cells (Table 1, Table 2), however immunological
investigations could not be performed in-depth since P2 died at
10.5 months of age due to cardiomyopathy-associated cardiac and
multi-organ failure.

A third patient (P3, family B), born to consanguineous Iraqi
parents (Fig. 1a), presented at 7 months of age with hemolytic
anemia in the context of a CMV infection which was successfully
treated with corticosteroids/azathioprin and ganciclovir/valganci-
clovir as indicated by decreased CMV DNA levels. Direct
Coombs test was positive and hemolytic anemia relapsed at the
age of 27 months (Table 2) without detectable CMV DNA,
prompting initiation of immunosuppressive treatment. Despite
treatment, P3 developed transient thrombocytopenia (minimum
32 × 109/L) which resolved spontaneously at the age of 3.5 years.
Blood counts revealed reduced lymphocyte numbers (0.9–2.5 ×
109/L, Table 1) with low absolute numbers of T, B and NK cells,
yet largely normal relative percentages of lymphocytes (Table 1).
More in-depth immunophenotyping revealed slightly increased
proportions of CD38highIgMhigh transitional B cells (18.7%,
reference 3.1–12.3% (ref. 32)) and CD38highIgM- plasmablasts
(7.7%, reference 0.4–4.0% (ref. 32))) but normal frequencies of

Table 1 Immunological data on patients with DEF6 mutations

Patient (age) P1 (1–4m) P1 (5–8m) P1 (9–10m) P2 (4m) P2 (5–6m) P2 (7 m) P3 (7–13 m) P3 (5 y 3m) P3 (5 y 7 m)

ALC (cells/mm³)
(normal range)

6040
(4054–7048)

6250
(3320–7006)

2230
(3320–7006)

1450
(3320–7006)

1930
(3320–7006)

1904
(3873–6141)

1779
(2340–5028)

1753
(2340–5020)

Lymphocyte
subsets
CD3+ (%) 77 (62.7–81.6) 68 (51.8–74.2) 62 (51.8–74.2) 78 (51.8–74.2) 67 (51.8–74.2) 60

(60.7–75.8)
70
(59.7–77.6)

72
(59–7–77–6)

(cells/mm³) 4650
(3180–5401)

4250
(2284–4776)

1380
(2284–4776)

1130
(2284–4776)

1290
(2284–4776)

1137
(2542–4933)

1265
(1578–3707)

1263
(1578–3707)

CD4+ (%) 65
(42.8–65.7)

53 (34.9–53.1) 56 (34.9–53.1) 67 (34.9–53.1) 61 (34.9–53.1) 34
(35.0–51.9)

35 (31.1–47.4) 34 (31.1–47.4)

(cells/mm³) 3930
(2330–3617)

3310
(2284–4776)

1250
(2284–4776)

970
(2284–4776)

1170
(2284–4776)

653
(1573–2949)

635
(870–2144)

594
(870–2144)

CD8+ (%) 11 (15–23) 11 (12.8–27.1) 7 (12.8–27.1) 8 (12.8–27.1) 8 (12.8–27.1) 18 (16.1–29.4) 28
(16.0–26.9)

34
(16.0–26.9)

(cells/mm³) 660
(712–1361)

690
(524–1583)

160
(524–1583)

120
(524–1583)

150
(524–1583)

351
(656–1432)

513
(472–1107)

592
(472–1107)

CD19+ (%) 8 (7.4–21.3) 19 (17–37.2) 18 (17–37.2) 12 (17–37.2) 18 (17–37.2) 21 (14.3–28.2) 16 (12.9–29.2) 14 (12.9–29.2)
(cells/mm³) 480

(315–1383)
1190
(776–2238)

400
(776–2238)

170
(776–2238)

350
(776–2238)

415
(733–1388)

281
(434–1274)

238
(434–1274)

CD16+56+ (%) 12 (4.2–14.8) 12 (4–15.1) 15 (4–15.1) 11 (4–15.1) 18 (4–15.1) 9 (4.0–13.8) 7 (4.7–16.2) 8 (4.7–16.2)
(cells/mm³) 730

(201–870)
750
(230–801)

330
(230–801)

160
(230–801)

350
(230–801)

183
(186–724)

129 (155–565) 143 (155–565)

CD3+CD45RA+

(cells/mm³)
78
3630

82
3490

63
810

54
580

43
553

39
496

CD3+CD45RO+

(cells/mm³)
6
280

9
380

14
180

36
409

57
721

60
767

CD3+TCRαβ+
(cells/mm³)

75
4530

62
3880

62
1190

99
1115

96
1214

88
1118

CD3+TCRγδ+
(cells/mm³)

2
(0.7–4.1) 120

2 (2.8–5.8)
130

2 (2.8–5.8)
40

1
17

4
68

11
145

Immunoglobulins
IgG (g/L) 1.60 (↓)

(4–9.8)
4.32 9.59 5.60 5.51 6.9

IgA (g/L) 0.009 (↓)
(0.17–0.94)

0.69 2.34 (↑) 0.42 1.09 (↑) 0.25

IgM (g/L) 0.17 (↓)
(0.34–2.1)

0.91 4.74 (↑) 0.67 2.92 (↑) 0.45

Lymphocyte reference values (in brackets) were taken from ref. 68. Values outside reference range are marked in bold. Immunoglobulin (Ig) concentration was tested at least 4 weeks after the last
intravenous Ig treatment. P1 was vaccinated three times with Prevenar 13® (Pfizer: pneumococcal polysaccharide conjugated vaccine) and INFANRIX hexa® (GlaxoSmithKline: Corynebacterium diphtheriae,
Clostridium tetani, Bordetella pertussis, Haemophilus influenzae type 1B, hepatitis B virus, poliovirus) at the age of 3, 4, and 10 months. The higher values might be caused by the presence of maternal
antibodies
m months, y years, ALC absolute lymphocyte count, TCR T-cell receptor, Ig Immunoglobulin
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CD19+CD27+IgD− class-switched B cells (13.1%, reference
4.7–21.2% (ref. 32)), slightly reduced percentages of CD25high

PD-1lowFOXP3+ Treg cells (Fig. S1f), and decreased mature
CD56dimCD16+CD57+ NK cell population (Fig. S1g). Distribu-
tion of T-helper cell subsets in PBMCs, after accounting for age-
related high numbers of naïve T cells, did not reveal abnormal
skewing (Fig. S1h and i). Immunoglobulin levels were in the
normal range (Table 1).

Germline mutations in DEF6 segregate in both families. Exome
sequencing was performed for P1 and P3 to identify the under-
lying molecular disease etiologies, and confirmed by Sanger
sequencing in respective family members. Among the segregating
variants, DEF6 was the single common gene affected in both
pedigrees that segregated with the disease. Enlarged pedigrees
were sequenced to confirm segregation of variants with disease
(Fig. 2a, b). In family A, we identified a homozygous missense
variant in DEF6 (c.G991A, p.E331K) affecting the highly con-
served PH-DH domain in both affected siblings P1 and P2
(Fig. 2a, c), while exome sequencing in family B identified a
second, more N-terminal homozygous missense variant in DEF6
(c.T628G, p.Y210D) in P3 (Fig. 2b, c). Genetic investigation was

not performed for the newborn sister. Mutation Y210D affects a
residue phosphorylated by ITK and necessary for interactions
with the kinase22. This residue was previously shown to be
phosphorylated by LCK as well and critical for induction of DEF6
activity25, however, these findings have not been corroborated by
further studies. Both variants were predicted damaging by Poly-
phen-2, SIFT and CADD (Table S1). The identified DEF6
mutations have not been reported in homozygous state in ExAC,
gnomAD33 or TOPMed databases which are based on different
population cohorts (Table S1), and heterozygotes were reported
with minor allele frequencies below standard thresholds for rare
diseases34 (Table S1). Probability of loss-of-function intolerance
for DEF6 (pLI) was calculated as likely33 (Table S1). The mutated
amino acids E331 and Y210 are conserved among vertebrates
(Fig. S1j). Given the overlapping phenotypes, the identification of
high-impact genetic variants in DEF6 as the only gene found
mutated in both pedigrees and segregating with the disease, and
the assumed role of DEF6 in human immunity, we hypothesized
that the DEF6 variants were causative for the common disease
phenotype. While amino acid exchange DEF6E331K led to slight
reduction in protein expression in P1-derived expanded T cells
(Fig. 2d), DEF6Y210D was barely detectable in feeder-expanded

Table 2 Clinical characteristics of patients with DEF6 mutations

Patient (age) P1 P1 (1–4m) P1 (5–8m) P1 (9–10 m) P1 (11–12 m) P2 P3

Neutrophil function
Phagocytosis normal

(E. coli opson.,
S. pneumoniae
opson.)

