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Abstract: Since the late 1950s, an effect of electrical current in addition to joule heating on the
deformation of metals called the Electroplastic Effect (EPE) has been known. It is used nowadays in
the so-called Electrically Assisted Forming (EAF) processes, but the understanding of the phenomenon
is not very clear yet. It has been found that EPE increases the formability of high stacking fault energy
(SFE) materials, while low SFE materials reach fracture prematurely. Since Duplex Stainless Steels
(DSSs) possess a microstructure consisting of two phases with very different SFE (low SFE austenite
and high SFE ferrite) and they are widely used in industry, we investigated EPE on those alloys.
Tensile tests at 5 A/mm2, 10 A/mm2 and 15 A/mm2 current densities along with thermal counterparts
were conducted on UNS S32101, UNS S32205, UNS S32304 and UNS S32750. The DSS grades were
characterized by means of optical microscopy, X-ray diffraction and their mechanical properties
(ultimate tensile strength, total elongation, uniform elongation and yield stress). An increase in
uniform elongation for the electrical tests compared to the thermal counterparts as well as an increase
in total elongation was found. No differences were observed on the yield stress and on the ultimate
tensile strength. Un uneven distribution of the current because of the different resistivity and work
hardening of the two phases has been hypothesized as the explanation for the positive effect of EPE.

Keywords: duplex stainless steels; electroplastic effect; tensile test; stacking fault energy;
electrically assisted forming; electron stagnation theory; current distribution; mechanical properties;
uniform elongation

1. Introduction

In 1959, Machlin [1] observed an increase in elongation and a reduction of the yield stress and
the flow stress of a single crystal of sodium chloride when deformed under an applied voltage. In the
subsequent years, two main groups started to investigate the effect of electrical current on the deformation
of various metallic and non-metallic materials. Pioneering researches were conducted in the USA by
Conrad and his team [2–7] and in the Soviet Union by Troitskii and his people [8–13], who concluded
that the enhancement of the formability and the reduction of the forming forces cannot be ascribed
solely to the joule heating but also to an a-thermal effect, which they called the Electroplastic Effect
(EPE). The discovery of such effect has led to a new way of forming metallic materials called Electrically
Assisted Manufacturing (EAM), which is applied to a variety of processes such as rolling [14,15],
drawing [8,16], cutting [16–18], forging [19,20], sintering [21,22], and bending [23,24], among others.
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Many theories have been formulated to explain the EPE such as the electron wind force by
Kravchenko [25], who supposed that drifting electrons can exert a force on moving dislocations and
ease their motion, which was later confirmed by experiments done by Bolko et al. [26] and Conrad
and his team [6,27]. Other researchers claimed that the electron wind force is negligible and the
EPE is due to depinning of dislocations from weak obstacles thanks to the induced magnetic field,
which shifts the state of a dislocation’s core from singlet to triplet [28,29]. Fan et al. observed that
pulses of high current density induced grain boundary cavitation in 70/30 brass under uniaxial tensile
test [30]. Magargee demonstrated that each material has a different current density sensitivity for
EPE to occur, which depends on the resistivity of the material (the higher the resistivity, the lower
the threshold) [31]. A dependence from the Stacking Fault Energy (SFE) on the occurrence of the
EPE has also been observed [32]. An interesting theory was proposed by Ruszkiewicz et al. [33]:
stagnation of electrons in the proximity of obstacles increases the electron to atom ratio, decreasing
the bond energy and eventually easing the breaking and reforming of metallic bonds favoring plastic
deformation. Many experiments have been done concerning the EPE on different metallic materials
such as aluminum [34–36], magnesium [15,37–39], and austenitic stainless steels [40–42]; some biphasic
materials such as titanium [43], a dual phase steel [44], and brass [30]; only one paper has been found
on Duplex Stainless Steels (DSSs) regarding the change in texture after electropulsing treatment at
room temperature [45].

