
1Scientific Reports |         (2019) 9:10189  | https://doi.org/10.1038/s41598-019-46249-x

www.nature.com/scientificreports

Establishment and evaluation 
of prediction model for multiple 
disease classification based on gut 
microbial data
Sohyun Bang1,2, DongAhn Yoo   1, Soo-Jin Kim3, Soyun Jhang1,2, Seoae Cho2 & Heebal Kim1,2,3

Diseases prediction has been performed by machine learning approaches with various biological 
data. One of the representative data is the gut microbial community, which interacts with the host’s 
immune system. The abundance of a few microorganisms has been used as markers to predict diverse 
diseases. In this study, we hypothesized that multi-classification using machine learning approach 
could distinguish the gut microbiome from following six diseases: multiple sclerosis, juvenile idiopathic 
arthritis, myalgic encephalomyelitis/chronic fatigue syndrome, acquired immune deficiency syndrome, 
stroke and colorectal cancer. We used the abundance of microorganisms at five taxonomy levels as 
features in 696 samples collected from different studies to establish the best prediction model. We 
built classification models based on four multi-class classifiers and two feature selection methods 
including a forward selection and a backward elimination. As a result, we found that the performance of 
classification is improved as we use the lower taxonomy levels of features; the highest performance was 
observed at the genus level. Among four classifiers, LogitBoost–based prediction model outperformed 
other classifiers. Also, we suggested the optimal feature subsets at the genus-level obtained by 
backward elimination. We believe the selected feature subsets could be used as markers to distinguish 
various diseases simultaneously. The finding in this study suggests the potential use of selected features 
for the diagnosis of several diseases.

Machine learning technology has been applied in various fields and has become a useful strategy in the field of 
biotechnology, especially for predicting diseases and supporting medical diagnosis1–3. In order to predict diseases, 
biological data including gene expression, genotype, and methylation level can be employed4,5. Moreover, the 
realms of biological data have been extended to include the microbial communities due to their association with 
the host’s immune system6. Microbial communities facilitate the development and function of the immune cells at 
both the mucosal and nonmucosal sites7. Their regulation of the immune system is involved in various diseases8. 
Such association has been identified in diseases like multiple sclerosis (MS), juvenile idiopathic arthritis (JIA), 
myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), stroke, acquired immune deficiency syndrome 
(AIDS), and colorectal cancer (CRC)9–14.

Some of the well-known researches have attempted to establish a disease-prediction model based on the gut 
microbiome data from healthy individuals and patients, and have discovered that gut microbiome data can be 
applied to predict specific diseases12. Patients with irritable bowel syndrome and healthy individuals were clas-
sified using Random forest algorithm15. Other diseases such as liver cirrhosis, colorectal cancer, inflammatory 
bowel diseases, obesity, and type 2 diabetes were distinguished with a healthy status using machine learning 
approaches16. Most of these studies have focused mainly on diagnosing only one disease, and so far, there have 
been few attempts to predict multiple diseases at once.

The potential of multi-classification using microbiome data is being shown in recent studies17,18. In the case 
of classifying various body parts, a previous study performed multi-classification based on KNN and probabil-
istic neural networks18. In another study, multi-classification of three different diseases was demonstrated using 
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selected metagenomic biomarkers19. Similarly, in our study, we hypothesized that various diseases could be clas-
sified using gut microbiome data from 16 S rRNA sequencing. To investigate the possibility of classification on 
various diseases based on the microbial community, we collected a total of 1,079 metagenome data from healthy 
individuals and patients with following diseases in six studies: MS, JIA, ME/CFS, AIDS, CRC, and Stroke. To 
combine data, we preprocessed data using normalization and statistical method. We classified six diseases listed 
above using the abundance of microorganisms at the phylum, class, order, family, and genus levels as features. We 
built classification models based on the multi-class classifiers such as LogitBoost, support vector machine (SVM), 
K nearest neighbor (KNN) and logistic model tree (LMT). Moreover, we constructed a feature subset using two 
feature selection methods. We compared the performance of classification in three factors: 1) taxonomy levels of 
features, 2) four classifiers and 3) feature selection methods.