Oxidative burst normal
Hemoglobin 54 g/L (↓)

(2 y 3 m)
Vaccination response
C. tetani 0.73 IU/ml

(>=0.4 IU/ml)
0.06 IU/ml
(>=0.4 IU/ml)

0.05 IU/ml
(>=0.4 IU/ml)

C. diphtheriae 0.05 IU/ml
(>=0.4 IU/ml)

0.02 IU/ml
(>=0.4 IU/ml)

0.02 IU/ml
(>=0.4 IU/ml)

S. pneumonia 1:76 (>=1:200) 1:20 (>=1:200) 1:20 (>=1:200)
H. influenzae 0.76 µg/ml

(>=1 µg/ml)
0.06 µg/ml
(>=1 µg/ml)

0.07 µg/ml
(>=1 µg/ml)

B. pertussis 0.6 VE
(>=11 VE)

Autoantibodies
ANCA Positive (1:160) Positive (1:40)
Cardiolipin (IgG) n.d. Positive

(12.1 U/ml)
Beta2-glycoprotein
(IgG)

(IgM)

Elevated
(10.5 U/ml)
Normal
(4.9 U/ml)

Positive
(28.8 U/ml)
Positive
(8 U/ml)

Direct Coombs test Positive
Recurrent infections
Bacteria S. pneumoniae, S.

aureus, S. epidermis,
E. aerogenes, E.
cloacae,
E. faecalis

E. aerogenes, K.
oxytoca, S.
epidermis, E.
faecalis

Virus Rhinovirus,
influenza B,
respiratory syncytial
virus, rotavirus

Not specified

Fungi Not specified Malassezia furfur

Reference values in brackets. Values outside reference range are marked in bold. Bacterial species are indicated in italic font
m months, y years, n.d. not determined, opson. opsonized
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T cells of P3 (Fig. 2e and Fig. S2a). In summary, we identified
three patients from two unrelated families presenting with fea-
tures of systemic autoimmunity, bearing two distinct biallelic
missense variants within the DEF6 gene.

DEF6 mutations affect CTLA-4 cycling dynamics. As DEF6 is
predominantly expressed in T cells (Fig. S2b), we focused on
investigating T-cell phenotypes. While calcium flux was found
unaltered in feeder-expanded patient cells upon TCR stimulation
(Fig. S2c and d), ERK phosphorylation and AKT phosphorylation
were partially reduced but not abolished compared to healthy

donor (Fig. S2e). Intriguingly, proliferation of PBMCs or feeder-
expanded T cells was not compromised (Fig. S2f and g). DEF6 is
also expressed, to a lesser extent, in NK cells (Fig. S2b). No defect
in NK-cell immunological synapse formation could be detected
(Fig. S2h).

CTLA-4, similar to DEF6, is predominantly expressed in
T cells. Given the marked response of P1 to Abatacept (CTLA-4-
Ig) treatment enabling clinical disease remission (Fig. 1c–e), we
hypothesized that autoimmunity in DEF6 deficiency may be
linked to aberrant CTLA-4 regulation. Expression of CTLA-4 is
predominantly regulated by FOXP3 (ref. 35) and calcium-
dependent NFAT activation36. We first analyzed CTLA-4
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Fig. 2 Distinct biallelic DEF6 mutations segregate with disease. a, b Segregation pedigrees and chromatograms of the identified DEF6 mutations in family A
(a, variant c.G991A) and family B (b, variant c.T628G). All depicted individuals were validated by capillary sequencing. Unfilled – wild type; filled –

homozygous mutation; half filled – heterozygous state.? – unknown genetic state (not sequenced). For information on the variants, see Supplementary
Table S1. c Schematic of DEF6 protein domains indicating the identified mutations. PH – Pleckstrin homology domain; DH – Dbl homology domain. d
DEF6E331K mutant protein expression is partially reduced in feeder-expanded T cells of P1. e DEF6Y210D mutant protein is barely detectable in T cells of P3
(long exposure is shown). Shorter-exposed immunoblots for (e) are shown in Supplementary Figure S2a. Immunoblots for (d) and (e) were cropped for
visualization and are representative of two independent experiments. Source data of Fig. 2 including uncropped immunoblots are provided as a
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upregulation in stimulated memory-Treg cells that most robustly
express CTLA-4, and normalized the expression to unstimulated,
naïve conventional T cells as previously described37. CD3/
CD28 stimulation indeed showed significantly lower CTLA-4
expression in Treg cells of P3, while CTLA-4 levels in P1 were
non-significantly decreased (Fig. 3a and Fig. S3a). P1 and P3 both
showed slightly reduced FOXP3 levels in Tregs (Fig. S1b and f).
The checkpoint receptor CTLA-4 modulates T-cell responses
through binding to and transendocytosis of the costimulatory
molecules CD80/CD86 from APCs. While CD80/CD86 are
degraded within T-cell lysosomes, CTLA-4 itself is recycled to
the plasma membrane through the vesicular transport
systems8,10,11. Defective CTLA-4 lysosomal sorting has been
described previously to underlie autoimmunity in LRBA
deficiency11. As DEF6 is a GEF for small GTPases, a protein
class crucial for vesicular transports38, we focused on studying
CTLA-4 trafficking processes in DEF6-mutated cells. To evaluate
dynamic processes of CTLA-4 vesicular trafficking, we performed
membrane cycling assays on primary T cells by comparing
surface and cycled CTLA-4 normalized to total expressed CTLA-
4, as outlined in schematic Fig. 3b. We observed reduced
percentages of both surface and cycling CTLA-4 in all T-cell
compartments of P3, including memory (CD45RA−) and naïve
(CD45RA+), regulatory (FOXP3+) as well as conventional
(FOXP3−) T cells, respectively (Fig. 3c–e and Fig. S3b–c, gating
as in Fig. S3d). Analysis of P1 and corresponding healthy donors

revealed reduced CTLA-4 cycling in the memory compartments
(Fig. 3d, e). Defects in CTLA-4 cycling were observed despite
normal activation as evidenced by CD25 upregulation (Fig. S3e).
Comparing mean fluorescence intensities of cycled versus total
CTLA-4 confirmed a relative reduction of cycling CTLA-4 in
patient CD4 cells (Fig. S3f). We furthermore tested CTLA-4 re-
cycling by only labeling for CTLA-4 that re-appeared on the cell
surfaces after at least one cycle of antibody-tracked internaliza-
tion, as outlined in schematic Fig. S3g. In line with our results,
memory Tregs of P1 also showed a reduced appearance of re-
cycled CTLA-4 at membrane surfaces, compared to healthy
control (Fig. S3h and i). Altogether, CTLA-4 cycling pro-
cesses were impaired in DEF6-mutated patient T cells.