DSSs are a peculiar type of stainless steels in which the austenitic and the ferritic phase are
both present. They are widely used in a variety of industrial applications, thanks to their high
corrosion resistance and high mechanical properties compared to the austenitic stainless steels [46–48].
The metallurgy of DSSs is quite complicated because the thermal history can affect their mechanical
properties, since they suffer from secondary phases precipitation in a wide range of temperatures
(450–1000 ◦C). The most observed and detrimental secondary phases are chi-phase, sigma-phase,
chromium nitrides and carbides followed by L-phase, R-phase, pi-phase and Laves phase, the spinodal
decomposition of ferrite and the eutectoidic decomposition of ferrite into secondary austenite and
chromium nitrides. Because of the sensitivity to secondary phases precipitation and the needs of
a balanced microstructure, DSSs have to undergo a solubilizing heat treatment at a temperature
that depends on the DSS’s grade to solubilize the secondary phases and to obtain an equal amount
of austenite and ferrite. DSSs solidify in a fully ferritic microstructure, at a temperature between
1400 ◦C and 1500 ◦C (depending on the DSS grade) and, as the alloy cools down, austenite starts to
precipitate from the ferrite matrix with a defined orientation relationship with respect to ferrite such as
Kurdjumov–Sachs (K–S) or Nishiyama–Wasserman (N–W) or as incoherent phase boundary [49,50].
Solubilizing heat treatment must be conducted at temperature higher than 1030 ◦C (depending on
the alloy composition) to dissolve the unwanted secondary phases and to obtain an equal volume
fraction of austenite and ferrite. The cooling phase is critical and must be conducted at a high cooling
rate to freeze the microstructure to room temperature and limit the time the alloy spends in the
critical temperature range, in which secondary phases precipitation occurs. Hence, the thickness of the
components is a critical parameter because it influences the cooling rate. DSSs must be free of secondary
phases because even a small volume fraction can affect the mechanical properties, in particular impact
toughness [51,52] and corrosion resistance [53,54]. Austenite and ferrite, obviously, present different
crystal structures, the former being face-centered cubic (FCC) and the latter body-centered cubic (BCC).
More importantly, they have very different SFE. SFE is an intrinsic property of a crystal structure and it
depends on the electron to atom ratio (i.e., the ratio of valence electrons to atoms present in an alloy)
and on the temperature [55]. FCC materials with low SFE have a higher probability of dislocations
splitting into partial leading to a planar glide during plastic deformation since split dislocations act as
an obstacle to the cross-slip mechanism. Conversely, SFE in BCC materials is quite high, which changes
the way dislocations move and interact with each other and, moreover, plays an important role at
higher temperature since atomic mobility is enhanced and high SFE materials tend to recover rather
than recrystallize.
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The investigation of the EPE on DSSs is very interesting since they have a high SFE BCC matrix in
which is dispersed a low SFE FCC phase. EPE has been observed to influence more BCC materials
rather than FCC ones [56], thus the investigation of EPE on these grades of stainless steels could
improve the knowledge of this phenomenon. The objective of the study was to investigate the influence
of electrical current on the plastic flow behavior of materials that possess two phases with very different
SFE and if there is any influence on the insurgence of the EPE with respect to different grades of DSS.

2. Materials and Methods

Four grades of DSS provided by the Italian division of Outokumpu S.p.A., namely two lean DSS
grades (UNS S32101 and UNS S32304), a standard DSS (UNS S32205) and a super DSS (UNS S32705),
were tested. Their compositions are summarized in Table 1. All materials were supplied in the form of
warm rolled sheets of 1 mm thickness except UNS S32101, which was 3 mm thick. The specimens for
the tensile tests were prepared according to ASTM E8/E8M 16a.

Table 1. Chemical composition of the studied materials (%wt).

C Si Mn Cr Ni Mo N P S Cu Ti

UNS S32101 0.025 0.65 5.13 21.57 1.56 0.28 0.229 0.019 0.001 0.3 -
UNS S32304 0.03 0.56 1.43 23.17 4.29 0.18 0.13 0.027 0.001 0.16 -
UNS S32205 0.027 0.58 1.52 22.75 5.04 3.19 0.16 0.027 0.001 - -
UNS S32705 0.014 0.35 0.68 24.99 3.63 6.41 0.253 0.021 0.001 0.06 0.002

