Skip to main content
. 2019 Jul 15;9:10189. doi: 10.1038/s41598-019-46249-x

Table 2.

Evaluation of performance per class in feature subset of BE in four algorithms.

CRC HIV1 JIA ME/CFS MS Stroke Average
Accuracy
LogitBoost 96.84 ± 0.43 99.71 ± 0.14 98.52 ± 0.22 96.93 ± 0.46 98.28 ± 0.29 98.32 ± 0.46 98.1 ± 0.33
LMT 95.93 ± 0.3 98.66 ± 0.22 98.95 ± 0.22 96.26 ± 0.57 98.18 ± 0.44 98.8 ± 0.22 97.8 ± 0.33
SVM 95.59 ± 0.5 98.85 ± 0.25 98.28 ± 0.38 96.46 ± 0.08 98.08 ± 0.22 98.75 ± 0.22 97.67 ± 0.28
KNN 90.28 ± 0.3 97.27 ± 0.43 97.27 ± 0 94.73 ± 0.36 96.41 ± 0.14 96.55 ± 0.5 95.42 ± 0.29
FPR
CRC HIV1 JIA ME/CFS MS Stroke Average
LogitBoost 3.7 ± 0.83 0.26 ± 0.11 0.85 ± 0.09 1.18 ± 0.24 0.4 ± 0.09 1.14 ± 0.28 1.26 ± 0.27
LMT 3.93 ± 0.4 0.85 ± 0.3 0.6 ± 0 1.7 ± 0.41 0.7 ± 0.43 0.9 ± 0.18 1.45 ± 0.29
SVM 4.77 ± 0.48 0.59 ± 0.2 0.8 ± 0.09 1.59 ± 0.09 0.9 ± 0.15 0.6 ± 0.1 1.54 ± 0.19
KNN 12.93 ± 0.23 1.83 ± 0.49 1.35 ± 0.15 0.87 ± 0.32 0.4 ± 0.17 2.34 ± 0.18 3.29 ± 0.26
FNR
CRC HIV1 JIA ME/CFS MS Stroke Average
LogitBoost 2.28 ± 0.38 0.36 ± 0.31 16.09 ± 3.98 28.47 ± 9.62 32.18 ± 7.18 3.78 ± 1.48 13.86 ± 3.82
LMT 4.31 ± 0.22 2.69 ± 0 11.49 ± 5.27 31.25 ± 3.61 27.59 ± 3.45 2.36 ± 1.64 13.28 ± 2.37
SVM 3.8 ± 0.66 2.69 ± 1.08 22.99 ± 7.18 29.86 ± 1.2 25.29 ± 1.99 3.78 ± 0.82 14.74 ± 2.16
KNN 4.44 ± 0.44 5.2 ± 0.31 34.48 ± 3.45 64.58 ± 2.08 77.01 ± 5.27 7.8 ± 2.56 32.25 ± 2.35

The model was validated by 10-fold cross-validation and repeated three times. Values represent the mean of accuracy ± variance.