DEF6 mutations affect CD80 ligand uptake by CTLA-4. We
next investigated patient T cells for their ability to capture and
trans-endocytose CTLA-4-ligands. We here investigated memory
Tregs, as previous work has shown that this cell population most
robustly reveals defects in CTLA-4 ligand binding37. In accor-
dance with our hypothesis that defective CTLA-4 cycling results
in reduced surface availability of CTLA-4 and as a secondary
consequence also in reduced relative ligand capture on the T-cell
surface, we observed reduced uptake of CD80-Ig in P1 memory
Tregs (Fig. 4a, gating as in Fig. S3k), as indicated by the reduced
slope of the best fit line when compared to healthy controls
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(Fig. 4a, “CD80-Ig”). The observed differences are in line with
previous reports on cells from patients with heterozygous CTLA4
mutations showing dysfunctional ligand capture37. Presence of
CTLA-4-blocking antibody abolished ligand uptake (Fig. 4a,
“CD80-Ig+ anti-CTLA-4”). Finally, the addition of ligand after
cell permeabilization resulted in comparable slopes reflecting
similar overall binding capabilities of the total expressed CTLA-4
(Fig. 4a, “CD80-Ig (permeabilized)”). Thus, our data demonstrate
that CTLA-4 does not effectively reach surfaces in DEF6-mutated
T cells, and as a result the surface-dependent function of CTLA-4
is disturbed. We also analyzed CTLA-4-dependent ligand trans-
endocytosis from CD80-GFP expressing donor cells. In line with
a reduced CTLA-4 surface abundance we found less CD80-GFP
transendocytosed into CD4 T cells of P1 compared to healthy
control (Fig. 4b and quantified for CD4 T cells in Fig. S3j, gating
as in Fig. S3l). Presence of CTLA-4-directed antibody blocked
transendocytosis (Fig. 4b and Fig. S3j). Altogether, due to
impaired availability of the checkpoint protein CTLA-4 on T cell
surfaces, the capturing and transendocytosis of ligands is conse-
quently impaired.

DEF6 knockout phenocopies CTLA-4 cycling defects. To eval-
uate the causality of mutated DEF6 for aberrant regulation of
CTLA-4 trafficking, we utilized several models. We performed
CTLA-4 mobilization assays on CD4 T cells of P1 and a healthy
donor to monitor CTLA-4 on cell surfaces after short stimulation,
which effectively mobilizes CTLA-4 from internal stores. While
total CTLA-4 expression was unaffected, mobilized CTLA-4 was
reduced in patient T cells compared to HD (Fig. 5a, gating as in
Fig. S4a). In a similar setup, we electroporated healthy control or
DEF6E331K-mutated PBMCs with wild type DEF6-GFP (Fig. 5b)
or mutated DEF6E331K-GFP (Fig. 5c). The observed mobilization
defect of CTLA-4 in DEF6E331K-mutated CD4 T cells was
reversed by wild-type DEF6 but not by DEF6E331K (Fig. 5b, c,
gating as in Fig. S4a). To further prove causality, we generated
CRISPR-mediated knockout clones of DEF6 and Renilla control
in CTLA-4-mCherry transduced Jurkat cells (Fig. 5d).

Pronounced reduction of DEF6 expression resulted in defective
CTLA-4 cycling, confirming the role of DEF6 in regulating
CTLA-4 trafficking (Fig. 5e, gating as in Fig. S4b). These defects
could be partly reconstituted by electroporating wildtype but not
mutant DEF6 (Fig. 5f, gating as in Fig. S4c), though slightly more
mutant protein was expressed (Fig. S4d). DEF6 knockout cells
furthermore showed reduced suppression tendency against CD4
target cells in presence of unlabeled PBMCs as APC source (Fig.
S4e, gating as in Fig. S4f).

Our collective data on primary T cells reconstituted with
wildtype DEF6 and on Jurkat knockout cells demonstrate that the
decreased CTLA-4 availability in DEF6-mutated patient cells is
caused by defective intracellular trafficking processes.

DEF6 mutations affect RAB11 interactions. Given our finding
that the guanine nucleotide exchange factor DEF6 regulates
CTLA-4 cycling processes, we hypothesized that DEF6 might
regulate the small GTPase RAB11, a central protein for recycling
endosomes that has been shown to co-localize to CTLA-4+

vesicles8,11. We first assessed the localization of endogenous
DEF6, RAB11 and CTLA-4 in activated patient-derived and
control PBMCs. In line with previous studies8, we observed
prominent co-localization of CTLA-4 with RAB11 in the healthy
control cells (Fig. 6a, b). In sharp contrast, RAB11/CTLA-4 co-
localization was largely reduced in TCR/CD28-stimulated
DEF6E331K-mutated cells of P1 (Fig. 6c). Line scans through
CTLA-4+ vesicles confirmed the lack of co-localization with
RAB11 in DEF6E331K-mutated cells (Fig. 6d). To quantify RAB11
and CTLA-4 co-localization, defined regions of interest with high
CTLA-4 expression and RAB11-positive vesicles were selected
and analyzed for overlap coefficients. Quantitative analyses
revealed a significant reduction of co-localization for P1 and P3
compared to respective healthy control cells (Fig. S5a-c), sug-
gesting a negative impact of mutated/reduced DEF6 on CTLA-4
+RAB11+ recycling vesicles. Of note, RAB11 was expressed at
similar levels in P1 and P3 as in healthy controls (Fig. S5d). To
validate changes in interaction of wildtype or mutated DEF6 with
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RAB11, we performed co-immunoprecipitation analyses in co-
transfected HEK293T cells. While wildtype DEF6 co-
immunoprecipitated with RAB11 (Fig. 6e), this interaction was
reduced in the DEF6E331K-expressing cells (Fig. 6e). These results
suggest a possible GEF activity of wildtype DEF6 for the small
GTPase RAB11, and could hence play a causative role in reduced
recycling of CTLA-4 in patient cells. Consistent with the fact that
GEF proteins for small GTPases interact preferentially with the
dominant negative, GDP-bound form of their target proteins39,
we found that DEF6 interacted strongly with dominant-negative
(GDP-locked) RAB11S25N, but weakly with constitutively-active

(GTP-bound) RAB11Q70L in HEK293T cells (Fig. S5e). In con-
trast, DEF6E331K did not show relevant co-immunoprecipitation
with wild-type, GDP- or GTP-locked RAB11 (Fig. S5f, long
exposure shown). In Jurkat cells, endogenous DEF6 co-
immunoprecipitated with Strep-HA-tagged RAB11 but not with
the Strep-HA-GFP-expressing control (Fig. 6f), confirming a
physical interaction in a T-cell model. The second identified
mutation DEF6Y210D was barely expressed in primary T cells of
P3 (Fig. 2e), probably due to rapid degradation. We over-
expressed GFP-tagged wildtype or Y210D-mutated DEF6 in
Jurkat cells in presence or absence of proteasomal inhibitor
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represent percentages of cycled CTLA-4. Gating as in Fig. S4b. Representative of three independent experiments. f Overexpression of wildtype but not
mutant DEF6 partly rescues defective CTLA-4 cycling in Jurkat DEF6 knockout cells. Cells were electroporated with constructs before stimulation and
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Source Data file
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immunoblots are provided as a Supplementary Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10812-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3106 | https://doi.org/10.1038/s41467-019-10812-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


MG132 and tracked GFP signals over time. Our data confirm loss
of DEF6Y210D two days after transfection which could be fully
reverted by adding MG132 (Fig. S5g). Lastly, kinetic studies on
purified proteins suggest that the PH-DH domain of DEF6 has
GEF activity toward the small GTPase RAB11, while mutated
PH-DHE331K is inactive (Fig. S5h).

To confirm the link between RAB11 and CTLA-4 trafficking,
we overexpressed inactive RAB11S25N and constitutively active
RAB11Q70L in Jurkat-mCherry-CTLA-4 cells, and analyzed
CTLA-4 cycling by counterstaining the cycling protein with
BV421-coupled antibody. As shown in Fig. 6g, h (gating as in Fig.
S5i), when compared to overexpressing wildtype RAB11 or empty
vector, inactive RAB11S25N indeed blocked CTLA-4 cycling while
presence of active RAB11Q70L contrarily enhanced this process at
longer time points.