Since UNS S32101 suffers from Strain Induced Martensite (SIM) formation [57], all tensile tests
were conducted at a strain rate of 10−1 s−1 to avoid Transformation Induced Plasticity (TRIP) effects.
A direct current power supply produced by Powerel s.r.l (Montecchio Maggiore, Vicenza, Italy) is
able to deliver a maximum of 6000 A at 10 V. It was coupled with the tensile test machine through
self-made copper jaws embedded in PEEK, to electrically isolate the specimen with respect to the
frame of the tensile test machine. The tensile tests were conducted on an MTS 322 tensile test machine
(MTS Systems Corporation, Eden Prairie, MN, USA) modified as depicted in Figure 1. The tensile test
machine was driven by dedicated software. Strain was evaluated by the crosshead movement while
stress was collected by a load cell mounted on top of the MTS 322.
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All steels were tested with three different continuous current densities (5 A/mm2, 10 A/mm2 and
15 A/mm2). The temperature was recorded for the total duration of the test by means of a FLIR A40
thermal camera (FLIR Systems, Wilsonville, OR, USA). The specimens were coated with a black heat
resistant paint to stabilize the emissivity. The thermal tests were conducted at the same temperature
and strain rate as the electrical ones with the aid of a self-made heating chamber coupled with the
tensile test machine. To reduce joule heating effect, air flow at 8 bar was blown through two nozzles
during the electrical tensile tests. Current densities were chosen in order not to overcome 0.5 Th,
which is the homologous temperature, defined as the ratio between the test temperature and the melting
temperature of the alloy. Temperatures higher than 0.5 Th can lead to secondary phase precipitation,
enhance the diffusion process in the steel and introduce new dislocation dynamics, which would be
difficult to take into account to decouple the effect of electrical current from the raise in temperature.
Three tests per test condition were conducted, and the errors are presented as the standard deviation
of the data collected for each test.

X-ray diffraction (XRD) measurements were conducted along the rolling direction on the
as-received material by mean of a Siemens D500 X-ray diffractometer (Munich, Germany) using
Cu Kα radiation with 2θ ranging from 30◦ to 100◦ (0.05◦ step and 5 s counting time per step). Rietveld
analyses were conducted by mean of Maud© software (version 2.91, Luca Lutterotti, University of
Trento, Trento, Italy) to calculate the volume fraction of the different phases.

Microstructure of the as-received samples was analyzed on a Leica DMRE optical microscope
(LEICA Microsystems, Wetzlar, Germany) after grinding up to 1200 grit SiC paper, mirror polishing
with polycrystalline diamond suspension (6 µm and 1 µm) and etching with modified Beraha solution.

3. Results

3.1. Characterization of the As-Received Material

The as-received materials showed a microstructure composed of austenite grains oriented along
the rolling direction dispersed in a ferrite matrix (Figure 2). The rolling process was conducted in the
cold/warm regime, as can be seen by the fragmented morphology of the austenite in Figure 2, and the
modestly banded ferrite (Figure 2d).
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Figure 2. Microstructures of the as-received materials: (a) UNS S32101; (b) UNS S32205; (c) UNS
S32304; and (d) UNS S32750. Etching solution was modified Beraha. RD, rolling direction; TD,
transversal direction; ND, normal direction. Austenite and ferrite are depicted as γ and δ, respectively,
in micrograph (a).
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XRD patterns of the as-received materials were acquired to verify the presence of secondary
phases and to calculate the volume fraction of the constituents.

Figure 3 presents the normalized intensity XRD patterns with only the peaks of the two main
constituents of DSSs, such as austenite and ferrite, depicted, respectively, as γ and δ. Firstly, secondary
phase’s peaks should be visible at lower diffraction angle because of their bigger crystalline cell
compared to austenite and ferrite. Secondly, since they grow inside the ferritic phase, the intensity of
the ferrite peaks should also be reduced if secondary phases are present. It is therefore clear that the
as-received materials were free of secondary phases. Evidence of the rolling process was observed in
the XRD pattern: the peaks were much broader than the solution treated sample [57] and the height of
the main peaks was different from the theoretical XRD pattern of austenite and ferrite, which translates
to a modestly texturized microstructure.
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Figure 3. X-ray diffraction patterns of the tested material.

Rietveld analysis on XRD patterns were conducted to calculate the volume fraction of austenite
and ferrite. The results are summarized in Table 2. These data confirm the results obtained with
image analysis performed on optical microscopy micrographs. All DSS grades showed a well-balanced
microstructure with approximately equal volume fraction of austenite and ferrite.