Results
Preprocessing of data to reduce biases from meta-analysis.  Metagenome data from 1,079 individ-
uals were collected for the healthy (control samples) and patients with one of six diseases including MS, JIA, ME/
CFS, AIDS, Stroke and CRC (Table 1). The study for HIV produced the highest number of average reads (89.9 M) 
while the study for Stroke had the lowest (4.9 M). Out of all individuals, six individuals with less than 7067.68 
reads (<5% of the average) were removed. Thus, the total of 1,073 individuals-696 patients and 377 healthy 
samples-was used for further analysis. The abundance of microorganisms at the phylum, class, order, family, 
and genus levels for 1,073 samples were normalized to correct for variations arising from use of different studies 
(Fig. 1A). After Trimmed Mean of M values (TMM) normalization for the abundance of microorganisms, we 
compared the abundance of healthy samples from six studies. For the reason to minimize the study-dependent 
differences, we removed the microorganisms that are differentially abundant between studies (false discovery 
rate (FDR) < 0.05). Average of 16% of bacteria (5, 21, 42, 74 and 199 at the phylum, class, order, family, and genus 
levels, respectively) remained (Fig. 1). To further normalize the microbiome abundance of samples from differ-
ent studies, quantile normalization was performed using the healthy samples as the baseline. The normalized 

SRA_study Disease Body site
# of case 
samples

# of control 
samples

Average reads per 
sample (std)

ERP010458 Stroke Gut 141 92 4.9 M(0.4 M)

ERP013262 JIA Gut 29 29 9.2 M(2 M)

ERP014628 ME/CFS Gut 49 39 52.5 M(17.1 M)

SRP068240 HIV1 Gut 191 33 89.9 M(69.9 M)

SRP073172 CRC Gut 263 141 14.2 M(10.3 M)

SRP075039 MS Gut 29 44 31.2 M(5.5 M)

Table 1.  Summary of collected metagenome studies.
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Figure 1.  Experimental design and data processing for meta-analysis. (A) A diagram representing a whole 
experimental design for this research. This research consists of two major steps for analysis: (1) The process 
of normalization and removing features for meta-analysis; (2) The step of classification analysis to predict six 
diseases in integrated metagenome data across the six diseases. (B) Number of features at five taxonomy levels. 
“Total” represents the total number of features before preprocessing of data. “Filtering” represents the number 
of features after steps for removing features in preprocessing of data.

https://doi.org/10.1038/s41598-019-46249-x


3Scientific Reports |         (2019) 9:10189  | https://doi.org/10.1038/s41598-019-46249-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

abundance of microorganisms for 696 samples obtained in this preprocessing step was considered as features in 
the subsequent classification analysis.

Classification performance at five taxonomy levels.  To elucidate the effect of different taxonomy lev-
els on the classification, we assessed the performance of the classification using different sets of features such as 
the abundance of microorganisms at the phylum, class, order, family, and genus levels. The average of accuracies 
of four classifiers including KNN, LMT, LogitBoost and SVM was improved as we used the lower taxonomy levels 
as features (Fig. 2A). The average of accuracies at the phylum, class, order, family and genus levels were 55, 69.9, 
76.5, 80.4 and 90.4% respectively. The accuracy at the genus level was 35.4% higher than that at the phylum level. 
On the other hand, the difference of accuracies between classifiers with highest accuracy (LogitBoost) and lowest 
accuracy (KNN) was 11.92%. Thus, we found that the effect of taxonomy levels on the classifier performance was 
greater than that of using different classifiers.

We assumed that some of the microorganisms used in the above classification might not be associated with the 
diseases because only a few microorganisms were found to be closely related to human health or disease20. Hence, 
we performed feature selection to find features that can classify diseases more accurately. For feature selection, we 
used forward selection (FS) and backward elimination (BE) in four classifiers with microbial abundance at five 
taxonomy levels. Feature selection enhanced accuracies by 2.6%, 2.4% and 2.7% at the order, family and genus 
levels, respectively, while its effects were not as remarkable in phylum and class levels (0.6% and 0.4% enhanced) 
(Fig. 2B). The highest accuracy improvement of 2.7% due to feature selection was observed when using features of 
abundance at the genus level. By feature selection, 5, 21, 42, 74, and 199 number of features were reduced to 2.75, 
16.5, 29.1, 45.3, and 139.5 on average in phylum, class, order, family and genus levels, respectively (Fig. 2C). The 
highest number of features was removed at the genus level. Considering the increase of accuracies and number of 
reduced features, feature selection was more effectively performed at the genus level.