In sum, our data reveal a previously unknown physical
interaction and GEF activity of DEF6 toward the small GTPase
RAB11, a recognized component of CTLA-4+ recycling endo-
somes8. Consistently, DEF6-mutated cells lacked this interaction
and showed reduced RAB11+CTLA-4+ double-positive vesicles,
suggesting a direct link to the observed defect in CTLA-4
trafficking dynamics through RAB11 as demonstrated by inactive
RAB11S25N compromising CTLA-4 cycling.

Discussion
The role of DEF6 in murine autoimmunity models has been
controversial as the development of autoimmunity appears to
depend on their genetic background26,27,30,31. In humans, the
intronic DEF6 SNP rs10807150 which alters gene expression, is
associated with the onset of systemic lupus erythematosus40.
Here, we describe two unrelated families with three patients
harboring two distinct biallelic missense mutations in DEF6. The
patients present with immunodeficiency and systemic auto-
immunity, thus indicating a critical role for DEF6 in preventing
autoimmunity in humans. We uncover a role for DEF6 in reg-
ulating abundance and recycling of the T-cell checkpoint protein
CTLA-4, as the functional cause of the observed autoimmune
manifestations in DEF6-mutated patients. We base our conclu-
sions on the following observations and in line with previously
outlined criteria:41 (i) we identified different biallelic mutations in
DEF6 as the single common gene affected and segregating per-
fectly with the disease in two unrelated families; (ii) DEF6 has
been previously shown to have a role in the immune system
although its precise role in human immunity had not been
determined; (iii) we identified a CTLA-4 trafficking defect
amenable to rescue upon reconstitution of patient T cells with
wildtype DEF6, explaining the predominant clinical presentation
of autoimmunity; (iv) CRISPR-based DEF6 knockout in Jurkat
cells recapitulates defective CTLA-4 cycling and could be reverted
by reconstitution with the wildtype protein; (v) we provide a
functional explanation involving compromised RAB11-DEF6
interaction affecting RAB11-dependent CTLA-4 shuttling; (vi)
lastly, the successfully commenced CTLA-4-Ig therapy in P1 led
to remission of symptoms.

CTLA-4 is a critical molecule in human immune homeostasis.
A reduction of CTLA-4 levels by 50% as observed in CTLA-4
haploinsufficiency results in severe autoimmunity13,14, while
notably patients with biallelic loss-of-function germline muta-
tions in CTLA4 have not been described and are potentially lethal.
Ctla4−/− mice are viable, although they develop fatal auto-
immunity early in life whereas their Ctla4+/- littermates are
healthy42,43. These studies suggest that humans appear to have a
narrower window of tolerance regarding CTLA-4 critical abun-
dance for the onset of disease. This assumption is further sup-
ported by genome-wide association studies which have identified

SNPs affecting the relative cell surface expression of CTLA-4
associated with human autoimmune disease44. Reduction of
available CTLA-4 by enhanced lysosomal degradation is also the
cause for severe autoimmunity in LRBA deficiency11. Again, in
contrast to the human phenotype, Lrba−/− mice do not develop
overt autoimmunity45–47, have a normal lifespan and also intri-
guingly exhibit an increased acceptance of allogeneic bone mar-
row grafts45. Thus, Def6−/−, Ctla4−/+, and Lrba−/− mice display
inconsistent autoimmune manifestations or lack such. Our dis-
covery of a mechanistic link between DEF6mutations and CTLA-
4 functional integrity offers insights to autoimmunity in humans.
Clinical and immunological phenotypes in DEF6-mutated
patients include T-cell lymphopenia, low class-switched B cells,
hepatosplenomegaly, autoimmune hemolytic anemia and bowel
inflammation, all of which are reminiscent of CTLA-4 hap-
loinsufficiency and LRBA deficiency13–18,48–50. In accordance
with previous reports on genetically determined autoimmune
diseases through compromised CTLA-4, clinical manifestations
vary between patients due to the lowered thresholds of inhibitory
T cell function, rather than through specific triggers51. Still, they
do represent the same disease. As for other newly described
disease entities, larger patient cohorts in future studies will help to
unravel the full phenotypic spectrum of disease due to functional
DEF6 deficiency. It is impossible to dissect whether the strong
immunosuppressive treatment in P1 may have contributed to the
more pronounced B-cell deficiency including borderline-low
frequencies of class-switched memory B cells and impaired vac-
cination titer generation, and also the persistent susceptibility to
infections which has been described previously in individuals
treated with abatacept52. To date, P3 has exhibited less pro-
nounced autoimmune manifestations. This could be due to a
distinct mutation with distinct cellular effect, or possibly a dif-
ferent genetic or epigenetic background. Given the reduced
CTLA-4 expression in P3 (Fig. 3a), it is possible that other
autoimmune manifestations may present with time. Interestingly,
in contrast to CTLA-4 and LRBA-mutated patients, DEF6-
mutated patients do not show an obvious activation/exhaustion
phenotype in peripheral blood T cells. This might be due to the
fact that DEF6 is also involved in T-cell signaling. Def6−/− mice,
for example, exhibit a reduced clonal expansion of CD8+

T cells29. The interplay of DEF6 in T-cell signaling and regulation
of CTLA-4 might result in a normal status of T cells derived from
the blood, but increased activation in situ, where antigen is pre-
sented in higher concentrations as suggested by the massive T-cell
infiltration in peripheral tissues (Fig. 1b). The homozygous fra-
meshift mutation in SKIV2L that was additionally identified in P1
and the deceased sister P2 in family A (Table S1), could represent
a disease-modifying factor potentially affecting cardiac function
and/or bowel inflammation53, but does not explain the auto-
immune presentation observed in DEF6-mutated individuals
from both families and our identified link to aberrant CTLA-4
shuttling. We proved causality by reconstitution of the CTLA-4
cycling defect in patient-derived cells through ectopic expression
of wildtype DEF6, and a similar reconstitution of DEF6-knockout
Jurkat models could revert the observed CTLA-4 cycling defect.
Finally, the response of P1 to CTLA-4 replacement therapy
suggests a T cell-mediated disease.

The co-localization, co-immunoprecipitation and over-
expression data confirm that DEF6 regulates CTLA-4 vesicular
trafficking via the small GTPase RAB11. RAB11 has previously
been located at recycling vesicles containing CTLA-48. We
identify a cellular regulation pathway of CTLA-4, which may
involve direct activation of RAB11 by DEF6, a GEF protein that
functions downstream of TCR engagement. RAB11 is a broadly
expressed small GTPase and its deletion in a murine knockout
model was found embryonically lethal54. It is also considered a
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crucial component of the so-called exocyst, which regulates late-
endosomal trafficking55. However, it is largely unknown which
GEF proteins activate RAB11 to promote its multiple actions, and
future studies are required to address this question. Our data
reveal that RAB11 interacts with DEF6, and that DEF6 acts as
GEF protein for RAB11 as suggested by a preferential interaction
of DEF6 with the GDP-locked small GTPase, and further evi-
denced by kinetic GEF activity studies on purified protein
domains. The phenocopy of defective CTLA-4 cycling by over-
expressing inactive RAB11S25N in Jurkat cells further supports
this theory. In patient-derived DEF6-mutant T cells, RAB11+

recycling endosomes do not co-localize with CTLA-4+ vesicles,
suggesting that DEF6 promotes RAB11-mediated recycling of
CTLA-4.

In conclusion, our work identifies a role for DEF6 in regulating
CTLA-4 availability and trafficking to prevent autoimmunity, in
line with CTLA-4 functioning both as immune rheostat and
defining thresholds of immune activation for anti-cancer
immunity11,13,14,56. The work presented herein underlines the
power of identifying genetic causes for immune diseases as a way
to uncover immune regulatory pathways2. Given the identified
role of DEF6 in tuning the immune checkpoint protein CTLA-4,
future studies should address whether DEF6 and related proteins
are amenable to manipulation for targeted therapeutic interven-
tion in immune-mediated disorders or potentially also anti-
cancer immunotherapeutic approaches.