Table 2. Austenite and ferrite volume fraction of the different Duplex Stainless Steel grades.

DSS Grade Austenite Ferrite

UNS S32101 0.51 ± 0.02 0.49 ± 0.03
UNS S32205 0.53 ± 0.03 0.47 ± 0.04
UNS S32304 0.51 ± 0.01 0.49 ± 0.02
UNS S32750 0.48 ± 0.04 0.52 ± 0.05
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3.2. Temperature and Current Regime

The increase in temperature during plastic deformation can be calculated as follows:

∆T(εp) =

∫ ε
p
max

0

β

ρCp
σ(εp)dεp, (1)

where σ(εp) is the evolution of stress during plastic deformation, ρ is the density of the material,
Cp is the specific heat at constant pressure and β is the Quinney–Taylor parameter [58] that describes
the fraction of energy that is converted into heat during plastic deformation. The Quinney–Taylor
parameter can be considered constant, even though it can vary during plastic strain. In the case that
plastic flow is described by a power law, such as Hollomon formulation or Johnson–Cook model, β can
be expressed as:

β(εp) ≈ 1− n
(
εp

ε0

)n−1

, (2)

where n is the work hardening exponent of the material and ε0 is the strain at yielding.
The tests were performed at a strain rate of 10−1 s−1, hence heat exchange with the environment

was negligible because of the short duration of the test. Overall, the increase in temperature
calculated due to plastic deformation was between 70 ◦C and 150 ◦C depending on the fracture strain
(Hollomon formulation was used to describe the material behavior), consistent with the thermal
camera determinations.

Figure 4 shows the thermal images of UNS S32101 before the tensile test (Figure 4a) and immediately
after fracture (Figure 4b) under 5 A/mm2 current density. The temperature were acquired along a line
in the middle of the sample. To get a more precise temperature measurement for the lower current
density test, the temperature range was limited via software up to 160.3 ◦C. In Figure 4b, a peak
temperature (white region) out of the measurement range corresponding to the fracture surfaces is
present because of the local plastic instability, which decreases the cross section, increasing the local
current density causing higher joule heating of the region.
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The tensile test was conducted at 5 A/mm2.

Figure 5 shows the evolution of the temperature along the gauge length of the test conducted at
5 A/mm2 and its thermal counterpart at the beginning of the tensile test and after reaching the fracture,
in order to compare the imposed thermal regime with the one caused by the electrical current. Only the
temperature regime of the test conducted at 5 A/mm2 and its thermal counterpart for the UNS S32101
are reported as an example, since all DSSs showed the same trend.
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Figure 5a,b shows the evolution of temperature before the test and after the fracture of the tensile
test conducted with a current density of 5 A/mm2 and the corresponding thermal test. Temperature
along the specimen at the beginning of the test was not constant due to the copper jaws that acted
as a thermal sink. Nevertheless, the temperature regime imposed in the corresponding thermal test
(Figure 5c,d) is in good agreement with the electrical current test.
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comparison between temperature regimes of specimen tested at 5 A/mm2 and the corresponding
thermal test at 363 K right after fracture occurred.

As stated above, the higher joule heating of the necked region is much more evident in Figure 5d,
which compares the temperature regime of the current test at 5 A/mm2 and the corresponding thermal
test for UNS S32101 after reaching failure. The two peaks in the graph are the temperature of the
fracture surfaces: it can be noted that the peaks related to the 5 A/mm2 test are clipped because of the
software upper limit imposed during the recording of the temperature. For this reason, and because
of the increased current density after localized plastic instability, total elongation is not a reliable
parameter to consider when analyzing the influence of electrical current during plastic deformation.
Nevertheless, some considerations can be made. Thermal regimes of the other DSS grades are not
shown here but the same results were obtained.

