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Effect of Saxagliptin on Endothelial 
Function in Patients with Type 2 
Diabetes: A Prospective Multicenter 
Study
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The dipeptidyl peptidase-4 inhibitor saxagliptin is a widely used antihyperglycemic agent in patients 
with type 2 diabetes. The purpose of this study was to evaluate the effects of saxagliptin on endothelial 
function in patients with type 2 diabetes. This was a prospective, multicenter, interventional study. A 
total of 34 patients with type 2 diabetes were enrolled at four university hospitals in Japan. Treatment 
of patients was initially started with saxagliptin at a dose of 5 mg daily. Assessment of endothelial 
function assessed by flow-mediated vasodilation (FMD) and measurement of stromal cell-derived 
factor-1α (SDF-1α) were conducted at baseline and at 3 months after treatment with saxagliptin. 
A total of 31 patients with type 2 diabetes were included in the analysis. Saxagliptin significantly 
increased FMD from 3.1 ± 3.1% to 4.2 ± 2.4% (P = 0.032) and significantly decreased total cholesterol 
from 190 ± 24 mg/dL to 181 ± 25 mg/dL (P = 0.002), glucose from 160 ± 53 mg/dL to 133 ± 25 mg/dL  
(P < 0.001), HbA1c from 7.5 ± 0.6% to 7.0 ± 0.6% (P < 0.001), urine albumin-to-creatinine ratio 
from 63.8 ± 134.2 mg/g to 40.9 ± 83.0 mg/g (P = 0.043), and total SDF-1α from 2108 ± 243 pg/mL 
to 1284 ± 345 pg/mL (P < 0.001). These findings suggest that saxagliptin is effective for improving 
endothelial function.

Endothelial dysfunction occurs in the early stage of atherosclerosis and plays a key role in the progression of ath-
erosclerosis1,2. Measurements of flow-mediated vasodilation (FMD), which is an index of endothelium-dependent 
vasodilation, have frequently been utilized to evaluate endothelial function3–6. Endothelial dysfunction is an inde-
pendent predictor of vascular events7–10. Type 2 diabetes is associated with endothelial dysfunction and is a risk 
factor for systemic atherosclerosis and cardiovascular events11–14. Hyperglycemia in diabetes induces oxidative 
stress, which is a trigger of endothelial dysfunction by reducing nitric oxide (NO) bioavailability13,14. Therefore, 
it is necessary to identify interventions that can prevent endothelial dysfunction in patients with type 2 diabetes.

Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used antihyperglycemic agents in patients with type 2 
diabetes15–17. It has been demonstrated that DPP-4 inhibition has vascular protective benefits via the regulation 
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of several substrate factor activities18. Stromal cell-derived factor-1α (SDF-1α), one of the DPP-4 substrates, par-
ticipates in the repair of vascular injury by mobilization of endothelial progenitor cells19,20. Several experimental 
studies have shown that a DPP-4 inhibitor has a beneficial effect on the endothelial function through increasing 
SDF-1α levels21,22. However, there is no information on the effects of saxagliptin on SDF-1α in humans.

The relationship between treatment with saxagliptin and endothelial function in patients with type 2 diabetes 
has been reported23,24. However, previous studies were single center studies with a limited number of patients. 
Therefore, we conducted a prospective, multicenter study to evaluate the effects of saxagliptin on endothelial 
function and circulating SDF-1α levels in patients with type 2 diabetes.

Results
Clinical characteristics.  We enrolled 34 patients with type 2 diabetes. Three patients including 1 patient 
who discontinued the intervention and 2 patients who had a protocol deviation were excluded from the analysis. 
The baseline clinical characteristics of the 31 patients before and after treatment with saxagliptin are summarized 
in Table 1. The 31 patients included 22 men (71.0%) and 9 women (29.0%), and 29 (93.5%) of the patients had 
hypertension, 23 (74.2%) had dyslipidemia, 18 (58.1%) had a history of smoking, 10 (32.3%) had history of coro-
nary artery disease, and 2 (6.5%) had a history of stroke.