Figure 2.  Classification performance by taxonomy levels and feature selection methods. (A) Accuracies by 
taxonomy levels. Individual dots symbolize the accuracy of four classifiers. Blue dots with error bar represents 
the mean of the accuracies in each taxonomy. (B) Mean of Accuracies in four classifiers by taxonomy levels and 
feature selection method. The color of bars shows the feature selection method. “All” indicates that all features 
without feature selection are used for classifications. “FS” and “BE” indicates the features subset from FS and BE 
respectively. Error bar represents the standard error of accuracies at each taxonomy level and feature selection 
method. (C) Mean of number of features in four classifiers by taxonomy levels and feature selection method.
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Comparison of classification performance at the genus level.  We compared classifiers and feature 
selection methods based on the performance at the genus level which showed the highest performance among 
five taxonomy levels. The classification was conducted using 10-fold cross-validation (CV), and accuracies were 
averaged over three runs of 10-fold CV. Four classifiers affected the performance of classification (Fig. 3A). The 
average accuracy was the highest in LogitBoost (93.6%) followed by LMT (92.4%), SVM (91.6%), and KNN 
(81.5%). The difference of accuracies between classifiers with the highest accuracy (LogitBoost) and that with the 
lowest (KNN) was 12%. In Fig. 2A, the difference in performance between LogitBoost and KNN increases as the 
taxonomy level gets lower. Regarding this aspect, the large difference (12%) between LogitBoost and KNN might 
come from the highest feature number at the genus level.

When we use the optimal feature sets from FS and BE, the average accuracies of the four classifiers were 
increased from 90.4% to 92.9% and 93.3% (FS and BE). Especially, the accuracies from KNN algorithms showed 
a remarkable increase from 81.8% to 86.7% and 87.5% when FS and BE were used. In all four classifiers, BE 
enhanced higher accuracies than FS by 0.09%, 1.19%, 0.09% and 0.43% in LogitBoost, LMT, SVM, and KNN, 
respectively. In LMT classifier, BE achieved the most effectively enhanced accuracies. The average number of 
features was reduced from 199 to 143.5 and 135.5 (FS and BE, respectively) across four classifiers (Fig. 3B). Even 
though BE decreased the number of features much more compared to FS on average, the reduced number of 
features did not follow this trend in all classifiers. FS effectively reduced the number of features in LogitBoost 
algorithms, while BE did in LMT algorithm. In summary, performing feature selection enabled us to obtain the 
subset of features which enhanced the overall performance of the classification in all classifiers. More importantly, 
higher accuracy was achieved when a lower number of features were used.

Accuracy, false positive and false negative error rate per six diseases.  We examined the classifi-
cation performance by calculating the accuracy of false positive rate (FPR) and false negative rate (FNR), which 
is a calculation method used to classify into two classes21. Additionally, we investigated the performance of clas-
sification per diseases by obtaining feature set from BE with the highest performance. In LogitBoost algorithm, 
which had the highest performance among classifiers, average accuracy by disease was 98.1%, which is higher 
than overall accuracy of BE (93.6%) (Table 2). This increase of accuracy was caused by a higher number of true 
negatives because we applied calculation for evaluating a binomial classification for each disease. For the same 
reason, the mean of FPR (1.26%) was lower than that of FNR (13.86%). Since FPR divides true positive by sum of 
a true negative and true positive which makes it inversely proportional to true negative, in our case, as the number 
of true negative jumps to a greater number, a lower value of FPR was observed. Out of six diseases, CRC showed 
the highest FPR (3.7%) of all the diseases, which implies the classification of 3.7% of patients with non-CRC 
diseases as CRC. The lowest accuracy in CRC (96.84%) among six diseases was caused by a highest FPR. As FNR 
of the diseases showed high variance between diseases, CRC, HIV1, and Stroke (2.28, 0.36, 3.78%) were less than 
5% of FNR, whereas JIA, ME/CFS, and MS (16.09, 28.47, 32.18%) were more than 10% of FNR. Diseases with 
high FNR including JIA, ME/CFS, and MS showed higher occurrences of misclassification into other diseases. In 

Figure 3.  Classification performance by four classifiers at the genus level. (A) Accuracies of four classifiers 
with three feature selection strategies (without feature selection, FS and BE). Evaluation of performance of each 
model involving different feature selection strategies was conducted three times. (B) The number of features by 
four classifiers with three feature selection strategies.
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contingency tables, we observed that diseases with a high FNR are highly likely to be classified as CRC which had 
the highest FNR of all diseases.