The evolution of the current density during the tensile test was calculated considering the
diminishing of the cross section imposing the conservation of the volume. The true stress–strain curves
at 5 A/mm2, 10 A/mm2 and 15 A/mm2, together with the evolution of the current density during
the test for UNS S32101 DSS grade, are shown in Figure 6a–c as an example. It can be noted that
the current density varied during the test from the nominal 5 A/mm2 to approximately 5.8 A/mm2,
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from 10 A/mm2 to 11.5 A/mm2 and from 15 A/mm2 to 16.6 A/mm2 in correspondence with the
maximum uniform elongation. The change from solid to dashed line denotes the insurgence of plastic
instability, during which the calculation for the current density evolution did not hold because of
necking. After uniform elongation, local plastic instability caused an abrupt increase in current density
due to necking, which can cause localized melting of the specimen (area between dashed red line in
Figure 6e,f). Some melted regions were observed in the fracture surfaces for the tests conducted at
current densities of 10 A/mm2 and 15 A/mm2, as shown in Figure 6e,f.
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The mean temperature reached by the different DSS grades subjected to the current densities
used in the tests are summarized in Table 3. Current density and homologous temperature of the
investigated samples are also shown in Table 3.

Table 3. Current density, temperature and homologous temperature of the investigated DSSs.

DSS Grade Current Density
(A/mm2)

Mean Temperature
(K)

Homologous Temperature
(ad)

UNS S32101
5 363 0.21
10 603 0.35
15 783 0.45

UNS S32205
5 333 0.19
10 428 0.25
15 623 0.36

UNS S32304
5 338 0.19
10 448 0.26
15 683 0.39

UNS S32750
5 338 0.19
10 453 0.26
15 713 0.41

It was decided to limit the maximum temperature of the tested materials up to 0.5 Th for various
reasons: (a) higher temperatures lead to different dislocation dynamics, which are difficult to take
into account, and it would be complicated to separate the effect of the electrical current from that of
the temperature; (b) the influence of electrical current on secondary phase precipitation and spinodal
decomposition of DSSs is not clear and no relevant literature has been found; (c) at higher current
densities, the cooling device was not able to efficiently limit joule heating; and (d) the climatic chamber
was not able to reach such high temperatures. For more clarity, graphical transposition of Table 3 is
shown in Figure 7. UNS S32101 stands out as its increase in temperature was definitely higher than
the other DSS grades. The composition of the tested DSS grades did not vary significantly enough to
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affect the specific heat at constant pressure or the electrical conductivity, hence the higher temperature
reached by the UNS S32101 was because of the higher thickness of the sheet. The same geometry for
all specimens was used, except for the thickness. UNS S32101 has a lower surface to volume ratio since
it is three times thicker than the other steels, hence a decrease in the efficiency of the cooling device
was observed. Nevertheless, the temperature reached by the UNS S32101 was not high enough to
fall into the secondary phases’ temperature stability regime. An increase in temperature within the
experimental error, with some differences due to the experimental set-up, was observed for the other
three DSS grades.
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3.3. Mechanical Behavior

The flow stress curves obtained with the different current densities and the thermal counterparts of
all tested materials are shown in Figure 8. The Room Temperature (RT) tensile test was considered as the
baseline (black flow stress curves in Figure 8). The electrical tests, as well as the thermal counterparts,
showed a reduction in the total elongation as the temperature and the current densities increased,
except for the UNS S32304, which showed an increase in fracture strain at 5 A/mm2 compared to the
base material (Figure 8e, red curve). Mechanical properties, such as yield stress and Ultimate Tensile
Strength (UTS), showed the same trend as the total elongation, decreasing with increasing current
density and temperature. A peculiar morphology of the flow stress curves for the tests conducted
at 15 A/mm2 along with the thermal counterpart were noted for all DSS grades, except for UNS
S32101. The segmentation of the flow stress curves was related to a phenomenon known as Dynamic
Strain Aging (DSA) [59–61], which is an interaction between solid solution elements and the moving
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dislocations. UNS S32101, on the other hand, did not show DSA because the test temperature was
high enough to facilitate the depinning of the dislocation from the solute atoms and because of the
increased diffusion rate. The influence of electrical current on the DSA is beyond the scope of this
paper. The highest homologous temperature reached by the UNS S32101 was 0.45 (Table 3), which is
very close to the threshold that separates the cold/warm deformation regime from the hot one. This is
why the shape of the flow stress curves (electrical and thermal) for higher temperature tests of UNS
S32101 was different from the others DSS grades.