Effects of saxagliptin on endothelial function and parameters.  Saxagliptin significantly increased 
FMD from 3.1 ± 3.1% to 4.2 ± 2.4% (P = 0.032, Fig. 1A). Saxagliptin significantly decreased total cholesterol, 
glucose, HbA1c, urine albumin-to-creatinine ratio (ACR) (Table 1), and SDF-1α (from 2108 ± 243 pg/mL to 
1284 ± 345 pg/mL, P < 0.001, Fig. 1B). There were no significant differences in body mass index, body weight, 

Variables
Baseline 
n = 31

12 weeks 
n = 31 P value

Age, yr 64 ± 13

Gender, men/women 22/9

Body mass index, kg/m2 27.8 ± 5.6 27.7 ± 5.9 0.354

Body weight, kg 75.8 ± 19.2 75.4 ± 20.7 0.341

Systolic blood pressure, mmHg 126 ± 17 126 ± 17 0.877

Diastolic blood pressure, mmHg 78 ± 8 76 ± 9 0.473

eGFR, mL/min/1.73 m2 71.2 ± 16.5 70.2 ± 14.9 0.162

Total cholesterol, mg/dL 190 ± 24 181 ± 25 0.002

Triglycerides, mg/dL 175 ± 167 144 ± 74 0.247

HDL cholesterol, mg/dL 55 ± 18 53 ± 17 0.300

LDL cholesterol, mg/dL 105 ± 26 99 ± 24 0.208

Glucose, mg/dL 160 ± 53 133 ± 25  < 0.001

HbA1c, (%) 7.5 ± 0.6 7.0 ± 0.6  < 0.001

ACR, (mg/g) 63.8 ± 134.2 40.9 ± 83.0 0.043

Medical history, n (%)

Diabetes duration, years 7.9 ± 10.3

Hypertension, n (%) 29 (93.5)

Dyslipidemia, n (%) 23 (74.2)

Previous coronary heart disease, n (%) 10 (32.3)

Previous stroke, n (%) 2 (6.5)

Current smoker, n (%) 5 (16.1)

Former smoker, n (%) 18 (58.1)

Medications, n (%)

   Calcium-channel blockers, n (%) 18 (58.1) 18 (58.1) NA

   Renin angiotensin system inhibitors, n (%) 22 (71.0) 22 (71.0) NA

   Statins, n (%) 17 (54.8) 17 (54.8) NA

   Biguanides, n (%) 7 (22.6) 7 (22.6) NA

   Sulfonylurea, n (%) 3 (9.7) 3 (9.7) NA

   Thiazolidinedione, n (%) 0 (0.0) 0 (0.0) NA

   Alpha-glucosidase inhibitors, n (%) 3 (9.7) 3 (9.7) NA

   SGLT-2 inhibitors, n (%) 7 (22.6) 7 (22.6) NA

   Insulin, n (%) 0 (0.0) 0 (0.0) NA

Table 1.  Patient characteristics and changes in parameters before and after treatment. Results are presented 
as mean ± SD for continuous variables and percentages for categorical variables. eGFR indicates estimated 
glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ACR, albumin-to-
creatinine ratio; SGLT-2, sodium glucose cotransporter-2; NA, not applicable. Changes in parameters after 
treatment were evaluated using paired t test.
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systolic blood pressure, diastolic blood pressure, eGFR, triglycerides, high-density lipoprotein cholesterol, and 
low-density lipoprotein cholesterol before and after 12 weeks of saxagliptin treatment. Changes in FMD did 
not correlate with changes in systolic blood pressure (r = 0.22, P = 0.36), changes in diastolic blood pressure 
(r = −0.15, P = 0.58), changes in glucose (r = 0.19, P = 0.32), changes in HbA1c (r = −0.08, P = 0.68), changes in 
ACR (r = 0.29, P = 0.11), or changes in SDF-1α (r = −0.03, P = 0.89).

Adverse effects.  None of the patients withdrew from the study because of adverse effects associated with the 
treatment. One patient reported mild constipation. Two patients had mild liver enzyme elevation. One patient 
reported bone fracture after an incidental fall. There were no hypoglycemic events during the study period.

Discussion
This study was a prospective, multicenter, interventional study to evaluate the effects of saxagliptin on endothelial 
function in patients with type 2 diabetes. Treatment with saxagliptin significantly increased FMD and signifi-
cantly decreased SDF-1α and ACR.

We showed that saxagliptin significantly improved endothelial function. Several potential mechanisms by 
which saxagliptin improves endothelial function has been proposed. It is well known that DPP-4 inhibitors 
enhance systemic and tissue glucagon-like peptide-1 (GLP-1) levels18,25. Previous studies showed that GLP-1 
per se directly enhances phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and 
Akt in endothelial cells26,27. DPP-4 inhibitor-mediated AMPK activation has been shown to improve endothe-
lial function by counteracting oxidative stress in endothelial cells25,26. However, there is controversy about 
the effects of treatment with DPP-4 inhibitors on FMD23,24,28. Kitao et al. showed that FMD does not alter 
after administration of vildagliptin28. They enrolled type 2 diabetic patients treated with metformin and the 
mean value of baseline FMD was 5.48%. Nafisa et al. showed that metformin improves endothelial function in 
patients with diabetes mellitus29. It is thought that endothelial function was already improved by pretreatment 
with metformin.