The diseases with high FPR and FNR in other algorithms were the same as that in LogitBoost algorithm. CRC 
had the highest FPR and the lowest accuracy among diseases in other classifiers. JIA, ME/CFS, and MS had higher 
FNR compared to other diseases in other classifiers. In KNN algorithm, CRC showed the highest FPR of 12.93%, 
while other classes showed FPR lower than 3%. Also, FNR of JIA, ME/CFS and MS (34.48, 64.58 and 77.01%) 
were higher than that of other classes with FNR below 8%. However, classes with higher FPR (or FNR) in KNN 
showed higher FPR(or FNR) compared to that in LogitBoost. FPR of CRC in KNN (12.93%) was three times 
higher than that in LogitBoost (3.7%). FNR of JIA, ME/CFS and MS (58.69%; mean of three classes) in KNN was 
twice as much as that in LogitBoost (25.58%; mean of three classes).

Identification of the disease-related microbial features.  Through feature selections, we detected fea-
ture subsets that distinguish six diseases with the highest performance per classifier. Selected features can be used 
for microbial marker as they may be a shred of evidence of a close relatedness with the six diseases22. Thus, we 
predicted that our selected features could also be applied as biomarkers for the six diseases. Among the potential 
biomarkers, we examined commonly selected genus in eight selected feature subsets at the genus level from the 
multiplication of four classifiers and two feature selection methods. The number of common selected features in 
FS and BE were 94, 66, 120 and 116 in LogitBoost, LMT, SVM, and KNN algorithm, respectively (Fig. S1). Among 
them, 17 genera were commonly identified in all four classifiers (Table 3). To elucidate further on the importance 
of these genera in classification, we looked closely into the rank of individual genus. The rank of the genus to be 
added or dropped during the feature selection procedure could be of interest as the features with greater perfor-
mance tends to be added earlier or dropped later during feature selection. Therefore, we considered the rank of 
genus in the selection. Among 17 genera, only PSBM3 was selected in order of no more than five, which is less 
than 5% of 199 genera (10 number of genera). PSBM3 belongs to a bacterial family called Erysipelotrichaceae, 
which is associated with immune system23. Erysipelotrichaceae was coated by IgA and their abundance had a 
positive correlation with tumor necrosis factor alpha levels24,25. Specifically, PSBM3 is associated with invariant 
natural killer T, which had a crucial role in pathogenesis of inflammatory diseases26.

Discussion
We compared the performance of classification for six diseases in terms of three factors: 1) taxonomy level, 2) 
classifier and 3) feature selection method. Among the three factors, altering taxonomy levels influenced the clas-
sification performance the most. Moreover, we found that the performance improved as we used lower taxonomy 
level as features, which is consistent with a previous finding27. Microorganisms at lower taxonomy levels have 
been used to investigate their impact on the host because they help to estimate the function more specifically28. 
This suggests the necessity of using the technology of assigning microorganisms with high resolution in the classi-
fication of various diseases. In addition to the taxonomy level, we also evaluated the classification performance of 
four classifiers. Among the four classifiers, LogitBoost showed the highest performance. LogitBoost algorithm is 
a boosting model which process interactions effectively and robust to outliers, missing data, and many correlated 
as well as less important variables29–32. This might have a positive influence on enhancing the performance of the 
classification of multiple diseases. On the other hand, KNN showed the lowest performance. KNN algorithm is 
reasonably well solved for a smaller number of features17. The performance of KNN algorithm was especially 
lower at the genus level compared to the other classifiers.