As mentioned above, total elongation is not a reliable parameter to consider when trying to
understand the influence of electrical current on the plastic flow of metals in any type of deformation
that involves a localized diminishing in the cross section during the test. To understand the influence
of electrical current on these materials, the elongation corresponding to UTS, defined as uniform
elongation, was used to compare the behavior of the different DSS grades according to the method
in [62,63]. Up to this point, the absence of necking effects did not lead to any considerable reduction of
the sample cross section and thus related temperature increases due to higher current density. However,
after necking occurred, the stress distribution was no longer uniaxial and the stress triaxiality was
not constant.

Relative uniform elongation was calculated for all the DSS grades with the following equation:

εUTS rel =
εUTS i

εUTS baseline
(3)

in which εUTS i is the test uniform elongation and εUTS baseline is the reference uniform elongation (i.e.,
uniform elongation of the RT tests).

Figure 9 shows the relative uniform elongation of the different DSS grades. The red circles refer to
the thermal test while the blue dots to the electrical test showing the relative uniform elongation of the
electrical and thermal tensile tests of the DSS grades tested. It can be seen that the uniform elongation
of the electrical tests was higher compared to that of the thermal counterparts for all the DSS grades.
There was not a significative correlation between relative uniform elongation and test temperature for
the different grades. Moreover, an opposite trend was observed for the electrical current test compared
to the thermal ones for UNS S32750 and UNS S32205.

A large uncertainty was calculated in relatively uniform elongation for both the thermal and the
electrical tests for all DSS grades except for the UNS S32101, because of the difficulty in measuring the
uniform elongation in the case of insurgence of DSA phenomenon. Furthermore, it is interesting to
note the positive effect of the electrical current on the uniform elongation compared to the thermal
counterpart. The electrical tensile test for almost all materials, except UNS S32304 at 10 A/mm2 and
15 A/mm2 as well as UNS S32101 at 15 A/mm2, showed a uniform elongation higher than the baseline
in contraposition with the thermal counterpart, denoting an influence of the electrical current on the
plastic flow. There was an evident correlation between the current density and the increase in relative
uniform elongation. EPE appeared to have a smaller effect on the uniform elongation of UNS S32101
and UNS S32304 compared to the other grades, while the most prominent effect was observed for UNS
S32750. UNS S32101 and UNS S32304 are known as lean duplex stainless steel because of the low
amount of alloying elements compared to the standard DSS UNS S32205 and the high alloyed DSS
UNS S32750. The major effect of the electrical current on the uniform elongation was observed for
UNS S32750, which showed an increase of up to 17.5% compared to the baseline for the test conducted
at 10 A/mm2. The different behavior of the two lean DSSs compared to the other grades is probably
because of the different work hardening rate due to the different alloying elements. An in-depth study
on the effect of electrical current on the work hardening rate is needed.
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Figure 9. Relative uniform elongation of the different DSS grades. Red circles refer to the thermal test
while the blue dots to the electrical test. UNS S32101 (a), UNS S32205 (b), UNS S32304 (c) and UNS
S32750 (d).

Figure 10 depicts the increase in uniform elongation of the electrical tests compared to the thermal
counterparts computed as the difference between the relatively uniform elongation of the electrical
and the thermal tests. The highest increase in uniform elongation (19.3%) compared to the other DSSs
was observed for the test conducted on UNS S32750 at 10 A/mm2. UNS S32205 and UNS S32304
reached almost the same increase in uniform elongation with respect to the current density while
a gradual decrease was observed for UNS S32101. A particular trend within the tested materials was
not observed. Nevertheless all DSS grades showed an increase in uniform elongation approximately
between 5% and 20% in the current density range tested.
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4. Discussion

In a previously published work, a SFE dependence of EPE on the total elongation has been
observed [32]. High SFE materials show a better formability compared to the low SFE ones.