SDF-1α increased by a DPP-4 inhibitor has been shown to enhance homing of endothelial progenitor cells 
and thereby exert vascular protection19–22,25,30. In the present study, a DPP-4 inhibitor significantly decreased total 
SDF-1α levels. Several clinical studies and the present study have shown that treatment with DPP-4 inhibitors 
significantly decreases the total amount of SDF-1α31,32. Lovshin et al. reported that administration of sitaglip-
tin significantly increased intact SDF-1α and decreased truncated SDF-1α, resulting in an decrease in the total 
amount of SDF-1α33. The reason for this discrepancy between clinical observations and experimental studies 
is due to the methodological differences in SDF-1α assays. In addition, experimental studies have shown that a 
DPP-4 inhibitor significantly increased SDF-1α levels in a murine model of type 1 diabetes34,35. Further studies 
in which the relationship between effects of DPP-4 inhibitors on SDF-1α levels is evaluated in a murine model of 
type 2 diabetes may reveal the reason for this discrepancy.

Chronic kidney disease is one of the complications of type 2 diabetes mellitus. Urine albumin excre-
tion (random urine ACR) is a marker for kidney damage, and increased ACR is a risk factor for end-stage 
renal disease (ESRD) and cardiovascular events36,37. Although angiotensin-converting enzyme inhibitors or 
angiotensin-receptor blockers are recommended to reduce the prevalence of ESRD in patients with diabetes, it is 
well known that patients with diabetes have a high residual risk of ESRD38–40. Several experimental studies have 
suggested that saxagliptin improves renal function41,42. Recently, a large clinical trial has shown that treatment 
with saxagliptin improved ACR compared with that in the placebo group after a median follow-up period of 2.1 
years43. In the present study, we confirmed that 3-month treatment with saxagliptin significantly decreased ACR. 
However, the effects of saxagliptin on the risk of renal outcomes remains inconclusive30. Further studies with a 
longer duration are needed to evaluate the effects of saxagliptin on renal outcomes.

Figure 1.  Bar graphs show flow-mediated vasodilation (A) and stromal cell-derived factor-1α (B) before the 
beginning of treatment and after 12 weeks of treatment.

https://doi.org/10.1038/s41598-019-46726-3


4Scientific Reports |         (2019) 9:10206  | https://doi.org/10.1038/s41598-019-46726-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Several factors are known to affect vascular tone through NO metabolism in endothelial cells. The β2 adrener-
gic receptors and glucose metabolism are involved in the release of NO, leading to alteration in vasoconstriction 
and vasodilation of blood vessels11,12,44. In the present study, changes in FMD were not associated with changes in 
systolic blood pressure, changes in diastolic blood pressure, changes in glucose, changes in HbA1c, or changes in 
ACR, suggesting that saxagliptin improves endothelial function independently of its effects on glucose metabo-
lism and renal function. In addition, there was no significant relationship between changes in FMD and changes 
in SDF-1α. However, there was not enough power to draw a negative conclusion. We cannot deny the possibil-
ity that saxagliptin improves endothelial function by improving glucose metabolism and renal function and by 
inducing an increase in SDF-1α-related endothelial progenitor cells. A large clinical trial is needed to confirm the 
factors that improve endothelial function in patients treated with saxagliptin.

The present study has some limitations. First, this was not a randomized and placebo-control study design 
and was a single-arm. In addition, the number of subjects was relatively small. However, it was clearly shown that 
saxagliptin improves endothelial function assessed by FMD in this prospective, multicenter study. In addition, 
the integrity of the data and the accuracy of the data analysis are ensured by regulatory authorities (independent 
data center, data monitoring committee, and audit team). Second, we evaluated only the 3-month effects of sax-
agliptin on endothelial function. Long-term interventions are needed to determine whether the 3-month effects 
of saxagliptin are sustained over time. Third, although measurements of reactive hyperemia index and endothe-
lial progenitor cells as an index of endothelial function would enable more specific conclusions concerning the 
role of saxagliptin in endothelial function to be drawn, we cannot perform additional experiments to evaluate 
endothelial function. In the present study, measurement of FMD was performed by sonographers specialized in 
FMD measurement. To decrease the measurement variability of FMD, all of the sonographers received train-
ing for a standard protocol of FMD measurement at the core laboratory located in Tokyo Medical University. 
Previously, we confirmed that the FMD values measured at each hospital had a good correlation with the FMD 
values measured at a core laboratory (r = 0.838, P < 0.001)45. Finally, some antidiabetic agents such as metformin 
have been shown to improve endothelial function29. Of the 31 patients, 14 patients (45.2%) took antidiabetic 
agents. Although none of patients changed medications at any time throughout the study, we cannot deny the 
possibility that medications affected the results of this study.