CRC HIV1 JIA ME/CFS MS Stroke Average

Accuracy

LogitBoost 96.84 ± 0.43 99.71 ± 0.14 98.52 ± 0.22 96.93 ± 0.46 98.28 ± 0.29 98.32 ± 0.46 98.1 ± 0.33

LMT 95.93 ± 0.3 98.66 ± 0.22 98.95 ± 0.22 96.26 ± 0.57 98.18 ± 0.44 98.8 ± 0.22 97.8 ± 0.33

SVM 95.59 ± 0.5 98.85 ± 0.25 98.28 ± 0.38 96.46 ± 0.08 98.08 ± 0.22 98.75 ± 0.22 97.67 ± 0.28

KNN 90.28 ± 0.3 97.27 ± 0.43 97.27 ± 0 94.73 ± 0.36 96.41 ± 0.14 96.55 ± 0.5 95.42 ± 0.29

FPR

CRC HIV1 JIA ME/CFS MS Stroke Average

LogitBoost 3.7 ± 0.83 0.26 ± 0.11 0.85 ± 0.09 1.18 ± 0.24 0.4 ± 0.09 1.14 ± 0.28 1.26 ± 0.27

LMT 3.93 ± 0.4 0.85 ± 0.3 0.6 ± 0 1.7 ± 0.41 0.7 ± 0.43 0.9 ± 0.18 1.45 ± 0.29

SVM 4.77 ± 0.48 0.59 ± 0.2 0.8 ± 0.09 1.59 ± 0.09 0.9 ± 0.15 0.6 ± 0.1 1.54 ± 0.19

KNN 12.93 ± 0.23 1.83 ± 0.49 1.35 ± 0.15 0.87 ± 0.32 0.4 ± 0.17 2.34 ± 0.18 3.29 ± 0.26

FNR

CRC HIV1 JIA ME/CFS MS Stroke Average

LogitBoost 2.28 ± 0.38 0.36 ± 0.31 16.09 ± 3.98 28.47 ± 9.62 32.18 ± 7.18 3.78 ± 1.48 13.86 ± 3.82

LMT 4.31 ± 0.22 2.69 ± 0 11.49 ± 5.27 31.25 ± 3.61 27.59 ± 3.45 2.36 ± 1.64 13.28 ± 2.37

SVM 3.8 ± 0.66 2.69 ± 1.08 22.99 ± 7.18 29.86 ± 1.2 25.29 ± 1.99 3.78 ± 0.82 14.74 ± 2.16

KNN 4.44 ± 0.44 5.2 ± 0.31 34.48 ± 3.45 64.58 ± 2.08 77.01 ± 5.27 7.8 ± 2.56 32.25 ± 2.35

Table 2.  Evaluation of performance per class in feature subset of BE in four algorithms. The model 
was validated by 10-fold cross-validation and repeated three times. Values represent the mean of 
accuracy ± variance.
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We constructed feature subsets using FS and BE. FS and BE achieve improved accuracy because they find the 
optimal feature sets by interacting with classifiers33. On the other hand, FS and BE require expensive computation 
times with a large number of features. This might rarely cause their application in the gut microbiome data. In this 
study, we showed that the selected microorganisms with FS and BE could boost the performance, especially, the 
feature subsets selected by BE had higher performance than that by FS. Since BE starts with the full set of features, 
it is easier to capture the interactive features, such that this advantage of BE can take into account the complex 
network of microbe-microbe interactions. Microbes interact with each other by forming microbial guilds where 
they provide the substrate to each other, and even some anaerobic bacteria in the gut were demonstrated to 
perform metabolic cross-feeding19. Therefore, a group of microorganisms is more related to human health than 
individual ones, which is why a higher performance of BE was observed.

While performing the feature selection, we proposed the feature subsets that are potentially related to six 
different diseases. However, the feature subsets selected in this study may not contain all the microorganisms 
associated with the six diseases due to the data preprocessing. We preprocessed the data with various measures 
such as employing strict criteria when collecting the data from various studies and performing TMM and quan-
tile normalization to minimize the variations between the studies. In addition, the samples were composed of a 
variety of nationalities which influence dietary habits, thereby affecting the composition of the gut microbiome. 
Some features, which might be affected by variation among samples, were deleted to reduce heterogeneity across 
different studies, which might cause by the effect of nationality. Thus, a few features significantly related to the six 
diseases may have been removed from this process. Despite the limitation of data preprocessing from different 
studies, we detected microorganisms associated with the six diseases.