Methods
Patients and ethics. Patient studies have been approved by the ethics committee
at the Medical University of Vienna (MedUni Vienna), Austria (study number
EK499/2011), and the Regional Ethical Review Board in Stockholm (study number
2013/1723–31/4). Patients P1 and P2 were evaluated, followed up and treated at the
Children’s hospital of the MedUni Vienna. P3 was evaluated, followed up and
treated at Astrid Lindgren’s Childrens Hospital in Stockholm. Biological material of
patients and healthy donors (HD) was obtained on informed consent in accor-
dance with the Declaration of Helsinki. Blood drawings were taken by veni-
puncture. Healthy-donor shipping controls which underwent the same handling
and storage conditions were included in all experiments where blood was not
directly assessed.

Further clinical information on the patients. Patient 1 (P1, index patient of
family A) presented oligohydramnion in prenatal ultrasounds and intrauterine
growth retardation. A Caesarean section was performed at 38 weeks of gestation
due to rupture of the membrane and pathological dopplersonographic measure-
ments. Weight and length at birth were below third percentile (1435 g; 39 cm; head
circumference 25.5 cm). No abnormalities were observed during the perinatal
period, apart from mild respiratory distress syndrome. P1 presented hypertelorism,
inward mamillae, growth retardation (below third percentile) and abnormal fatty
tissue distribution. At 23 days of life severe watery diarrhea was observed, asso-
ciated with vomiting and electrolytes imbalances (hypernatremia and hyper-
chloremic acidosis; Na: 159 mmol l−1, pH 7.1; base excess: −18) and massive
increase of inflammation markers (C reactive protein concentration: >20 mg dl−1).
Total parenteral nutrition was initiated with no obvious improvements of diarrhea.
Hydrolyzed formula also did not improve P1’s health status. Viral, bacterial,
parasitic or allergic causes of the diarrhea were excluded upon repeated testing.
Massive bowel inflammation was suggested by increased stool calprotectin
(Fig. 1c). Endoscopy revealed atrophy of gastric mucosa with numerous apoptotic
cells. Complete villous atrophy was also observed in the small intestine. Microvillus
inclusion disease and an underlying metabolic disease were excluded. The duo-
denum showed massive infiltration of eosinophils and T cells (Fig. S1a). Plasma
and goblet cell numbers were reduced. Colonic mucosa showed normal appear-
ance. Subsequently, P1 developed perianal dermatitis (Fig. 1e). Topical treatment
had no effect on the dermatitis and deep, indurated, painful ulcers evolved. Enteral
feeding was offered, but led to massive vomiting. Thus, therapy with corticosteroids
(prednisone 1 mg kg−1 day−1) was initiated which showed slight improvement of
disease status. Intravenous cyclosporine was added to the therapy. Enteral feeding
was gradually increased through a jejunostomy. Vomiting ceased and stool con-
sistency improved substantially. Parenteral nutrition could be withdrawn. With
subsequent reduction of cyclosporine, watery diarrhea recurred leading to a loss of
about 1.5 kg within two weeks. At the age of 2 months P1 presented hepatomegaly
and laboratory liver abnormalities (elevated γ-glutamyl transferase (450 U l−1) and
liver enzymes (AST/ALT: 100 U l−1)), which were treatable with ursodeoxycholic
acid. Echocardiography imaging of P1 revealed a dilated cardiomyopathy with an
atrial septal defect (ASD). Treatment with phosphodiesterase inhibitor and

acetylsalicylic acid was initiated. Due to suspected vasculitis the patient further
received intravenous immunoglobulins. P1 developed a biventricular hypertrophy,
with an ASD. Treatment with enalapril, atenolol, spironolactone, and furosemide
resulted in improved ventricular function, however, biventricular hypertrophy
persisted and arterial hypertension developed. Due to reduced immunoglobulin
levels after birth (Table 1), the patient was supplemented with intravenous
immunoglobulins (IVIG) for two months in which IgG/IgM/IgA levels were closely
monitored. IVIG administration was paused until the age of 10 months when IVIG
supplementation was reinitiated due to reduced specific immunoglobulin titers
after vaccination with various agents (polio, diphtheria, tetanus) (Table 2).

Patient 2 (P2, deceased sister, family A) was born at 35 weeks of gestation due to
premature rupture of the membrane. She showed intrauterine growth retardation
(weight at birth: 1260 g; length at birth: 38 cm (both: below third percentile for
age); and head circumference at birth: 29.5 cm (at third percentile)) without catch-
up postnatally (weight at 2 months of age: 1696 g; length at 2 months of age: 40 cm
(both: below third percentile for age). She presented with a cleft palate. Enteral
feeding was difficult due to clinical signs that were interpreted as necrotizing
enterocolitis. Neither diet with extensively hydrolyzed formula nor with elemental
formula improved her clinical condition, necessitating parenteral nutrition.
Colonoscopy at the age of 138 days revealed rectal ulcers and remarkably few
plasma cells and increased numbers of apoptotic cells in the descending and
transverse colon. Rectal fissures and ulcers were detected. Mucosal membrane
showed normal conditions. Besides the gastrointestinal symptoms, the patient was
found to have an atrioventricular septum defect (AVSD) which was treated with
pulmonary artery banding and VSD patch closure. She developed increasing heart
insufficiency, pulmonary hypertension and a third-grade atrioventricular (AV)
block requiring pacemaker treatment. Her liver presented severe hepatomegaly and
signs of progressing cholestasis, siderosis, steatosis and hypertriglyceridemia (430
mg dl−1). Furthermore, she developed a metabolic acidosis and hypokalemia.
Screening for an underlying metabolic disorder was negative. Liver failure was
reported as P2 presented massive jaundice, anasarca and ascites. Histology of the
liver revealed autolysis. Clinical signs and symptoms suggestive of an undefined
immunodeficiency appeared as P2 presented with recurrent infections and sepsis
(Table 2). Autopsy after death revealed pulmonary artery and biventricular dilation
as well as right ventricular hypertrophy. She showed pleural effusion and
congestion.

Patient 3 (family B) was born uneventfully and healthy except for a verrucous
nevus. His presentation with CMV initiated the treatment with corticosteroids as
well as ganciclovir/valganciclovir. EBV and HIV serology were negative. As CMV
DNA levels decreased, valganciclovir treatment was stopped after 1 month of
therapy. Azathioprine treatment started after six weeks, during tapering of steroids.
The steroids were stopped after 4 months of treatment, with azathioprine
continued for an additional 3 months. During the relapse of hemolytic anemia P3
was put on immunosuppressive treatment again with corticosteroids and
azathioprine until the age of 3.5 years. During treatment he developed transient
thrombocytopenia (minimum 32 × 109 L−1) at the age of 2 years and 4 months.
Thereafter, he has remained with a growth curve without remarks (5.5 years
currently). Blood values have normalized except for lymphocyte numbers being
repeatedly low (0.9–2.5 × 109 L−1, Table 1). The patient has not displayed any
gastrointestinal symptoms but was prescribed oral antibiotics since, and no cardiac
anomalies were detected.