In conclusion, treatment with saxagliptin is effective for improving endothelial function. Further studies are 
needed to assess the long-term effects of saxagliptin on vascular function, onset of cardiovascular disease, and 
cardiovascular events.

Methods
Study participants.  Between June 2016 and June 2017, we enrolled 34 patients with type 2 diabetes at four 
university hospitals in Japan. Diabetes mellitus was defined according to the American Diabetes Association46. 
Estimated glomerular filtration rate (eGFR) was calculated by the following equation: 194 × serum creati-
nine−1.094 × age−0.287 (×0.739 if women)47. The inclusion criteria were as follows: (1) patients with type 2 diabetes, 
(2) age ≥20 years, and (3) HbA1c level ≥7.0% and <9.0%. The exclusion criteria were as follows: (1) treatment 
with DPP-4 inhibitors, GLP-1, or insulin, (2) a history of myocardial infarction or cerebrovascular disease within 
three months prior to the study, (3) a history of diabetic ketoacidosis or diabetic coma within three months prior 
to the study, (4) serious hepatic dysfunction, (5) eGFR < 50 mL/min per 1.73 m2, (6) pregnancy or possible preg-
nancy, and (7) a history of malignant disease within five years prior to the study. This study was approved by the 
ethical committee of Hiroshima University Graduate School of Medicine. The study was executed in accordance 
with the Good Clinical Practice guidelines. All patients gave written informed consent for participation in the 
study.

Study protocol.  This was a prospective, multicenter, interventional study. Treatment of patients was initially 
started with saxagliptin at a dose of 5 mg daily. Active treatment was then carried out for 12 weeks, and the time 
course of the effects of saxagliptin was evaluated.

The subjects were instructed not to eat, smoke, take caffeine and drink alcohol for about 12 hours before 
investigations. Data of investigations were obtained as each subject were put in the supine position in a quiet, 
dark, air-conditioned room (constant temperature of 22–25 °C). Venous blood samples were drawn from the left 
antecubital vein. FMD was measured after 30 minutes of resting in the supine position.

Study management.  Details of the organization of this study is as provided in the online-only Data 
Supplement (Supplementary Text). The independent data monitoring committee independently reviewed 
accrual, safety, and maturity of the data. The funding source had no role in study design or conduct, data collec-
tion, data management, analysis and interpretation of the data, and manuscript preparation. We abide with the 
relevant guidelines and regulations in performing the methods of this study.

Measurement of FMD.  FMD evaluation was performed using the high-resolution ultrasonography system 
(UNEXEF18G, UNEX Co, Nagoya, Japan). The protocol for measurement of FMD was as previously described48. 
In brief, the longitudinal images of the brachial artery were assessed at before and after a vascular response were 
generated by reactive hyperemia after a 5-min period of forearm occlusion. FMD was defined as the maximal 
percentage change in vessel diameter from the baseline value.

Measurement of total SDF-1α level and urinary albumin and creatinine levels.  SDF-1α was 
measured by using an enzyme-linked immunosorbent assay kit (Human CXCL12/SDF-1α immunoassay, R&D 
Systems, Minneapolis, USA). Urinary albumin and creatinine were measured in single voided urine samples, and 
the albumin-to-creatinine ratio (ACR) was calculated.
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Statistical analysis.  For the present study, we estimated that 28 patients were needed with α = 0.05 and 
a power of 0.8 and with the expectation of at least 1.0% difference between the pre- and post-intervention val-
ues of FMD49. Finally, we enrolled 34 patients with consideration for 20% dropouts. Results are shown as the 
means ± SD for continuous variables and numbers (%) for categvorical variables. P < 0.05 was considered statisti-
cal significant. Changes in FMD and parameters before and after treatment with saxagliptin were evaluated using 
the paired t-test. Correlations between variables were performed by Pearson’s correlation analysis. The data were 
processed using the software package Stata version 9 (Stata Co., College Station, Texas, USA).
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