Association with gut microbiome and health suggested the potential roles of gut microorganisms in precision 
medicine approach34. Disease-related microorganisms can be used as microbial markers to detect diseases using 
well-known methods including metagenomics, phylogenetic microarrays, DNA fingerprinting techniques, and 
qPCR26. Most of the previous disease studies on metagenome data focused on identification of biomarkers by 
comparing two groups of samples (case-control study)35. However, focusing on one disease may not be able to 
detect biomarker bacteria that is specific to that disease. This is because the same microorganisms can be differ-
entially abundant in several diseases since the immune system of the host is influenced by the certain gut micro-
biome community that can be vulnerable to various diseases8,36. On the other hand, the selected features in this 
study are expected to have disease specific profiling of microbial communities, which can be used for biomarkers 
to distinguish various diseases simultaneously. For example, PSBM3 (belongs to Family Erysipelotrichaceae) was 
an important feature in eight feature subsets. In the previous study, family Erysipelotrichaceae was studied to 
be associated with host diseases such as inflammatory bowel disease and HIV, as well as with the immune sys-
tem23–25. This implies that the abundance of family Erysipelotrichaceae (or genus PSBM3) is an important clue to 
detecting multiple diseases.

As a result of the classification per diseases investigation, we found that JIA, ME/CFS and MS are classified 
into CRC. According to previous studies, CRC is related to fatigue symptom, which is a similar symptom with 
ME/CFS37. The fatigue by CRC can be affected by sarcopenia, characterized by muscle loss, which demonstrates 
the relationship between ME/CFS and CRC38. Moreover, there is a possible relationship between cancer risk and 
MS, which can cause diagnostic neglect39. Though, the association between CRC and JIA has not been identified.

Logit Boost/FS LogitBoost/BE LMT/FS LMT/BE SVM/FS SVM/BE KNN/FS KNN/BE Mean of order

PSBM3 3 2 5 3 3 2 3 3 3

Candidatus Azobacteroides 6 10 7 8 10 122 5 60 28.5

Cetobacterium 10 19 6 25 19 31 17 154 35.125

Ralstonia 46 17 93 14 27 16 45 24 35.25

Proteus 32 3 126 15 6 27 9 78 37

Flavobacterium 33 7 98 51 44 17 49 7 38.25

Moryella 8 105 1 77 7 1 103 65 45.875

Citrobacter 11 89 20 5 88 7 135 13 46

Anaerofustis 23 6 35 73 66 26 129 36 49.25

Dickeya 18 26 27 10 171 11 28 111 50.25

Owenweeksia 52 16 95 6 8 131 68 58 54.25

Salmonella 22 69 99 61 49 59 125 77 70.125

Pediococcus 99 93 46 82 67 45 145 19 74.5

Variovorax 80 127 54 79 133 79 58 57 83.375

Leuconostoc 83 112 96 63 63 91 94 88 86.25

Marvinbryantia 106 156 118 43 80 113 78 89 97.875

Novosphingobium 51 151 121 48 90 82 116 151 101.25

Table 3.  Robust genera subset from two feature selection methods in four classifiers. We present 17 genera 
selected in combination of four classifiers and two feature selection method. Column represent “Classifier/
feature selection method”. The figures in the table show the order of genera in selection steps. The lower number 
(figure) indicates the more importance for genera in terms of performance.
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In summary, we presented the classification of six diseases using a machine learning algorithm and gut micro-
biome data. By evaluating performance in various perspectives, we showed the effect of bacterial abundance of 
different taxonomy levels and various classifier on performance of classification. Furthermore, we suggested the 
optimal genus subsets that can be potentially used as microbial markers to distinguish multiple diseases through 
feature selection, which confers the potential use for multi-diseases classification in the diagnosis of diseases.

Materials and Methods
Collection of the gut microbiome data related to six diseases.  For disease prediction based on the 
metagenome data sets of gut microbial communities, large numbers of metagenome samples were collected from 
the European Bioinformatics Institute (EBI) database (https://www.ebi.ac.uk/metagenomics/). To minimize the 
biases caused by different experimental protocols, data were collected with several criteria: (1) 16 S rRNA based 
metagenome data through the stool sampling, which is widely used approach at present, (2) sequencing platforms 
including 454 and Illumina’s, (3) using first measurement in case of longitudinal data to ensure independence 
assumption and (4) EBI pipeline v2.0 or v3.0 (https://www.ebi.ac.uk/metagenomics/pipelines/3.0) for identify-
ing and quantifying the OTUs. In EBI pipeline, several tools used are as following: (1) Trimmomatic (v0.32)40 
for quality check and trimming of low quality reads; (2) SeqPrep (v1.1)41 to merge paired-end reads to generate 
overlapped read; (3) rRNASelector (v1.0.1)42 to filter out of non-ribosomal RNA; (4) QIIME(v1.9.0)43 for OTU 
identification and quantification. From this pipeline, gut microbial communities data was generated at various 
taxonomic levels such as phylum, class, order, family, and genus based on the Greengenes 16 S rRNA database44.