The microstructure of DSS consists of a high SFE phase (ferrite), in which a low SFE phase
(austenite) nucleates and grows as the alloy cools. In the present study, a positive net effect of electrical
current was observed regardless of the presence of a low SFE phase, which should decrease the total
elongation. Zhao et al. [64] conducted some numerical simulations regarding the electrical potential
inside a nanocrystalline material, taking into account non-homogeneities such as grain boundaries.
They found that there could be a non-uniform distribution of electrical potential, which leads to
an uneven distribution of electrical current inside the material. This means that, in regions with
higher electrical resistivity, such as grain and phase boundaries and dislocation cell walls, a higher
localized resistive heating can be presumed. The same hypothesis was made by Sànchez et al. [42]
on an AISI 308L austenitic stainless steel subjected to electroplastic drawing and magnesium alloy
AZ31 under uniaxial micro-tension. They observed a lower microhardness for the material subjected
to electropulsing heat treatment after drawing in comparison with the conventional ones in the case of
the AISI 308L and an increase in fracture strain of the AZ31. They concluded that a microscale hot
spots should be present in both materials, reducing the hardness and changing the texture in the first
case while arresting microcracks propagation and voids initiation in the latter.
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Current distribution inside DSSs can be affected by the different electrical resistivity of ferrite
and austenite due to their different crystal structure and alloying elements. In fact, ferrite matrix
percolates the entire microstructure and has a lower electrical resistivity compared to austenite [65];
hence, an uneven distribution of the electrical current can be expected. The different work hardening
rate of the two phases has to be taken into account as well: austenite is subjected to higher deformation,
hence higher work hardening rate owing to its low SFE compared to ferrite is expected [66]. Since ferrite
has a higher yield stress than austenite, most of the plastic deformation initiates in the austenitic grains,
increasing the dislocation density of that phase, which affects the resistivity as well. Inhomogeneities
in the microstructure such as dislocations network, secondary phases precipitates, phase and grain
boundaries could cause a stagnation of electrons in their proximity, as stated by Ruszkiewicz et
al. and observed by Zhao et al. [33,64]. The local increase of electrons changes the electron to
atom ratio, which can lead to a decrease in the bond strength of the material, easing the plastic
deformation. The uneven distribution of electrical current through the microstructure and inside the
grains can also lead to a localized resistive heating favoring the development of texture due to crystal
rotation, as observed by Rahnama et al. and Sànchez et al. [42,45], and can also aid the diffusion
rate because of an increase in atom flux due to the electrical current [67], a phenomenon known as
electromigration. Even though some researchers claimed that the athermal effect (i.e., electron wind
force) plays an insignificant role in EPE [28,29], the increase in current density in the grain and phase
boundaries can increase the effect of the electron wind force, aiding the plastic flow of the material,
as confirmed by the lowering of the electrical resistivity.

The different effect of EPE on the DSSs is probably because of the different work hardening rate due
to the different composition, as stated before, and also because of the different grain size distribution of
the phase inside the material, which can affect the amount of phase and grain boundaries.

To summarize, the increase in uniform elongation with respect to the thermal tests in DSSs could
be related to the aforementioned phenomena. In particular, we suggest that the uneven distribution of
the electrical current throughout the microstructure plays a significant role in aiding the plastic flow,
regardless of the presence of low SFE austenite, which has been shown to reach fracture prematurely
when deformed under applied continuous electrical current [32,40].

5. Conclusions

Tensile tests with the aid of electrical current and corresponding thermal tests were conducted
on four DSS grades to investigate the influence of electrical current on materials that possess very
different SFE phases. Comparisons between the mechanical properties of electrical tests and the
thermal counterparts were performed.

Thermal regimes reached by the DSS grades are within the cold/warm range and are comparable
to each other except for UNS S32101 because of its lower surface to volume ratio due its greater
thickness compared to the other DSSs.

No differences in terms of yield stress and ultimate tensile strength were found between the
electrical and the thermal tests. On the other hand, a clear effect of the electrical current on the uniform
elongation and on the total elongation was observed.

All tested materials showed an increase in uniform elongation compared to the thermal tests and
to the baseline as well as the total elongation.

Standard DSS UNS S32205 and Super DSS UNS S32750 showed the biggest increase in uniform
elongation for the electrical tests compared to the thermal tests, the baseline and to the other DSS grades.
The highest increase in uniform elongation was approximately 20% for UNS S32750 at 10 A/mm2.
Nevertheless, all tested materials showed an increase in uniform elongation between 5% and 20%
compared to the thermal tests. The lowest was UNS S32101 at 15 A/mm2 because of its higher thermal
regime due to specimen geometry.
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This novel manufacturing process for this type of stainless steels could be useful in industrial
application such as wire drawing to substitute the external armor of submarine communication cables,
in order to prevent seawater corrosion in the case that the outside polymeric insulation is damaged.
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