Genetic analysis. DNA of P1 and P3 was extracted from whole blood with
Genomic DNA Purification kits (Promega). DNA of P2 was extracted after death
from stored histology slides. DNA of relatives was extracted either as described for
P1 or from saliva samples with the QIAamp® DNA mini kit. For P1 (family A),
homozygous intervals were determined applying Affymetrix® SNP-based homo-
zygosity mapping and used as a filter for detected variants. Whole exome
sequencing was performed on genomic DNA of P1 and analyzed for novel non-
sense, missense and frameshift variants, as follows: After library prep with the
Illumina True Seq and Exon Enrichment kit, the sample was multiplexed and
loaded onto two lanes of one flow cell. DNA was sequenced on an Illumina
HiSeq2000 Sequencer by paired-end sequencing. After variant calling, demulti-
plexing and alignment of the 227,048,916 reads, 97.8% of reads could be uniquely
mapped. Average target coverage was 140×. VCF.Filter software57 was used for
filtering for missense, nonsense, splice-site and frameshift variants in the whole
exome sequencing data. The obtained list was filtered to exclude variants with a
minor allele frequency (MAF) > 0.01 in 1000 Genomes, dbSNP and gnomAD, and
an internal cohort database was used to further exclude recurrent variants. Filtered
candidate variants were analyzed and investigated in the ExAC and gnomAD
browsers for loss-of-function intolerance and predicted-to-observed mutation
rates33. For segregation analysis of candidate variants, DNA of family members (14
individuals, Fig. 2a) was investigated by Sanger sequencing, leaving three candidate
genes with variants in family A (Supplementary Table S1). For family B, whole-
exome enrichment and sequencing of P3 and the healthy mother were performed
applying a Agilent SureSelect v5 51Mb kit and Illumina HiSeq2000 sequencer.
Reads were aligned to human genome GRCh37 with BWA/0.7.4 (ref. 58).
Variant calling and annotation were performed with haplotype caller from the
Genome Analysis Toolkit (GATK) (v.3)59 and variant effector predictor (VEP)
(version 75)60, respectively. Variant filtering was performed using GEMINI
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(v0.11.0a)61. Validation of variants was done by standard capillary sequencing,
family members (parents) were similarly sequenced for presence of identified
variants (Fig. 2b). DEF6 remained as the single gene affected and segregating in
both pedigrees (Supplementary Table S1). All next generation sequencing data are
deposited at the EGA database with restricted access (see the Data Availability
section). Analyses of conservation and mutational impact were done with the
prediction tools Polyphen-262 and SIFT63, and CADD scores64 were calculated for
segregating genes.

Flow cytometry. For family A, immunophenotyping was performed on a BD
LSRFortessaTM or BD FACSCantoTMII. Peripheral blood mononuclear cells
(PBMCs) were isolated from patients or HD blood with a Ficoll gradient and were
either used fresh or cryo-preserved in liquid nitrogen. Staining of surface antigens
was performed after blocking in FBS-containing medium for 30 min at 4 °C,
intracellular antigens were stained applying the fixation/permeabilization kit for
intracellular antigens or transcription factors (Affymetrix, eBioscience). All ana-
lyses were performed using FlowJo X (TreeStar Inc.) and Prism 7.0 (GraphPad
Software). Magnetic microbeads-based sorting of total CD4 T cells was done by
negative depletion applying the EasySep human CD4+ T cell enrichment kit, stem
cell technologiesTM. The following antibodies were used for flow cytometry: From
Beckman Coulter: CD16-FITC (clone 3G8), CD19-PECy7 (J3–119), CD3-FITC
(UCHT1), CD3-PC5.5 (UCHT1), CD4-PE (13B8.2), CD4-PECy7 (SFCI12T4D11),
CD45RA (ALB11), CD45RO (UCHL1), CD56-PE (N901), CD56-PECy5 (N901),
CD8-PECy7 (SFCI21), TCRvα24-PC-7 (C15), TCRvβ11-FITC (C21); from eBi-
socience, Affymetrix: CD152-PE (14D3), CD19-PerCPCy5.5 (HIB19), CD3-APC
(SK7), CD3-APC (UCHT1), CD4-eFluor450 (RPA-T4), CD4-PerCPCy5.5 (RPA-
T4), CD45RA-PerCP-Cy5.5 (HI100), CD69-APC (FN50), FOXP3-FITC
(PCH101), FOXP3-eFluor450 (236A/E7), FOXP3-APC (236A/E7) from BD Bios-
ciences: CD152-PE (BN13), CD16-PECy7 (3G8), CD19-PECy7 (SJ25C1), CD25-
PE (M-A251), CD25-BV605 (2A3), CD27-PE (M-T271), CD27-PECy7 (M-T271),
CD27-V450 (M-T271), CD3-APC-H7 (SK7), CD4-APC (RPA-T4), CD4-AF700
(RPA-T4), CD4-BV421 (RPA-T4), CD4-BV605 (RPA-T4), CD45RA-AF700
(HI100), CD45RO-FITC (UCHL1), CD56-AF700 (B159), CD56-V450 (B159),
CD69-APC (L78), CD69-PECy7 (L78), CD69-PECy7 (FN50), CD8-V450 (RPA-
T8), CD8-V500 (RPA-T8), CD8-FITC (HIT8a), Igκ-PE (G20–193), IgD-APC-H7
(IA6–2), IgD-FITC (IA6–2), TCRαβ-FITC (WT31), TCRαβ-PE (T10B9.1A-31),
TCRγδ-APC (B1), TCRγδ-PE (11F2).

For immunophenotyping of P3, PBMCs from P3 and healthy controls were
obtained by Ficoll gradient isolation. Extracellular antigens were stained at room
temperature for 20 min in FACS Buffer (PBS+ 2% FCS+ 4 mM EDTA)
supplemented with directly conjugated antibodies, fixed with 1.6 % formaldehyde,
permeabilized and stained intracellularly for 20 min at room temperature in BD
Perm/Wash Buffer (BD Biosciences) supplemented with directly conjugated
antibodies. Alternatively, fixation and intracellular staining was performed with the
FoxP3/Transcription Factor staining buffer set (eBiosciences) according to
protocol. Cells were analyzed on a BD LSRFortessa and all analysis was perfomed
using FlowJo software (TreeStar). To assess absolute numbers of immune cell
subsets, Trucount assays were performed (BD Biosciences). The following
antibodies were used for P3: From Beckman-Coulter: TCRgd-FITC (clone
IMMU510) CD27-PECy5.5 (1A4CD27) CD27-ECD (1A4CD27), TCRVα24-FITC
(C15), TCRVβ11-APC (C21), CD56-PECy5.5 (N901), NKG2A-PECy7 (Z199),
CD27-PECy5.5 (1A4CD27); from BD Biosciences: CD45-V500 (HI30), IgD-BV711
(IA6–2), CD38 (MHN4–2), CD16-PECF594 (3G8), CD56-PECy7 (NCAM16.2),
CXCR5-AF488 (RF8B2), CD8-APCCy7 (SK1), FOXP3-V450 (259D/C7), CCR4-PE
(1G1), CD69-BUV395 (FN50), CCR6-BUV737 (11A9), CD16-APCCy7 (3G8),
CD16-V500 (3G8), CD19-V500 (HIB19 BD), IgM-APC (G20–127), CD16-AF700
(3G8), CD38-BV785 (HIT2), CXCR4-PE (12G5), CD25-PECy7 (M-A251),
streptavidin-FITC (554060), CD19-APCCy7 (SJ25-C1), CD57-BV605 (NK-1);
from Biolegend: CD45RA-A700 (HI100), CD8-BV570 (RPA-T8), CD3-BV605
(OKT3), PD-1-APC (EH12.2.H7), TCRγδ-BV510 (B1), CD3-BV711 (OKT3),
CD45RA-BV785 (HI100), CXCR3-PE-Dazzle (G025H7), CD57-Pacific Blue
(HCD57), CD19-FITC (HIB18), IgD-APCCy7 (IA6–2), CD25-APC (BC96),
CD45RO-A700 (UCHL1), CCR7-BV421 (G043H7), CD8-BV711 (RPA-T8); from
Invitrogen: CD4-Qdot605 (S3.5); from Exbio Antibodies: CD21-Pacific Blue
(LT21); from Miltenyi Biotec: NKG2C-biotin (REA205).

Cell culture and stimulation conditions. PBMCs and –derived cells as well as Jurkat
E6.1 cells were maintained in RPMI-1640 medium supplemented with 10% of heat-
inactivated FCS (Life Technologies, Gibco), 50 Uml−1 penicillin, 50mgml−1 strep-
tomycin and HEPES (all from Gibco) at 37 °C in a humidified atmosphere with 5%
CO2. For CD4 T-cell isolation, Affymetrix eBioscience MagniSort negative selection
was used. T cells were either stimulated with CD3/CD28 antibody-bearing dynabeads
(Gibco) at a 1:1 or 1:2 bead to cell ratio, or with anti-CD3 (OKT3) and anti-CD28
(CD28.2) soluble antibodies (both from eBioscience). T cells were expanded by co-
culturing with gamma-irradiated feeder cells65 with PMA/ionomycin stimulation.
CHO cells were cultured in DMEM medium (Gibco), supplemented as above.