Preprocessing of the metagenomic data derived from different studies.  Samples with less than 
5% of the average number of reads were removed. The abundance of microorganisms at five taxonomy levels 
including phylum, class, order, family, and genus levels was used as features. We performed a TMM normalization 
for the abundance of features using edgeR45. To reduce heterogeneity across different studies, the features showing 
differential abundance of healthy samples between six studies were removed. We performed a log- likelihood 
ratio test by considering the abundance of features as negative binomial distribution46. In the statistical test, FDR 
approach was used to adjust multiple testing error47 and 5% significance level was used for a significant result.

We further normalized the abundance with quantile normalization to produce a similar distribution of sam-
ples48. For quantile normalization, two types of baselines can be considered to calculate normalized values: (1) 
global mean vector derived from each quantile of features and (2) specific baseline vector. As we assumed that 
distribution of all control samples are similar, the second approach was employed using only the healthy samples 
to create the baseline49.

Classifiers to distinguish various diseases using the gut microbial data.  In this study, four classi-
fiers which have previously shown high multi-group classification performance were employed including KNN, 
LogitBoost, LMT and SVMs with sequential minimal optimization (SMO)50,51. The KNN implies a classifier capa-
ble of multi-groups classification. The LogitBoost is a developed boosting algorithm that can handle multiclass 
problems by considering multiclass logistic loss52. The LogitBoost has been applied to predict protein structural 
classes53 and places of origin for pigs with high performance54. The LMT is based on a regression tree that has 
logistic models on the leaves51. In predictions related to medical application including prediction of response to 
antiretroviral combination therapy or autism spectrum disorder, LMT showed an advantage over the other meth-
ods55,56. The SMO has been shown to be an effective method for SVM on classification tasks without a quadratic 
programming solver. The KNN and SVM classifiers are the most widely used methods and they have been applied 
successfully in numerous studies17,54.

We performed classification analysis with the four classifiers, implemented in the RWeka package of the R soft-
ware57 with the command line of “IBk(class~.,data = InputData, control = Weka_control(K = Selected Parameter), 
na.action = NULL)”, “LogitBoost(class~.,data = InputData, control = Weka_control(I = Selected Parameter), 
na.action = NULL)”, “LMT(class~.,data = InputData, na.action = NULL)”, and SMO(class~.,data = InputData, 
control = Weka_control(K = list(kernel, G = Selected Parameter), C = Selected Parameter), na.action = NULL) for 
KNN, LogitBoost, LMT, and SVM. To assess the performance of classification, 10-fold cross-validation was used.

To select a parameter for the classifier, we used a greedy method that explores all parameter and used the 
parameter with the best performance. In KNN, parameter K was chosen in {3, 5, 7, 9, 11, 13, 15} (Table S1). 
In LogitBoost, the parameter I was selected in the range from 1 to 40 (Table S2). In SVM (for RBF kernel), the 
parameter G and parameter C were regulated in {1e-4, 1e-3…, 10} and {0.1, 1, …, 1000} respectively (Table S3). 
The parameters with the highest accuracy were chosen for each taxonomy level (Table S4). For the parameters 
with same accuracy, the one with lower value was selected.

Feature selection using wrapper method.  We searched for a feature subset that enhances performance 
of classification through a wrapper feature-selection approach58 including FS and BE54. In FS, starting from the 
single feature with the highest accuracy, we added the feature that improves the performance the most. We con-
tinued to add features one-by-one until no more feature is left to be added. In BE, starting with all features we 
subtracted features one-by-one to give the highest accuracy. With the feature selection process, we obtained the 
feature subset showing the highest accuracy.

Data Availability
Raw sequencing data and patient metadata are available at the NCBI Sequence Read Archive (SRP073172, 
SRP068240, ERP013262, ERP014628, SRP075039 and ERP10458).
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