Immunoblots. Cells were lysed in IP buffer (20 mM Tris (pH 7.5), 150 mM NaCl,
2 mM EDTA, 1% TritonX-100, phenylmethylsulfonylfluoride (PMSF, 100 mM),

complete protease inhibitor cocktail (PIC)) or RIPA buffer supplemented with
PMSF and PIC, and analyzed by Western blot with primary antibodies against:
DEF6 (H00050619-B01; Abnova), GAPDH (sc-365062; Santa Cruz Biotechnology),
RAB11 (700184, Invitrogen), HSP90 (F-8, Santa Cruz). Uncropped scans and
(where applicable) additional exposures of all immunoblots are shown in a separate
Source Data file, with molecular weight markers indicated.

Phosphoblotting. Feeder-expanded T cells were starved for 4 h in PBS/0.5%
human serum. Samples were placed on ice and PHA stimulation mix was added
still on ice. Samples were placed on a 37 °C thermoshaker and at the indicated time
points, ice-cold PBS was added and respective samples were placed on ice
immediately. Cells were then lysed in RIPA buffer as above, and resolved by SDS-
PAGE Western blot. The following primary antibodies were used: HSP90 (F-8,
Santa Cruz), AKT (40D4, Cell Signaling), phospho-AKT (Ser473, D94, Cell Sig-
naling), ERK1/2 (137F5, Cell Signaling), phospho-ERK1/2 (Thr202/Tyr204, Cell
Signaling).

mRNA expression. Extraction of RNA was performed using RNeasy kit (Qiagen),
first-strand complementary DNA synthesis was done using Expand Reverse
Transcriptase (Roche) using both oligo-dT and random hexamer primers. Intron-
spanning primers were used for gene expression analysis: DEF6-forward: 5′-
CATCTCGGAAGTGTTCCTCC-3′, DEF6-reverse: 5′-CAAGTCCATCTGG-
TACGCCT-3′, ACTB-forward: 5′-GTTGTCGACGACGAGCG-3′, ACTB-reverse:
5′-GCACAGAGCCTCGCCTT-3′.

Calcium flux. To assess calcium influx in P1, feeder-expanded T cells were harvested,
washed with PBS and loaded with Calcium Sensor Dye eFluorTM 514 (eBioscience)
for 30min at 37 °C. After loading, cells were washed and resuspended in RPMI 10%
FCS medium at 1 × 106ml−1. Anti-CD3 (OKT3, eBioscience) was added to the cells
to final concentration of 0.5 μgml−1. After 5 min incubation at 37 °C, a baseline
measurement of 30 sec was recorded, subsequently anti-mouse IgG (Jackson
ImmunoResearch) was added to a final concentration of 20 μgml−1 and measure-
ment continued for 3min. After stimulation, 1 μgml−1 of ionomycin was added to
the cells and acquisition continued for 1 more min. To assess calcium influx in P3,
cells were incubated in HBSS buffer containing 1mM probenecid (Thermo Fisher) in
the presence of CD3-biotin (OKT3, Biolegend) and CD28-biotin (28.2, Biolegend) or
IgG2a (MOPC-173, Biolegend) antibodies for surface staining, and the calcium dye
Fluo-8 AM (abcam). After 5 min incubation at 37 °C, a baseline measurement of 30
sec was recorded, streptavidin (abcam) was added and measurement continued.
Following antibodies were used for surface staining: from Biolegend: CD3-BV711
(RPA-T8), CD4-BV785 (OKT4), CD45RA-PECy7 (HI100); from BD Biosciences:
CD27-APC (M-T271); from Invitrogen; CD3-Qdot605 (UCHT1).

Cell proliferation. Cells were stained for 10 min with CFSE or VPD-450 violet
proliferation dye65, washed in PBS and cultured in growth media. After 4 days, dye
dilution traces of proliferated cells were compared by flow cytometry.

Analysis of CTLA-4 mechanisms. For CTLA-4 cycling experiments (depicted in
schematic Fig. 3b), CD4 T cells were isolated from PBMCs and left to recover at
least 2 h in complete RPMI media at 37 °C in 5% CO2 atmosphere before pro-
ceeding. Cells were then seeded to a 96-well U-bottom plate at a density of 2 × 106

cells/mL and left unstimulated or stimulated with anti-CD3/CD28 coated dyna-
beads. After 16 h incubation, antibodies were added to stain for cycling CTLA-4
according to the following procedure: Anti-CTLA-4-PE (14D3, eBioscience) was
added at 37 °C for the indicated time points (60 min, 30 min or 10 min, respec-
tively). At time point zero, cells were placed immediately on ice and stained for
surface CTLA-4. T-cell surface stains were added to all wells (anti-CD4-
PerCpCy5.5 (RPA-T4, eBioscience), anti-CD25-BV605 (2A3, BD Horizon), anti-
CD45RA-AF700 (HI100, BD Pharmigen)) were carried out for 30 min on ice. Cells
were then washed in PBS and fixed for 1 h using the FOXP3 fixation/permeabili-
zation kit (eBioscience). After washing in permeabilization buffer (eBioscience),
intracellular stains were added for 1 h on ice. Cells were washed and analyzed by
flow cytometry. Gating for naïve and memory Tregs and Tconv cells was performed
as shown in Fig. S3d. Using FlowJo software (10.4), percent-quartiles as well as
geometric mean fluorescence intensity values for CTLA-4-positive and FOXP3-
positive or –negative final gates were extracted and normalized sample-internally to
respective total CTLA-4 stains. Experiments were performed at minimum two
independent blood donations of both P1 and P3.

Re-cycling CTLA-4 (depicted in schematic Fig. S3g) was analyzed as follows:
Isolated CD4 T cells were stimulated for 16 h as described. In step 1, unconjugated
anti-CTLA-4 antibody (Ticilimumab) was added and incubated for 60 min at 37 °C
to ensure binding to the cycling portion of CTLA-4. After washing, goat-anti-
human-Fc antibody (Lifetech) was then added and left to incubate for another 60
min at 37 °C, 5% CO2, to fluorescently label all CTLA-4 that was labelled in step 1
that had re-cycled back via the cell surface during incubation with the secondary
antibody. Cells were then harvested and stained for T-cell markers. To avoid
stoichiometric hindrance, cells were counter-stained for total CTLA-4 with AF647-
conjugated C-19 antibody (Santa Cruz) binding the intracellular portion.
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Analysis of soluble ligand uptake by memory Tregs was done as described
previously37. In detail, CD4 T cells were isolated and stimulated with anti-CD3/
CD28 coated dynabeads (see above), or left unstimulated. Where applicable, CD80-
Ig was added and cells were incubated for 16 h. Subsequently, cells were labelled for
T-cell surface markers, fixed and permeabilized as described above, and stained
intracellularly with anti-CTLA-4-AF488 antibody (15162 S; Cell Signaling). CD80-
Ig was visualized with anti-human IgG-PE antibody (6140–09, Southern Biotech).
Where indicated, ligand binding was blocked with anti-CTLA-4 antibody (550405,
BD Biosciences) during incubation. For total-uptake controls, respective samples
were incubated with CD80-Ig after cell permeabilization. Using FlowJo software,
cells were gated on memory Tregs, and fluorescent values for CTLA-4 and CD80
were exported and plotted with GraphPad Prism software. Slopes of best-fit lines
were calculated and compared to respective “no ligand” samples.

For analysis of transendocytosis, isolated CD4 T cells were stimulated for 16 h or
left unstimulated as described above, and co-cultured with CD80-GFP expressing
CHO cells. To block transendocytosis, anti-CTLA-4 (as above) was added to control
conditions. Cells were then harvested and stained for T-cell markers and total
CTLA-4, as described above. Populations were gated on CD4+ cells and plotted for
CTLA-4 and transendocytosed GFP (CD80). Percent quartiles are depicted,
indicating CTLA-4+GFP+ populations having transendocytosed CD80 from CHO
cells and incorporated (bound to CTLA-4) into T cells.

For analysis of CTLA-4 mobilization, cells were stimulated for 60 min with PMA
(20 ng/ml) and ionomycin (1 µM) in the presence of CTLA-4 antibody (as above),
and subsequently stained for T-cell markers on ice. Cells were gated as shown in Fig.
S4a. For reconstitution experiments, PBMCs were transfected for 24 h with pcDNA-
GFP-DEF6 or pcDNA-GFP-DEF6E331K using the Amaxa Nucleofector kit for
primary human T cells, according to the manufacturer’s recommendations.
Transfection efficiency was around 10% of GFP-expressing CD3+CD4+CD8−

T cells, and transfected cells were analyzed for the CTLA-4-positive portion.
Cycling assays in Jurkat cells were performed similar to respective studies on

primary cells. Jurkat cells carrying mCherry-CTLA-4 were constructed by
retroviral transduction. For CTLA-4 cycling, cells were stimulated o/n with OKT3,
before cycling CTLA-4-BV421 antibody was added for 10 or 30 min incubation,
respectively. Cells were subsequently placed on ice, and then fixed with ICFix
solution (eBioscience). Rescue and overexpression experiments were performed as
above, by transfecting cells 24 h prior to analysis. Gating as in Fig. S4b.

Suppression assay. PBMCs were isolated of one healthy donor, and split into two
fractions. One fraction was used for CD4 T-cell isolation by negative selection.
Isolated CD4 T cells were labelled with VPD450 dye, and the following cell ratios
were seeded: Respective Jurkat: unlabeled PBMCs: VPD450-labelled CD4 T cells
(same healthy donor)= 2:1:1. Cells were stimulated with OKT3 and monitored at
various time points by Flow cytometry. Suppression of CD4 T-cell proliferation
was assessed by tracing VPD450 dye dilution. Gating as in Fig. S4d.

Immunofluorescence. PBMCs or expanded T cells were either stimulated with
antibodies against CD3/CD28 or left untreated. After a stimulation period of 48 h,
cells were harvested and adhered to poly-L-lysine (Sigma)-coated cover slips by
incubating cells for 10 min at 37 °C, 5% CO2. Cells were immediately fixed in 4%
paraformaldehyde (PFA) solution. Permeabilization was done by incubation with
0.5% Triton-X100 (Sigma). Cells were blocked with 4% BSA (Roth). For staining
the following antibodies were used: DEF6 (H00050619-B01, Abnova; or DEF6-
antisera20), CTLA-4 (15162 S; Cell Signaling; or sc-376016AF647; Santa Cruz),
RAB11 (sc-6565; Santa Cruz), anti-mouse (A-11029, Life Technologies), anti-rabbit
(A-21429, Life Technologies), and anti-goat (Life Technologies). Cells were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI, Roth) for 10 mins.
Coverslips were mounted in Prolong® Gold antifade reagent (Life Technologies).

Confocal microscopy. Confocal microscopy was performed on a Leica SP8,
Olympus FluoView FV10i or Zeiss LSM700 laser scanning confocal microscope,
equipped with an X63 or an X40 oil lens. For the evaluation of immunological
synapse formation, cell conjugates of primary NK cells and K562 cells were formed,
stained and assessed by confocal microscopy65. For RAB11-CTLA-4-DEF6 co-
localization, line scan analysis and co-localization analysis by Pearson’s correlation
calculations (JaCoP tool) were performed with ImageJ66. Quantification of RAB11-
CTLA-4 co-localization was done on areas of cells with detectable RAB11-positive
vesicles and maximal CTLA-4 expression. The thickness of slices was set to 0.4 µm.
For P3, images were captured on a Zeiss LSM700 microscope using a pinhole of 1
AU in each channel.

Molecular cloning. DEF6 and RAB11 cloning plasmids were bought from
DNASU67 and further subcloned into expression vectors pcDNA-GFP or pTO-
STREP-HA. Mutagenesis was achieved with the Q5® Site-Directed Mutagenesis Kit
(New England Biolabs) according to manufactor’s instructions. Plasmid sequences
were verified through capillary sequencing.

CRISPR/Cas9 knockout generation. sgRNA targeting exon 1 of DEF6 (5′-ACTT
GAGCAGTTCCTTGCGC-3′) or Renilla control (5′-GGTATAATACACCGCGC
TAC-3′) were cloned into lentiCRISPR_v.2 plasmid, according to Zhang lab

protocols (https://www.addgene.org/crispr/zhang/). Lentivirus was generated from
HEK293T cells transfected with respective plasmids by calcium chloride pre-
cipitation, as described above. 48 h after transfection, virus was harvested and
Jurkat-mCherry-CTLA-4 target cells (generated by similar transduction from a
retroviral mCherry-CTLA-4 plasmid) were transduced by spinfection. Puromycin
selection (1 ng µL−1) was initiated the day after, for 8 days. From batch cultures,
single-cell dilutions were seeded and proliferating clones were selected and sub-
jected to TIDE gDNA comparison and Western blot, for evaluation of knockout
efficiency. gDNA was compared by Sanger sequencing with a guide-covering pri-
mer (5′-CCCCAGTGTTCGCTGATTCT-3′). TIDE sequence analysis (http://tide.
deskgen.com/) of DEF6 knockout versus Renilla control revealed over 80% editing
efficiency at insertion position+ 1 after Cas9 cutting site for DEF6, with no obvious
non-edited sequences detected.

Co-immunoprecipitation. Co-immunoprecipitation of Strep-HA-tagged RAB11
(mutants) and GFP-tagged DEF6 (mutants) were performed as follows.
HEK293T cells were transfected with DNA plasmids encoding Strep-HA- or
FLAG-tagged RAB11 or variants, GFP-tagged RAB11 or DEF6 (variant), or MYC-
tagged DEF6 (variant), and respectively empty vectors, by calcium chloride pre-
cipitation. After incubating for 48 h at 37 °C in 5% CO2, cells were lysed in RIPA
buffer. Lysates were cleared by high-speed centrifugation and 2 mg of respective
supernatants were incubated with StrepTactin sepharose beads (IBA), EZview anti-
MYC or anti-FLAG affinity gel in IP buffer (10 mM Tris, pH 7.4, 150 mM NaCl,
0.5 mM EDTA, 1 m PMSF, PIC cocktail), rotating at 4 °C. Beads were washed three
times in IP buffer, and bound proteins were resolved by SDS-PAGE. Proteins were
detected by immunoblotting.

Guanine nucleotide exchange assay. GEF activity of GST-PH-DH, GST-PH-
DHE331K or GST control against GST-RAB11 was assessed in exchange buffer (20
mM Tris-HCL, pH 7.5, 150mM NaCl, 1mM MgCl2, 1 mM DTT, 0.01% NP-40), for
enabling incorporation of Mant-GTP (Mant-GTP triethylammonium salt, Sigma,
5 µM). EDTA (1mM) was used as positive control. Mant-GTP was monitored at 360/
440 nm (excitation/emission) on a SpectraMax spectrophotometric plate reader.

Statistical analysis. Data were analyzed with appropriate statistical tests as indi-
cated in respective figure legends. Unpaired t tests were two-sided, Welch’s cor-
rection was applied. Data are displayed as mean ± SD, with 95% confidence intervals
(where applicable). Sample sizes and replicates are indicated in figure legends.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying subpanels of Figs. 2, 3, 5, and 6, and Supplementary Figs. S1-
S5 are provided as a Supplementary Source Data file. Relevant data are available from the
authors. Next generation sequencing data are deposited at the European Genome-
phenome Archive (EGA) which is hosted by the EBI and the CRG, under accession IDs
EGAS00001003609 (P1) and EGAS00001003618 (P3 and mother). The data are not
available publicly due to restrictions for controlled access, and may be accessible through
the relevant Data Access Committee via formal application at the EGA (https://ega-
archive.org).
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